blob: 4e122da3d6b0aa42eb836f0e207de3bed0be9869 [file] [log] [blame]
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is Hunspell, based on MySpell.
*
* The Initial Developers of the Original Code are
* Kevin Hendricks (MySpell) and Németh László (Hunspell).
* Portions created by the Initial Developers are Copyright (C) 2002-2005
* the Initial Developers. All Rights Reserved.
*
* Contributor(s): David Einstein, Davide Prina, Giuseppe Modugno,
* Gianluca Turconi, Simon Brouwer, Noll János, Bíró Árpád,
* Goldman Eleonóra, Sarlós Tamás, Bencsáth Boldizsár, Halácsy Péter,
* Dvornik László, Gefferth András, Nagy Viktor, Varga Dániel, Chris Halls,
* Rene Engelhard, Bram Moolenaar, Dafydd Jones, Harri Pitkänen
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
/*
* Copyright 2002 Kevin B. Hendricks, Stratford, Ontario, Canada
* And Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. All modifications to the source code must be clearly marked as
* such. Binary redistributions based on modified source code
* must be clearly marked as modified versions in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY KEVIN B. HENDRICKS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* KEVIN B. HENDRICKS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include "suggestmgr.hxx"
#include "htypes.hxx"
#include "csutil.hxx"
const w_char W_VLINE = {'\0', '|'};
#ifdef HUNSPELL_CHROME_CLIENT
namespace {
// A simple class which creates temporary hentry objects which are available
// only in a scope. To conceal memory operations from SuggestMgr functions,
// this object automatically deletes all hentry objects created through
// CreateScopedHashEntry() calls in its destructor. So, the following snippet
// raises a memory error.
//
// hentry* bad_copy = NULL;
// {
// ScopedHashEntryFactory factory;
// hentry* scoped_copy = factory.CreateScopedHashEntry(0, source);
// ...
// bad_copy = scoped_copy;
// }
// if (bad_copy->word[0]) // memory for scoped_copy has been deleted!
//
// As listed in the above snippet, it is simple to use this class.
// 1. Declare an instance of this ScopedHashEntryFactory, and;
// 2. Call its CreateHashEntry() member instead of using 'new hentry' or
// 'operator='.
//
class ScopedHashEntryFactory {
public:
ScopedHashEntryFactory();
~ScopedHashEntryFactory();
// Creates a temporary copy of the given hentry struct.
// The returned copy is available only while this object is available.
// NOTE: this function just calls memcpy() in creating a copy of the given
// hentry struct, i.e. it does NOT copy objects referred by pointers of the
// given hentry struct.
hentry* CreateScopedHashEntry(int index, const hentry* source);
private:
// A struct which encapsulates the new hentry struct introduced in hunspell
// 1.2.8. For a pointer to an hentry struct 'h', hunspell 1.2.8 stores a word
// (including a NUL character) into 'h->word[0]',...,'h->word[h->blen]' even
// though arraysize(h->word[]) is 1. Also, it changed 'astr' to a pointer so
// it can store affix flags into 'h->astr[0]',...,'h->astr[alen-1]'. To handle
// this new hentry struct, we define a struct which combines three values: an
// hentry struct 'hentry'; a char array 'word[kMaxWordLen]', and; an unsigned
// short array 'astr' so a hentry struct 'h' returned from
// CreateScopedHashEntry() satisfies the following equations:
// hentry* h = factory.CreateScopedHashEntry(0, source);
// h->word[0] == ((HashEntryItem*)h)->entry.word[0].
// h->word[1] == ((HashEntryItem*)h)->word[0].
// ...
// h->word[h->blen] == ((HashEntryItem*)h)->word[h->blen-1].
// h->astr[0] == ((HashEntryItem*)h)->astr[0].
// h->astr[1] == ((HashEntryItem*)h)->astr[1].
// ...
// h->astr[h->alen-1] == ((HashEntryItem*)h)->astr[h->alen-1].
enum {
kMaxWordLen = 128,
kMaxAffixLen = 8,
};
struct HashEntryItem {
hentry entry;
char word[kMaxWordLen];
unsigned short astr[kMaxAffixLen];
};
HashEntryItem hash_items_[MAX_ROOTS];
};
ScopedHashEntryFactory::ScopedHashEntryFactory() {
memset(&hash_items_[0], 0, sizeof(hash_items_));
}
ScopedHashEntryFactory::~ScopedHashEntryFactory() {
}
hentry* ScopedHashEntryFactory::CreateScopedHashEntry(int index,
const hentry* source) {
if (index >= MAX_ROOTS || source->blen >= kMaxWordLen)
return NULL;
// Retrieve a HashEntryItem struct from our spool, initialize it, and
// returns the address of its 'hentry' member.
size_t source_size = sizeof(hentry) + source->blen + 1;
HashEntryItem* hash_item = &hash_items_[index];
memcpy(&hash_item->entry, source, source_size);
if (source->astr) {
hash_item->entry.alen = source->alen;
if (hash_item->entry.alen > kMaxAffixLen)
hash_item->entry.alen = kMaxAffixLen;
memcpy(hash_item->astr, source->astr, hash_item->entry.alen * sizeof(hash_item->astr[0]));
hash_item->entry.astr = &hash_item->astr[0];
}
return &hash_item->entry;
}
} // namespace
#endif
#ifdef HUNSPELL_CHROME_CLIENT
SuggestMgr::SuggestMgr(hunspell::BDictReader* reader,
const char * tryme, int maxn,
AffixMgr * aptr)
{
bdict_reader = reader;
#else
SuggestMgr::SuggestMgr(const char* tryme, unsigned int maxn, AffixMgr* aptr) {
#endif
// register affix manager and check in string of chars to
// try when building candidate suggestions
pAMgr = aptr;
csconv = NULL;
ckeyl = 0;
ckey = NULL;
ctryl = 0;
ctry = NULL;
utf8 = 0;
langnum = 0;
complexprefixes = 0;
maxSug = maxn;
nosplitsugs = 0;
maxngramsugs = MAXNGRAMSUGS;
maxcpdsugs = MAXCOMPOUNDSUGS;
if (pAMgr) {
langnum = pAMgr->get_langnum();
ckey = pAMgr->get_key_string();
nosplitsugs = pAMgr->get_nosplitsugs();
if (pAMgr->get_maxngramsugs() >= 0)
maxngramsugs = pAMgr->get_maxngramsugs();
utf8 = pAMgr->get_utf8();
if (pAMgr->get_maxcpdsugs() >= 0)
maxcpdsugs = pAMgr->get_maxcpdsugs();
if (!utf8) {
csconv = get_current_cs(pAMgr->get_encoding());
}
complexprefixes = pAMgr->get_complexprefixes();
}
if (ckey) {
if (utf8) {
ckeyl = u8_u16(ckey_utf, ckey);
} else {
ckeyl = strlen(ckey);
}
}
if (tryme) {
ctry = mystrdup(tryme);
if (ctry)
ctryl = strlen(ctry);
if (ctry && utf8) {
ctryl = u8_u16(ctry_utf, tryme);
}
}
}
SuggestMgr::~SuggestMgr() {
pAMgr = NULL;
if (ckey)
free(ckey);
ckey = NULL;
ckeyl = 0;
if (ctry)
free(ctry);
ctry = NULL;
ctryl = 0;
maxSug = 0;
#ifdef MOZILLA_CLIENT
delete[] csconv;
#endif
}
void SuggestMgr::testsug(std::vector<std::string>& wlst,
const std::string& candidate,
int cpdsuggest,
int* timer,
clock_t* timelimit) {
int cwrd = 1;
if (wlst.size() == maxSug)
return;
for (size_t k = 0; k < wlst.size(); ++k) {
if (wlst[k] == candidate) {
cwrd = 0;
break;
}
}
if ((cwrd) && checkword(candidate, cpdsuggest, timer, timelimit)) {
wlst.push_back(candidate);
}
}
// generate suggestions for a misspelled word
// pass in address of array of char * pointers
// onlycompoundsug: probably bad suggestions (need for ngram sugs, too)
void SuggestMgr::suggest(std::vector<std::string>& slst,
const char* w,
int* onlycompoundsug) {
int nocompoundtwowords = 0;
std::vector<w_char> word_utf;
int wl = 0;
size_t nsugorig = slst.size();
std::string w2;
const char* word = w;
size_t oldSug = 0;
// word reversing wrapper for complex prefixes
if (complexprefixes) {
w2.assign(w);
if (utf8)
reverseword_utf(w2);
else
reverseword(w2);
word = w2.c_str();
}
if (utf8) {
wl = u8_u16(word_utf, word);
if (wl == -1) {
return;
}
}
for (int cpdsuggest = 0; (cpdsuggest < 2) && (nocompoundtwowords == 0);
cpdsuggest++) {
// limit compound suggestion
if (cpdsuggest > 0)
oldSug = slst.size();
// suggestions for an uppercase word (html -> HTML)
if (slst.size() < maxSug) {
if (utf8)
