blob: 951c925bfc08e6d2baa7b13019ab09cb575894f4 [file] [log] [blame]
/*
* Ut Video decoder
* Copyright (c) 2011 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Ut Video decoder
*/
#include <inttypes.h>
#include <stdlib.h>
#define CACHED_BITSTREAM_READER !ARCH_X86_32
// Chromium: Don't include this.
// #define UNCHECKED_BITSTREAM_READER 1
#include "libavutil/intreadwrite.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "get_bits.h"
#include "internal.h"
#include "thread.h"
#include "utvideo.h"
typedef struct HuffEntry {
uint8_t len;
uint16_t sym;
} HuffEntry;
static int build_huff(UtvideoContext *c, const uint8_t *src, VLC *vlc,
int *fsym, unsigned nb_elems)
{
int i;
HuffEntry he[1024];
uint8_t bits[1024];
uint16_t codes_count[33] = { 0 };
*fsym = -1;
for (i = 0; i < nb_elems; i++) {
if (src[i] == 0) {
*fsym = i;
return 0;
} else if (src[i] == 255) {
bits[i] = 0;
} else if (src[i] <= 32) {
bits[i] = src[i];
} else
return AVERROR_INVALIDDATA;
codes_count[bits[i]]++;
}
if (codes_count[0] == nb_elems)
return AVERROR_INVALIDDATA;
/* For Ut Video, longer codes are to the left of the tree and
* for codes with the same length the symbol is descending from
* left to right. So after the next loop --codes_count[i] will
* be the index of the first (lowest) symbol of length i when
* indexed by the position in the tree with left nodes being first. */
for (int i = 31; i >= 0; i--)
codes_count[i] += codes_count[i + 1];
for (unsigned i = 0; i < nb_elems; i++)
he[--codes_count[bits[i]]] = (HuffEntry) { bits[i], i };
#define VLC_BITS 11
return ff_init_vlc_from_