capchars_utf(slst, &word_utf[0], wl, cpdsuggest);
else
capchars(slst, word, cpdsuggest);
}
// perhaps we made a typical fault of spelling
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
replchars(slst, word, cpdsuggest);
}
// perhaps we made chose the wrong char from a related set
if ((slst.size() < maxSug) &&
(!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
mapchars(slst, word, cpdsuggest);
}
// only suggest compound words when no other suggestion
if ((cpdsuggest == 0) && (slst.size() > nsugorig))
nocompoundtwowords = 1;
// did we swap the order of chars by mistake
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
swapchar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
swapchar(slst, word, cpdsuggest);
}
// did we swap the order of non adjacent chars by mistake
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
longswapchar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
longswapchar(slst, word, cpdsuggest);
}
// did we just hit the wrong key in place of a good char (case and keyboard)
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
badcharkey_utf(slst, &word_utf[0], wl, cpdsuggest);
else
badcharkey(slst, word, cpdsuggest);
}
// did we add a char that should not be there
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
extrachar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
extrachar(slst, word, cpdsuggest);
}
// did we forgot a char
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
forgotchar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
forgotchar(slst, word, cpdsuggest);
}
// did we move a char
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
movechar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
movechar(slst, word, cpdsuggest);
}
// did we just hit the wrong key in place of a good char
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
badchar_utf(slst, &word_utf[0], wl, cpdsuggest);
else
badchar(slst, word, cpdsuggest);
}
// did we double two characters
if ((slst.size() < maxSug) && (!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
if (utf8)
doubletwochars_utf(slst, &word_utf[0], wl, cpdsuggest);
else
doubletwochars(slst, word, cpdsuggest);
}
// perhaps we forgot to hit space and two words ran together
if (!nosplitsugs && (slst.size() < maxSug) &&
(!cpdsuggest || (slst.size() < oldSug + maxcpdsugs))) {
twowords(slst, word, cpdsuggest);
}
} // repeating ``for'' statement compounding support
if (!nocompoundtwowords && (!slst.empty()) && onlycompoundsug)
*onlycompoundsug = 1;
}
// suggestions for an uppercase word (html -> HTML)
void SuggestMgr::capchars_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
mkallcap_utf(candidate_utf, langnum);
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
// suggestions for an uppercase word (html -> HTML)
void SuggestMgr::capchars(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
mkallcap(candidate, csconv);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
// suggestions for when chose the wrong char out of a related set
int SuggestMgr::mapchars(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate;
clock_t timelimit;
int timer;
int wl = strlen(word);
if (wl < 2 || !pAMgr)
return wlst.size();
const std::vector<mapentry>& maptable = pAMgr->get_maptable();
if (maptable.empty())
return wlst.size();
timelimit = clock();
timer = MINTIMER;
return map_related(word, candidate, 0, wlst, cpdsuggest,
maptable, &timer, &timelimit);
}
int SuggestMgr::map_related(const char* word,
std::string& candidate,
int wn,
std::vector<std::string>& wlst,
int cpdsuggest,
const std::vector<mapentry>& maptable,
int* timer,
clock_t* timelimit) {
if (*(word + wn) == '\0') {
int cwrd = 1;
for (size_t m = 0; m < wlst.size(); ++m) {
if (wlst[m] == candidate) {
cwrd = 0;
break;
}
}
if ((cwrd) && checkword(candidate, cpdsuggest, timer, timelimit)) {
if (wlst.size() < maxSug) {
wlst.push_back(candidate);
}
}
return wlst.size();
}
int in_map = 0;
for (size_t j = 0; j < maptable.size(); ++j) {
for (size_t k = 0; k < maptable[j].size(); ++k) {
size_t len = maptable[j][k].size();
if (strncmp(maptable[j][k].c_str(), word + wn, len) == 0) {
in_map = 1;
size_t cn = candidate.size();
for (size_t l = 0; l < maptable[j].size(); ++l) {
candidate.resize(cn);
candidate.append(maptable[j][l]);
map_related(word, candidate, wn + len, wlst,
cpdsuggest, maptable, timer, timelimit);
if (!(*timer))
return wlst.size();
}
}
}
}
if (!in_map) {
candidate.push_back(*(word + wn));
map_related(word, candidate, wn + 1, wlst, cpdsuggest,
maptable, timer, timelimit);
}
return wlst.size();
}
// suggestions for a typical fault of spelling, that
// differs with more, than 1 letter from the right form.
int SuggestMgr::replchars(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate;
int wl = strlen(word);
if (wl < 2 || !pAMgr)
return wlst.size();
// TODO: wrong, 'ns' doesn't exist any more
#ifdef HUNSPELL_CHROME_CLIENT
const char *pattern, *pattern2;
hunspell::ReplacementIterator iterator = bdict_reader->GetReplacementIterator();
while (iterator.GetNext(&pattern, &pattern2)) {
const char* r = word;
size_t lenr = strlen(pattern2);
size_t lenp = strlen(pattern);
// search every occurence of the pattern in the word
while ((r=strstr(r, pattern)) != NULL) {
candidate = word;
candidate.replace(r-word, lenp, pattern2);
#else
const std::vector<replentry>& reptable = pAMgr->get_reptable();
for (size_t i = 0; i < reptable.size(); ++i) {
const char* r = word;
// search every occurence of the pattern in the word
while ((r = strstr(r, reptable[i].pattern.c_str())) != NULL) {
int type = (r == word) ? 1 : 0;
if (r - word + reptable[i].pattern.size() == strlen(word))
type += 2;
while (type && reptable[i].outstrings[type].empty())
type = (type == 2 && r != word) ? 0 : type - 1;
const std::string&out = reptable[i].outstrings[type];
if (out.empty()) {
++r;
continue;
}
candidate.assign(word);
candidate.resize(r - word);
candidate.append(reptable[i].outstrings[type]);
candidate.append(r + reptable[i].pattern.size());
#endif
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
// check REP suggestions with space
size_t sp = candidate.find(' ');
if (sp != std::string::npos) {
size_t prev = 0;
while (sp != std::string::npos) {
std::string prev_chunk = candidate.substr(prev, sp - prev);
if (checkword(prev_chunk, 0, NULL, NULL)) {
size_t oldns = wlst.size();
std::string post_chunk = candidate.substr(sp + 1);
testsug(wlst, post_chunk, cpdsuggest, NULL, NULL);
if (oldns < wlst.size()) {
wlst[wlst.size() - 1] = candidate;
}
}
prev = sp + 1;
sp = candidate.find(' ', prev);
}
}
r++; // search for the next letter
}
}
return wlst.size();
}
// perhaps we doubled two characters (pattern aba -> ababa, for example vacation
// -> vacacation)
int SuggestMgr::doubletwochars(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
int state = 0;
int wl = strlen(word);
if (wl < 5 || !pAMgr)
return wlst.size();
for (int i = 2; i < wl; i++) {
if (word[i] == word[i - 2]) {
state++;
if (state == 3) {
std::string candidate(word, word + i - 1);
candidate.insert(candidate.end(), word + i + 1, word + wl);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
state = 0;
}
} else {
state = 0;
}
}
return wlst.size();
}
// perhaps we doubled two characters (pattern aba -> ababa, for example vacation
// -> vacacation)
int SuggestMgr::doubletwochars_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
int state = 0;
if (wl < 5 || !pAMgr)
return wlst.size();
for (int i = 2; i < wl; i++) {
if (word[i] == word[i - 2]) {
state++;
if (state == 3) {
std::vector<w_char> candidate_utf(word, word + i - 1);
candidate_utf.insert(candidate_utf.end(), word + i + 1, word + wl);
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
state = 0;
}
} else {
state = 0;
}
}
return wlst.size();
}
// error is wrong char in place of correct one (case and keyboard related
// version)
int SuggestMgr::badcharkey(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
// swap out each char one by one and try uppercase and neighbor
// keyboard chars in its place to see if that makes a good word
for (size_t i = 0; i < candidate.size(); ++i) {
char tmpc = candidate[i];
// check with uppercase letters
candidate[i] = csconv[((unsigned char)tmpc)].cupper;
if (tmpc != candidate[i]) {
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
candidate[i] = tmpc;
}
// check neighbor characters in keyboard string
if (!ckey)
continue;
char* loc = strchr(ckey, tmpc);
while (loc) {
if ((loc > ckey) && (*(loc - 1) != '|')) {
candidate[i] = *(loc - 1);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
if ((*(loc + 1) != '|') && (*(loc + 1) != '\0')) {
candidate[i] = *(loc + 1);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
loc = strchr(loc + 1, tmpc);
}
candidate[i] = tmpc;
}
return wlst.size();
}
// error is wrong char in place of correct one (case and keyboard related
// version)
int SuggestMgr::badcharkey_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::string candidate;
std::vector<w_char> candidate_utf(word, word + wl);
// swap out each char one by one and try all the tryme
// chars in its place to see if that makes a good word
for (int i = 0; i < wl; i++) {
w_char tmpc = candidate_utf[i];
// check with uppercase letters
candidate_utf[i] = upper_utf(candidate_utf[i], 1);
if (tmpc != candidate_utf[i]) {
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
candidate_utf[i] = tmpc;
}
// check neighbor characters in keyboard string
if (!ckey)
continue;
size_t loc = 0;
while ((loc < ckeyl) && ckey_utf[loc] != tmpc)
++loc;
while (loc < ckeyl) {
if ((loc > 0) && ckey_utf[loc - 1] != W_VLINE) {
candidate_utf[i] = ckey_utf[loc - 1];
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
if (((loc + 1) < ckeyl) && (ckey_utf[loc + 1] != W_VLINE)) {
candidate_utf[i] = ckey_utf[loc + 1];
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
do {
loc++;
} while ((loc < ckeyl) && ckey_utf[loc] != tmpc);
}
candidate_utf[i] = tmpc;
}
return wlst.size();
}
// error is wrong char in place of correct one
int SuggestMgr::badchar(std::vector<std::string>& wlst, const char* word, int cpdsuggest) {
std::string candidate(word);
clock_t timelimit = clock();
int timer = MINTIMER;
// swap out each char one by one and try all the tryme
// chars in its place to see if that makes a good word
for (size_t j = 0; j < ctryl; ++j) {
for (std::string::reverse_iterator aI = candidate.rbegin(), aEnd = candidate.rend(); aI != aEnd; ++aI) {
char tmpc = *aI;
if (ctry[j] == tmpc)
continue;
*aI = ctry[j];
testsug(wlst, candidate, cpdsuggest, &timer, &timelimit);
if (!timer)
return wlst.size();
*aI = tmpc;
}
}
return wlst.size();
}
// error is wrong char in place of correct one
int SuggestMgr::badchar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
std::string candidate;
clock_t timelimit = clock();
int timer = MINTIMER;
// swap out each char one by one and try all the tryme
// chars in its place to see if that makes a good word
for (size_t j = 0; j < ctryl; ++j) {
for (int i = wl - 1; i >= 0; i--) {
w_char tmpc = candidate_utf[i];
if (tmpc == ctry_utf[j])
continue;
candidate_utf[i] = ctry_utf[j];
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, &timer, &timelimit);
if (!timer)
return wlst.size();
candidate_utf[i] = tmpc;
}
}
return wlst.size();
}
// error is word has an extra letter it does not need
int SuggestMgr::extrachar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
if (candidate_utf.size() < 2)
return wlst.size();
// try omitting one char of word at a time
for (size_t i = 0; i < candidate_utf.size(); ++i) {
size_t index = candidate_utf.size() - 1 - i;
w_char tmpc = candidate_utf[index];
candidate_utf.erase(candidate_utf.begin() + index);
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
candidate_utf.insert(candidate_utf.begin() + index, tmpc);
}
return wlst.size();
}
// error is word has an extra letter it does not need
int SuggestMgr::extrachar(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
if (candidate.size() < 2)
return wlst.size();
// try omitting one char of word at a time
for (size_t i = 0; i < candidate.size(); ++i) {
size_t index = candidate.size() - 1 - i;
char tmpc = candidate[index];
candidate.erase(candidate.begin() + index);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
candidate.insert(candidate.begin() + index, tmpc);
}
return wlst.size();
}
// error is missing a letter it needs
int SuggestMgr::forgotchar(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
clock_t timelimit = clock();
int timer = MINTIMER;
// try inserting a tryme character before every letter (and the null
// terminator)
for (size_t k = 0; k < ctryl; ++k) {
for (size_t i = 0; i <= candidate.size(); ++i) {
size_t index = candidate.size() - i;
candidate.insert(candidate.begin() + index, ctry[k]);
testsug(wlst, candidate, cpdsuggest, &timer, &timelimit);
if (!timer)
return wlst.size();
candidate.erase(candidate.begin() + index);
}
}
return wlst.size();
}
// error is missing a letter it needs
int SuggestMgr::forgotchar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
clock_t timelimit = clock();
int timer = MINTIMER;
// try inserting a tryme character at the end of the word and before every
// letter
for (size_t k = 0; k < ctryl; ++k) {
for (size_t i = 0; i <= candidate_utf.size(); ++i) {
size_t index = candidate_utf.size() - i;
candidate_utf.insert(candidate_utf.begin() + index, ctry_utf[k]);
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, &timer, &timelimit);
if (!timer)
return wlst.size();
candidate_utf.erase(candidate_utf.begin() + index);
}
}
return wlst.size();
}
/* error is should have been two words */
int SuggestMgr::twowords(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
int c2;
int forbidden = 0;
int cwrd;
int wl = strlen(word);
if (wl < 3)
return wlst.size();
if (langnum == LANG_hu)
forbidden = check_forbidden(word, wl);
char* candidate = (char*)malloc(wl + 2);
strcpy(candidate + 1, word);
// split the string into two pieces after every char
// if both pieces are good words make them a suggestion
for (char* p = candidate + 1; p[1] != '\0'; p++) {
p[-1] = *p;
// go to end of the UTF-8 character
while (utf8 && ((p[1] & 0xc0) == 0x80)) {
*p = p[1];
p++;
}
if (utf8 && p[1] == '\0')
break; // last UTF-8 character
*p = '\0';
int c1 = checkword(candidate, cpdsuggest, NULL, NULL);
if (c1) {
c2 = checkword((p + 1), cpdsuggest, NULL, NULL);
if (c2) {
*p = ' ';
// spec. Hungarian code (need a better compound word support)
if ((langnum == LANG_hu) && !forbidden &&
// if 3 repeating letter, use - instead of space
(((p[-1] == p[1]) &&
(((p > candidate + 1) && (p[-1] == p[-2])) || (p[-1] == p[2]))) ||
// or multiple compounding, with more, than 6 syllables
((c1 == 3) && (c2 >= 2))))
*p = '-';
cwrd = 1;
for (size_t k = 0; k < wlst.size(); ++k) {
if (wlst[k] == candidate) {
cwrd = 0;
break;
}
}
if (wlst.size() < maxSug) {
if (cwrd) {
wlst.push_back(candidate);
}
} else {
free(candidate);
return wlst.size();
}
// add two word suggestion with dash, if TRY string contains
// "a" or "-"
// NOTE: cwrd doesn't modified for REP twoword sugg.
if (ctry && (strchr(ctry, 'a') || strchr(ctry, '-')) &&
mystrlen(p + 1) > 1 && mystrlen(candidate) - mystrlen(p) > 1) {
*p = '-';
for (size_t k = 0; k < wlst.size(); ++k) {
if (wlst[k] == candidate) {
cwrd = 0;
break;
}
}
if (wlst.size() < maxSug) {
if (cwrd) {
wlst.push_back(candidate);
}
} else {
free(candidate);
return wlst.size();
}
}
}
}
}
free(candidate);
return wlst.size();
}
// error is adjacent letter were swapped
int SuggestMgr::swapchar(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
if (candidate.size() < 2)
return wlst.size();
// try swapping adjacent chars one by one
for (size_t i = 0; i < candidate.size() - 1; ++i) {
std::swap(candidate[i], candidate[i+1]);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
std::swap(candidate[i], candidate[i+1]);
}
// try double swaps for short words
// ahev -> have, owudl -> would
if (candidate.size() == 4 || candidate.size() == 5) {
candidate[0] = word[1];
candidate[1] = word[0];
candidate[2] = word[2];
candidate[candidate.size() - 2] = word[candidate.size() - 1];
candidate[candidate.size() - 1] = word[candidate.size() - 2];
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
if (candidate.size() == 5) {
candidate[0] = word[0];
candidate[1] = word[2];
candidate[2] = word[1];
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
}
return wlst.size();
}
// error is adjacent letter were swapped
int SuggestMgr::swapchar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
if (candidate_utf.size() < 2)
return wlst.size();
std::string candidate;
// try swapping adjacent chars one by one
for (size_t i = 0; i < candidate_utf.size() - 1; ++i) {
std::swap(candidate_utf[i], candidate_utf[i+1]);
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
std::swap(candidate_utf[i], candidate_utf[i+1]);
}
// try double swaps for short words
// ahev -> have, owudl -> would, suodn -> sound
if (candidate_utf.size() == 4 || candidate_utf.size() == 5) {
candidate_utf[0] = word[1];
candidate_utf[1] = word[0];
candidate_utf[2] = word[2];
candidate_utf[candidate_utf.size() - 2] = word[candidate_utf.size() - 1];
candidate_utf[candidate_utf.size() - 1] = word[candidate_utf.size() - 2];
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
if (candidate_utf.size() == 5) {
candidate_utf[0] = word[0];
candidate_utf[1] = word[2];
candidate_utf[2] = word[1];
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
}
return wlst.size();
}
// error is not adjacent letter were swapped
int SuggestMgr::longswapchar(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
// try swapping not adjacent chars one by one
for (std::string::iterator p = candidate.begin(); p < candidate.end(); ++p) {
for (std::string::iterator q = candidate.begin(); q < candidate.end(); ++q) {
if (std::abs(std::distance(q, p)) > 1) {
std::swap(*p, *q);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
std::swap(*p, *q);
}
}
}
return wlst.size();
}
// error is adjacent letter were swapped
int SuggestMgr::longswapchar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
// try swapping not adjacent chars
for (std::vector<w_char>::iterator p = candidate_utf.begin(); p < candidate_utf.end(); ++p) {
for (std::vector<w_char>::iterator q = candidate_utf.begin(); q < candidate_utf.end(); ++q) {
if (std::abs(std::distance(q, p)) > 1) {
std::swap(*p, *q);
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
std::swap(*p, *q);
}
}
}
return wlst.size();
}
// error is a letter was moved
int SuggestMgr::movechar(std::vector<std::string>& wlst,
const char* word,
int cpdsuggest) {
std::string candidate(word);
if (candidate.size() < 2)
return wlst.size();
// try moving a char
for (std::string::iterator p = candidate.begin(); p < candidate.end(); ++p) {
for (std::string::iterator q = p + 1; q < candidate.end() && std::distance(p, q) < 10; ++q) {
std::swap(*q, *(q - 1));
if (std::distance(p, q) < 2)
continue; // omit swap char
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
std::copy(word, word + candidate.size(), candidate.begin());
}
for (std::string::reverse_iterator p = candidate.rbegin(), pEnd = candidate.rend() - 1; p != pEnd; ++p) {
for (std::string::reverse_iterator q = p + 1, qEnd = candidate.rend(); q != qEnd && std::distance(p, q) < 10; ++q) {
std::swap(*q, *(q - 1));
if (std::distance(p, q) < 2)
continue; // omit swap char
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
std::copy(word, word + candidate.size(), candidate.begin());
}
return wlst.size();
}
// error is a letter was moved
int SuggestMgr::movechar_utf(std::vector<std::string>& wlst,
const w_char* word,
int wl,
int cpdsuggest) {
std::vector<w_char> candidate_utf(word, word + wl);
if (candidate_utf.size() < 2)
return wlst.size();
// try moving a char
for (std::vector<w_char>::iterator p = candidate_utf.begin(); p < candidate_utf.end(); ++p) {
for (std::vector<w_char>::iterator q = p + 1; q < candidate_utf.end() && std::distance(p, q) < 10; ++q) {
std::swap(*q, *(q - 1));
if (std::distance(p, q) < 2)
continue; // omit swap char
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
std::copy(word, word + candidate_utf.size(), candidate_utf.begin());
}
for (std::vector<w_char>::reverse_iterator p = candidate_utf.rbegin(); p < candidate_utf.rend(); ++p) {
for (std::vector<w_char>::reverse_iterator q = p + 1; q < candidate_utf.rend() && std::distance(p, q) < 10; ++q) {
std::swap(*q, *(q - 1));
if (std::distance(p, q) < 2)
continue; // omit swap char
std::string candidate;
u16_u8(candidate, candidate_utf);
testsug(wlst, candidate, cpdsuggest, NULL, NULL);
}
std::copy(word, word + candidate_utf.size(), candidate_utf.begin());
}
return wlst.size();
}
// generate a set of suggestions for very poorly spelled words
void SuggestMgr::ngsuggest(std::vector<std::string>& wlst,
const char* w,
const std::vector<HashMgr*>& rHMgr) {
int lval;
int sc;
int lp, lpphon;
int nonbmp = 0;
// exhaustively search through all root words
// keeping track of the MAX_ROOTS most similar root words
struct hentry* roots[MAX_ROOTS];
char* rootsphon[MAX_ROOTS];
int scores[MAX_ROOTS];
int scoresphon[MAX_ROOTS];
for (int i = 0; i < MAX_ROOTS; i++) {
roots[i] = NULL;
scores[i] = -100 * i;
rootsphon[i] = NULL;
scoresphon[i] = -100 * i;
}
lp = MAX_ROOTS - 1;
lpphon = MAX_ROOTS - 1;
int low = NGRAM_LOWERING;
std::string w2;
const char* word = w;
// word reversing wrapper for complex prefixes
if (complexprefixes) {
w2.assign(w);
if (utf8)
reverseword_utf(w2);
else
reverseword(w2);
word = w2.c_str();
}
std::vector<w_char> u8;
int nc = strlen(word);
int n = (utf8) ? u8_u16(u8, word) : nc;
// set character based ngram suggestion for words with non-BMP Unicode
// characters
if (n == -1) {
utf8 = 0; // XXX not state-free
n = nc;
nonbmp = 1;
low = 0;
}
struct hentry* hp = NULL;
int col = -1;
#ifdef HUNSPELL_CHROME_CLIENT
ScopedHashEntryFactory hash_entry_factory;
#endif
phonetable* ph = (pAMgr) ? pAMgr->get_phonetable() : NULL;
std::string target;
std::string candidate;
std::vector<w_char> w_candidate;
if (ph) {
if (utf8) {
u8_u16(w_candidate, word);
mkallcap_utf(w_candidate, langnum);
u16_u8(candidate, w_candidate);
} else {
candidate.assign(word);
if (!nonbmp)
mkallcap(candidate, csconv);
}
target = phonet(candidate, *ph); // XXX phonet() is 8-bit (nc, not n)
}
FLAG forbiddenword = pAMgr ? pAMgr->get_forbiddenword() : FLAG_NULL;
FLAG nosuggest = pAMgr ? pAMgr->get_nosuggest() : FLAG_NULL;
FLAG nongramsuggest = pAMgr ? pAMgr->get_nongramsuggest() : FLAG_NULL;
FLAG onlyincompound = pAMgr ? pAMgr->get_onlyincompound() : FLAG_NULL;
std::vector<w_char> w_word, w_target;
if (utf8) {
u8_u16(w_word, word);
u8_u16(w_target, target);
}
std::vector<w_char> w_entry;
std::string f;
std::vector<w_char> w_f;
std::vector<w_char> w_target2;
for (size_t i = 0; i < rHMgr.size(); ++i) {
while (0 != (hp = rHMgr[i]->walk_hashtable(col, hp))) {
if ((hp->astr) && (pAMgr) &&
(TESTAFF(hp->astr, forbiddenword, hp->alen) ||
TESTAFF(hp->astr, ONLYUPCASEFLAG, hp->alen) ||
TESTAFF(hp->astr, nosuggest, hp->alen) ||
TESTAFF(hp->astr, nongramsuggest, hp->alen) ||
TESTAFF(hp->astr, onlyincompound, hp->alen)))
continue;
if (utf8) {
w_entry.clear();
u8_u16(w_entry, HENTRY_WORD(hp));
sc = ngram(3, w_word, w_entry, NGRAM_LONGER_WORSE + low) +
leftcommonsubstring(w_word, w_entry);
} else {
sc = ngram(3, word, HENTRY_WORD(hp), NGRAM_LONGER_WORSE + low) +
leftcommonsubstring(word, HENTRY_WORD(hp));
}
// check special pronounciation
f.clear();
if ((hp->var & H_OPT_PHON) &&
copy_field(f, HENTRY_DATA(hp), MORPH_PHON)) {
int sc2;
if (utf8) {
w_f.clear();
u8_u16(w_f, f.c_str());
sc2 = ngram(3, w_word, w_f, NGRAM_LONGER_WORSE + low) +
leftcommonsubstring(w_word, w_f);
} else {
sc2 = ngram(3, word, f, NGRAM_LONGER_WORSE + low) +
leftcommonsubstring(word, f.c_str());
}
if (sc2 > sc)
sc = sc2;
}
int scphon = -20000;
if (ph && (sc > 2) && (abs(n - (int)hp->clen) <= 3)) {
if (utf8) {
w_candidate.clear();
u8_u16(w_candidate, HENTRY_WORD(hp));
mkallcap_utf(w_candidate, langnum);
u16_u8(candidate, w_candidate);
} else {
candidate = HENTRY_WORD(hp);
mkallcap(candidate, csconv);
}
std::string target2 = phonet(candidate, *ph);
w_target2.clear();
if (utf8) {
u8_u16(w_target2, target2.c_str());
scphon = 2 * ngram(3, w_target, w_target2,
NGRAM_LONGER_WORSE);
} else {
scphon = 2 * ngram(3, target, target2,
NGRAM_LONGER_WORSE);
}
}
if (sc > scores[lp]) {
scores[lp] = sc;
#ifdef HUNSPELL_CHROME_CLIENT
roots[lp] = hash_entry_factory.CreateScopedHashEntry(lp, hp);
#else
roots[lp] = hp;
#endif
lval = sc;
for (int j = 0; j < MAX_ROOTS; j++)
if (scores[j] < lval) {
lp = j;
lval = scores[j];
}
}
if (scphon > scoresphon[lpphon]) {
scoresphon[lpphon] = scphon;
rootsphon[lpphon] = HENTRY_WORD(hp);
lval = scphon;
for (int j = 0; j < MAX_ROOTS; j++)
if (scoresphon[j] < lval) {
lpphon = j;
lval = scoresphon[j];
}
}
}
}
// find minimum threshold for a passable suggestion
// mangle original word three differnt ways
// and score them to generate a minimum acceptable score
std::vector<w_char> w_mw;
int thresh = 0;
for (int sp = 1; sp < 4; sp++) {
if (utf8) {
w_mw = w_word;
for (int k = sp; k < n; k += 4) {
w_mw[k].l = '*';
w_mw[k].h = 0;
}
thresh += ngram(n, w_word, w_mw, NGRAM_ANY_MISMATCH + low);
} else {
std::string mw = word;
for (int k = sp; k < n; k += 4)
mw[k] = '*';
thresh += ngram(n, word, mw, NGRAM_ANY_MISMATCH + low);
}
}
thresh = thresh / 3;
thresh--;
// now expand affixes on each of these root words and
// and use length adjusted ngram scores to select
// possible suggestions
char* guess[MAX_GUESS];
char* guessorig[MAX_GUESS];
int gscore[MAX_GUESS];
for (int i = 0; i < MAX_GUESS; i++) {
guess[i] = NULL;
guessorig[i] = NULL;
gscore[i] = -100 * i;
}
lp = MAX_GUESS - 1;
struct guessword* glst;
glst = (struct guessword*)calloc(MAX_WORDS, sizeof(struct guessword));
if (!glst) {
if (nonbmp)
utf8 = 1;
return;
}
std::vector<w_char> w_glst_word;
for (int i = 0; i < MAX_ROOTS; i++) {
if (roots[i]) {
struct hentry* rp = roots[i];
f.clear();
const char *field = NULL;
if ((rp->var & H_OPT_PHON) && copy_field(f, HENTRY_DATA(rp), MORPH_PHON))
field = f.c_str();
int nw = pAMgr->expand_rootword(
glst, MAX_WORDS, HENTRY_WORD(rp), rp->blen, rp->astr, rp->alen, word,
nc, field);
for (int k = 0; k < nw; k++) {
if (utf8) {
w_glst_word.clear();
u8_u16(w_glst_word, glst[k].word);
sc = ngram(n, w_word, w_glst_word,
NGRAM_ANY_MISMATCH + low) +
leftcommonsubstring(w_word, w_glst_word);
} else {
sc = ngram(n, word, glst[k].word,
NGRAM_ANY_MISMATCH + low) +
leftcommonsubstring(word, glst[k].word);
}
if (sc > thresh) {
if (sc > gscore[lp]) {
if (guess[lp]) {
free(guess[lp]);
if (guessorig[lp]) {
free(guessorig[lp]);
guessorig[lp] = NULL;
}
}
gscore[lp] = sc;
guess[lp] = glst[k].word;
guessorig[lp] = glst[k].orig;
lval = sc;
for (int j = 0; j < MAX_GUESS; j++)
if (gscore[j] < lval) {
lp = j;
lval = gscore[j];
}
} else {
free(glst[k].word);
if (glst[k].orig)
free(glst[k].orig);
}
} else {
free(glst[k].word);
if (glst[k].orig)
free(glst[k].orig);
}
}
}
}
free(glst);
// now we are done generating guesses
// sort in order of decreasing score
bubblesort(&guess[0], &guessorig[0], &gscore[0], MAX_GUESS);
if (ph)
bubblesort(&rootsphon[0], NULL, &scoresphon[0], MAX_ROOTS);
// weight suggestions with a similarity index, based on
// the longest common subsequent algorithm and resort
int is_swap = 0;
int re = 0;
double fact = 1.0;
if (pAMgr) {
int maxd = pAMgr->get_maxdiff();
if (maxd >= 0)
fact = (10.0 - maxd) / 5.0;
}
std::vector<w_char> w_gl;
for (int i = 0; i < MAX_GUESS; i++) {
if (guess[i]) {
// lowering guess[i]
std::string gl;
int len;
if (utf8) {
w_gl.clear();
len = u8_u16(w_gl, guess[i]);
mkallsmall_utf(w_gl, langnum);
u16_u8(gl, w_gl);
} else {
gl.assign(guess[i]);
if (!nonbmp)
mkallsmall(gl, csconv);
len = strlen(guess[i]);
}
int _lcs = lcslen(word, gl.c_str());
// same characters with different casing
if ((n == len) && (n == _lcs)) {
gscore[i] += 2000;
break;
}
// using 2-gram instead of 3, and other weightening
w_gl.clear();
if (utf8) {
u8_u16(w_gl, gl);
re = ngram(2, w_word, w_gl, NGRAM_ANY_MISMATCH + low + NGRAM_WEIGHTED) +
ngram(2, w_gl, w_word, NGRAM_ANY_MISMATCH + low + NGRAM_WEIGHTED);
} else {
re = ngram(2, word, gl, NGRAM_ANY_MISMATCH + low + NGRAM_WEIGHTED) +
ngram(2, gl, word, NGRAM_ANY_MISMATCH + low + NGRAM_WEIGHTED);
}
int ngram_score, leftcommon_score;
if (utf8) {
ngram_score = ngram(4, w_word, w_gl, NGRAM_ANY_MISMATCH + low);
leftcommon_score = leftcommonsubstring(w_word, w_gl);
} else {
ngram_score = ngram(4, word, gl, NGRAM_ANY_MISMATCH + low);
leftcommon_score = leftcommonsubstring(word, gl.c_str());
}
gscore[i] =
// length of longest common subsequent minus length difference
2 * _lcs - abs((int)(n - len)) +
// weight length of the left common substring
leftcommon_score +
// weight equal character positions
(!nonbmp && commoncharacterpositions(word, gl.c_str(), &is_swap)
? 1
: 0) +
// swap character (not neighboring)
((is_swap) ? 10 : 0) +
// ngram
ngram_score +
// weighted ngrams
re +
// different limit for dictionaries with PHONE rules
(ph ? (re < len * fact ? -1000 : 0)
: (re < (n + len) * fact ? -1000 : 0));
}
}
bubblesort(&guess[0], &guessorig[0], &gscore[0], MAX_GUESS);
// phonetic version
if (ph)
for (int i = 0; i < MAX_ROOTS; i++) {
if (rootsphon[i]) {
// lowering rootphon[i]
std::string gl;
int len;
w_gl.clear();
if (utf8) {
len = u8_u16(w_gl, rootsphon[i]);
mkallsmall_utf(w_gl, langnum);
u16_u8(gl, w_gl);
} else {
gl.assign(rootsphon[i]);
if (!nonbmp)
mkallsmall(gl, csconv);
len = strlen(rootsphon[i]);
}
// weight length of the left common substring
int leftcommon_score;
if (utf8)
leftcommon_score = leftcommonsubstring(w_word, w_gl);
else
leftcommon_score = leftcommonsubstring(word, gl.c_str());
// heuristic weigthing of ngram scores
scoresphon[i] += 2 * lcslen(word, gl) - abs((int)(n - len)) +
leftcommon_score;
}
}
if (ph)
bubblesort(&rootsphon[0], NULL, &scoresphon[0], MAX_ROOTS);
// copy over
size_t oldns = wlst.size();
int same = 0;
for (int i = 0; i < MAX_GUESS; i++) {
if (guess[i]) {
if ((wlst.size() < oldns + maxngramsugs) && (wlst.size() < maxSug) &&
(!same || (gscore[i] > 1000))) {
int unique = 1;
// leave only excellent suggestions, if exists
if (gscore[i] > 1000)
same = 1;
else if (gscore[i] < -100) {
same = 1;
// keep the best ngram suggestions, unless in ONLYMAXDIFF mode
if (wlst.size() > oldns || (pAMgr && pAMgr->get_onlymaxdiff())) {
free(guess[i]);
if (guessorig[i])
free(guessorig[i]);
continue;
}
}
for (size_t j = 0; j < wlst.size(); ++j) {
// don't suggest previous suggestions or a previous suggestion with
// prefixes or affixes
if ((!guessorig[i] && strstr(guess[i], wlst[j].c_str())) ||
(guessorig[i] && strstr(guessorig[i], wlst[j].c_str())) ||
// check forbidden words
!checkword(guess[i], 0, NULL, NULL)) {
unique = 0;
break;
}
}
if (unique) {
if (guessorig[i]) {
wlst.push_back(guessorig[i]);
} else {
wlst.push_back(guess[i]);
}
}
free(guess[i]);
if (guessorig[i])
free(guessorig[i]);
} else {
free(guess[i]);
if (guessorig[i])
free(guessorig[i]);
}
}
}
oldns = wlst.size();
if (ph)
for (int i = 0; i < MAX_ROOTS; i++) {
if (rootsphon[i]) {
if ((wlst.size() < oldns + MAXPHONSUGS) && (wlst.size() < maxSug)) {
int unique = 1;
for (size_t j = 0; j < wlst.size(); ++j) {
// don't suggest previous suggestions or a previous suggestion with
// prefixes or affixes
if (strstr(rootsphon[i], wlst[j].c_str()) ||
// check forbidden words
!checkword(rootsphon[i], 0, NULL, NULL)) {
unique = 0;
break;
}
}
if (unique) {
wlst.push_back(rootsphon[i]);
}
}
}
}
if (nonbmp)
utf8 = 1;
}
// see if a candidate suggestion is spelled correctly
// needs to check both root words and words with affixes
// obsolote MySpell-HU modifications:
// return value 2 and 3 marks compounding with hyphen (-)
// `3' marks roots without suffix
int SuggestMgr::checkword(const std::string& word,
int cpdsuggest,
int* timer,
clock_t* timelimit) {
// check time limit
if (timer) {
(*timer)--;
if (!(*timer) && timelimit) {
if ((clock() - *timelimit) > TIMELIMIT)
return 0;
*timer = MAXPLUSTIMER;
}
}
if (pAMgr) {
struct hentry* rv = NULL;
int nosuffix = 0;
if (cpdsuggest == 1) {
if (pAMgr->get_compound()) {
struct hentry* rv2 = NULL;
struct hentry* rwords[100]; // buffer for COMPOUND pattern checking
rv = pAMgr->compound_check(word, 0, 0, 100, 0, NULL, (hentry**)&rwords, 0, 1, 0); // EXT
if (rv &&
(!(rv2 = pAMgr->lookup(word.c_str())) || !rv2->astr ||
!(TESTAFF(rv2->astr, pAMgr->get_forbiddenword(), rv2->alen) ||
TESTAFF(rv2->astr, pAMgr->get_nosuggest(), rv2->alen))))
return 3; // XXX obsolote categorisation + only ICONV needs affix
// flag check?
}
return 0;
}
rv = pAMgr->lookup(word.c_str());
if (rv) {
if ((rv->astr) &&
(TESTAFF(rv->astr, pAMgr->get_forbiddenword(), rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_nosuggest(), rv->alen)))
return 0;
while (rv) {
if (rv->astr &&
(TESTAFF(rv->astr, pAMgr->get_needaffix(), rv->alen) ||
TESTAFF(rv->astr, ONLYUPCASEFLAG, rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_onlyincompound(), rv->alen))) {
rv = rv->next_homonym;
} else
break;
}
} else
rv = pAMgr->prefix_check(word.c_str(), word.size(),
0); // only prefix, and prefix + suffix XXX
if (rv) {
nosuffix = 1;
} else {
rv = pAMgr->suffix_check(word.c_str(), word.size(), 0, NULL,
FLAG_NULL, FLAG_NULL, IN_CPD_NOT); // only suffix
}
if (!rv && pAMgr->have_contclass()) {
rv = pAMgr->suffix_check_twosfx(word.c_str(), word.size(), 0, NULL, FLAG_NULL);
if (!rv)
rv = pAMgr->prefix_check_twosfx(word.c_str(), word.size(), 1, FLAG_NULL);
}
// check forbidden words
if ((rv) && (rv->astr) &&
(TESTAFF(rv->astr, pAMgr->get_forbiddenword(), rv->alen) ||
TESTAFF(rv->astr, ONLYUPCASEFLAG, rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_nosuggest(), rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_onlyincompound(), rv->alen)))
return 0;
if (rv) { // XXX obsolote
if ((pAMgr->get_compoundflag()) &&
TESTAFF(rv->astr, pAMgr->get_compoundflag(), rv->alen))
return 2 + nosuffix;
return 1;
}
}
return 0;
}
int SuggestMgr::check_forbidden(const char* word, int len) {
if (pAMgr) {
struct hentry* rv = pAMgr->lookup(word);
if (rv && rv->astr &&
(TESTAFF(rv->astr, pAMgr->get_needaffix(), rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_onlyincompound(), rv->alen)))
rv = NULL;
if (!(pAMgr->prefix_check(word, len, 1)))
rv = pAMgr->suffix_check(word, len, 0, NULL,
FLAG_NULL, FLAG_NULL, IN_CPD_NOT); // prefix+suffix, suffix
// check forbidden words
if ((rv) && (rv->astr) &&
TESTAFF(rv->astr, pAMgr->get_forbiddenword(), rv->alen))
return 1;
}
return 0;
}
std::string SuggestMgr::suggest_morph(const std::string& in_w) {
std::string result;
struct hentry* rv = NULL;
if (!pAMgr)
return std::string();
std::string w(in_w);
// word reversing wrapper for complex prefixes
if (complexprefixes) {
if (utf8)
reverseword_utf(w);
else
reverseword(w);
}
rv = pAMgr->lookup(w.c_str());
while (rv) {
if ((!rv->astr) ||
!(TESTAFF(rv->astr, pAMgr->get_forbiddenword(), rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_needaffix(), rv->alen) ||
TESTAFF(rv->astr, pAMgr->get_onlyincompound(), rv->alen))) {
if (!HENTRY_FIND(rv, MORPH_STEM)) {
result.append(" ");
result.append(MORPH_STEM);
result.append(w);
}
if (HENTRY_DATA(rv)) {
result.append(" ");
result.append(HENTRY_DATA2(rv));
}
result.append("\n");
}
rv = rv->next_homonym;
}
std::string st = pAMgr->affix_check_morph(w.c_str(), w.size());
if (!st.empty()) {
result.append(st);
}
if (pAMgr->get_compound() && result.empty()) {
struct hentry* rwords[100]; // buffer for COMPOUND pattern checking
pAMgr->compound_check_morph(w.c_str(), w.size(), 0, 0, 100, 0, NULL, (hentry**)&rwords, 0, result,
NULL);
}
line_uniq(result, MSEP_REC);
return result;
}
static int get_sfxcount(const char* morph) {
if (!morph || !*morph)
return 0;
int n = 0;
const char* old = morph;
morph = strstr(morph, MORPH_DERI_SFX);
if (!morph)
morph = strstr(old, MORPH_INFL_SFX);
if (!morph)
morph = strstr(old, MORPH_TERM_SFX);
while (morph) {
n++;
old = morph;
morph = strstr(morph + 1, MORPH_DERI_SFX);
if (!morph)
morph = strstr(old + 1, MORPH_INFL_SFX);
if (!morph)
morph = strstr(old + 1, MORPH_TERM_SFX);
}
return n;
}
/* affixation */
std::string SuggestMgr::suggest_hentry_gen(hentry* rv, const char* pattern) {
std::string result;
int sfxcount = get_sfxcount(pattern);
if (get_sfxcount(HENTRY_DATA(rv)) > sfxcount)
return result;
if (HENTRY_DATA(rv)) {
std::string aff = pAMgr->morphgen(HENTRY_WORD(rv), rv->blen, rv->astr, rv->alen,
HENTRY_DATA(rv), pattern, 0);
if (!aff.empty()) {
result.append(aff);
result.append("\n");
}
}
// check all allomorphs
char* p = NULL;
if (HENTRY_DATA(rv))
p = (char*)strstr(HENTRY_DATA2(rv), MORPH_ALLOMORPH);
while (p) {
struct hentry* rv2 = NULL;
p += MORPH_TAG_LEN;
int plen = fieldlen(p);
std::string allomorph(p, plen);
rv2 = pAMgr->lookup(allomorph.c_str());
while (rv2) {
// if (HENTRY_DATA(rv2) && get_sfxcount(HENTRY_DATA(rv2)) <=
// sfxcount) {
if (HENTRY_DATA(rv2)) {
char* st = (char*)strstr(HENTRY_DATA2(rv2), MORPH_STEM);
if (st && (strncmp(st + MORPH_TAG_LEN, HENTRY_WORD(rv),
fieldlen(st + MORPH_TAG_LEN)) == 0)) {
std::string aff = pAMgr->morphgen(HENTRY_WORD(rv2), rv2->blen, rv2->astr,
rv2->alen, HENTRY_DATA(rv2), pattern, 0);
if (!aff.empty()) {
result.append(aff);
result.append("\n");
}
}
}
rv2 = rv2->next_homonym;
}
p = strstr(p + plen, MORPH_ALLOMORPH);
}
return result;
}
std::string SuggestMgr::suggest_gen(const std::vector<std::string>& desc, const std::string& in_pattern) {
if (desc.empty() || !pAMgr)
return std::string();
const char* pattern = in_pattern.c_str();
std::string result2;
std::string newpattern;
struct hentry* rv = NULL;
// search affixed forms with and without derivational suffixes
while (1) {
for (size_t k = 0; k < desc.size(); ++k) {
std::string result;
// add compound word parts (except the last one)
const char* s = desc[k].c_str();
const char* part = strstr(s, MORPH_PART);
if (part) {
const char* nextpart = strstr(part + 1, MORPH_PART);
while (nextpart) {
std::string field;
copy_field(field, part, MORPH_PART);
result.append(field);
part = nextpart;
nextpart = strstr(part + 1, MORPH_PART);
}
s = part;
}
std::string tok(s);
size_t pos = tok.find(" | ");
while (pos != std::string::npos) {
tok[pos + 1] = MSEP_ALT;
pos = tok.find(" | ", pos);
}
std::vector<std::string> pl = line_tok(tok, MSEP_ALT);
for (size_t i = 0; i < pl.size(); ++i) {
// remove inflectional and terminal suffixes
size_t is = pl[i].find(MORPH_INFL_SFX);
if (is != std::string::npos)
pl[i].resize(is);
size_t ts = pl[i].find(MORPH_TERM_SFX);
while (ts != std::string::npos) {
pl[i][ts] = '_';
ts = pl[i].find(MORPH_TERM_SFX);
}
const char* st = strstr(s, MORPH_STEM);
if (st) {
copy_field(tok, st, MORPH_STEM);
rv = pAMgr->lookup(tok.c_str());
while (rv) {
std::string newpat(pl[i]);
newpat.append(pattern);
std::string sg = suggest_hentry_gen(rv, newpat.c_str());
if (sg.empty())
sg = suggest_hentry_gen(rv, pattern);
if (!sg.empty()) {
std::vector<std::string> gen = line_tok(sg, MSEP_REC);
for (size_t j = 0; j < gen.size(); ++j) {
result2.push_back(MSEP_REC);
result2.append(result);
if (pl[i].find(MORPH_SURF_PFX) != std::string::npos) {
std::string field;
copy_field(field, pl[i], MORPH_SURF_PFX);
result2.append(field);
}
result2.append(gen[j]);
}
}
rv = rv->next_homonym;
}
}
}
}
if (!result2.empty() || !strstr(pattern, MORPH_DERI_SFX))
break;
newpattern.assign(pattern);
mystrrep(newpattern, MORPH_DERI_SFX, MORPH_TERM_SFX);
pattern = newpattern.c_str();
}
return result2;
}
// generate an n-gram score comparing s1 and s2, UTF16 version
int SuggestMgr::ngram(int n,
const std::vector<w_char>& su1,
const std::vector<w_char>& su2,
int opt) {
int nscore = 0;
int ns;
int l1;
int l2;
int test = 0;
l1 = su1.size();
l2 = su2.size();
if (l2 == 0)
return 0;
// lowering dictionary word
const std::vector<w_char>* p_su2 = &su2;
std::vector<w_char> su2_copy;
if (opt & NGRAM_LOWERING) {
su2_copy = su2;
mkallsmall_utf(su2_copy, langnum);
p_su2 = &su2_copy;
}
for (int j = 1; j <= n; j++) {
ns = 0;
for (int i = 0; i <= (l1 - j); i++) {
int k = 0;
for (int l = 0; l <= (l2 - j); l++) {
for (k = 0; k < j; k++) {
const w_char& c1 = su1[i + k];
const w_char& c2 = (*p_su2)[l + k];
if ((c1.l != c2.l) || (c1.h != c2.h))
break;
}
if (k == j) {
ns++;
break;
}
}
if (k != j && opt & NGRAM_WEIGHTED) {
ns--;
test++;
if (i == 0 || i == l1 - j)
ns--; // side weight
}
}
nscore = nscore + ns;
if (ns < 2 && !(opt & NGRAM_WEIGHTED))
break;
}
ns = 0;
if (opt & NGRAM_LONGER_WORSE)
ns = (l2 - l1) - 2;
if (opt & NGRAM_ANY_MISMATCH)
ns = abs(l2 - l1) - 2;
ns = (nscore - ((ns > 0) ? ns : 0));
return ns;
}
// generate an n-gram score comparing s1 and s2, non-UTF16 version
int SuggestMgr::ngram(int n,
const std::string& s1,
const std::string& s2,
int opt) {
int nscore = 0;
int ns;
int l1;
int l2;
int test = 0;
l2 = s2.size();
if (l2 == 0)
return 0;
l1 = s1.size();
std::string t(s2);
if (opt & NGRAM_LOWERING)
mkallsmall(t, csconv);
for (int j = 1; j <= n; j++) {
ns = 0;
for (int i = 0; i <= (l1 - j); i++) {
//t is haystack, s1[i..i+j) is needle
if (t.find(s1.c_str()+i, 0, j) != std::string::npos) {
ns++;
} else if (opt & NGRAM_WEIGHTED) {
ns--;
test++;
if (i == 0 || i == l1 - j)
ns--; // side weight
}
}
nscore = nscore + ns;
if (ns < 2 && !(opt & NGRAM_WEIGHTED))
break;
}
ns = 0;
if (opt & NGRAM_LONGER_WORSE)
ns = (l2 - l1) - 2;
if (opt & NGRAM_ANY_MISMATCH)
ns = abs(l2 - l1) - 2;
ns = (nscore - ((ns > 0) ? ns : 0));
return ns;
}
// length of the left common substring of s1 and (decapitalised) s2, UTF version
int SuggestMgr::leftcommonsubstring(
const std::vector<w_char>& su1,
const std::vector<w_char>& su2) {
int l1 = su1.size();
int l2 = su2.size();
// decapitalize dictionary word
if (complexprefixes) {
if (su1[l1 - 1] == su2[l2 - 1])
return 1;
} else {
unsigned short idx = su2.empty() ? 0 : (su2[0].h << 8) + su2[0].l;
unsigned short otheridx = su1.empty() ? 0 : (su1[0].h << 8) + su1[0].l;
if (otheridx != idx && (otheridx != unicodetolower(idx, langnum)))
return 0;
int i;
for (i = 1; (i < l1) && (i < l2) && (su1[i].l == su2[i].l) &&
(su1[i].h == su2[i].h);
i++)
;
return i;
}
return 0;
}
// length of the left common substring of s1 and (decapitalised) s2, non-UTF
int SuggestMgr::leftcommonsubstring(
const char* s1,
const char* s2) {
if (complexprefixes) {
int l1 = strlen(s1);
int l2 = strlen(s2);
if (l1 <= l2 && s2[l1 - 1] == s2[l2 - 1])
return 1;
} else if (csconv) {
const char* olds = s1;
// decapitalise dictionary word
if ((*s1 != *s2) && (*s1 != csconv[((unsigned char)*s2)].clower))
return 0;
do {
s1++;
s2++;
} while ((*s1 == *s2) && (*s1 != '\0'));
return (int)(s1 - olds);
}
return 0;
}
int SuggestMgr::commoncharacterpositions(const char* s1,
const char* s2,
int* is_swap) {
int num = 0;
int diff = 0;
int diffpos[2];
*is_swap = 0;
if (utf8) {
std::vector<w_char> su1;
std::vector<w_char> su2;
int l1 = u8_u16(su1, s1);
int l2 = u8_u16(su2, s2);
if (l1 <= 0 || l2 <= 0)
return 0;
// decapitalize dictionary word
if (complexprefixes) {
su2[l2 - 1] = lower_utf(su2[l2 - 1], langnum);
} else {
su2[0] = lower_utf(su2[0], langnum);
}
for (int i = 0; (i < l1) && (i < l2); i++) {
if (su1[i] == su2[i]) {
num++;
} else {
if (diff < 2)
diffpos[diff] = i;
diff++;
}
}
if ((diff == 2) && (l1 == l2) &&
(su1[diffpos[0]] == su2[diffpos[1]]) &&
(su1[diffpos[1]] == su2[diffpos[0]]))
*is_swap = 1;
} else {
size_t i;
std::string t(s2);
// decapitalize dictionary word
if (complexprefixes) {
size_t l2 = t.size();
t[l2 - 1] = csconv[(unsigned char)t[l2 - 1]].clower;
} else {
mkallsmall(t, csconv);
}
for (i = 0; i < t.size() && (*(s1 + i) != 0); ++i) {
if (*(s1 + i) == t[i]) {
num++;
} else {
if (diff < 2)
diffpos[diff] = i;
diff++;
}
}
if ((diff == 2) && (*(s1 + i) == 0) && i == t.size() &&
(*(s1 + diffpos[0]) == t[diffpos[1]]) &&
(*(s1 + diffpos[1]) == t[diffpos[0]]))
*is_swap = 1;
}
return num;
}
int SuggestMgr::mystrlen(const char* word) {
if (utf8) {
std::vector<w_char> w;
return u8_u16(w, word);
} else
return strlen(word);
}
// sort in decreasing order of score
void SuggestMgr::bubblesort(char** rword, char** rword2, int* rsc, int n) {
int m = 1;
while (m < n) {
int j = m;
while (j > 0) {
if (rsc[j - 1] < rsc[j]) {
int sctmp = rsc[j - 1];
char* wdtmp = rword[j - 1];
rsc[j - 1] = rsc[j];
rword[j - 1] = rword[j];
rsc[j] = sctmp;
rword[j] = wdtmp;
if (rword2) {
wdtmp = rword2[j - 1];
rword2[j - 1] = rword2[j];
rword2[j] = wdtmp;
}
j--;
} else
break;
}
m++;
}
return;
}
// longest common subsequence
void SuggestMgr::lcs(const char* s,
const char* s2,
int* l1,
int* l2,
char** result) {
int n, m;
std::vector<w_char> su;
std::vector<w_char> su2;
char* b;
char* c;
int i;
int j;
if (utf8) {
m = u8_u16(su, s);
n = u8_u16(su2, s2);
} else {
m = strlen(s);
n = strlen(s2);
}
c = (char *) calloc(m + 1, n + 1);
b = (char *) calloc(m + 1, n + 1);
if (!c || !b) {
if (c)
free(c);
if (b)
free(b);
*result = NULL;
return;
}
for (i = 1; i <= m; i++) {
for (j = 1; j <= n; j++) {
if (((utf8) && (su[i - 1] == su2[j - 1])) ||
((!utf8) && (s[i - 1] == s2[j - 1]))) {
c[i * (n + 1) + j] = c[(i - 1) * (n + 1) + j - 1] + 1;
b[i * (n + 1) + j] = LCS_UPLEFT;
} else if (c[(i - 1) * (n + 1) + j] >= c[i * (n + 1) + j - 1]) {
c[i * (n + 1) + j] = c[(i - 1) * (n + 1) + j];
b[i * (n + 1) + j] = LCS_UP;
} else {
c[i * (n + 1) + j] = c[i * (n + 1) + j - 1];
b[i * (n + 1) + j] = LCS_LEFT;
}
}
}
*result = b;
free(c);
*l1 = m;
*l2 = n;
}
int SuggestMgr::lcslen(const char* s, const char* s2) {
int m;
int n;
int i;
int j;
char* result;
int len = 0;
lcs(s, s2, &m, &n, &result);
if (!result)
return 0;
i = m;
j = n;
while ((i != 0) && (j != 0)) {
if (result[i * (n + 1) + j] == LCS_UPLEFT) {
len++;
i--;
j--;
} else if (result[i * (n + 1) + j] == LCS_UP) {
i--;
} else
j--;
}
free(result);
return len;
}
int SuggestMgr::lcslen(const std::string& s, const std::string& s2) {
return lcslen(s.c_str(), s2.c_str());
}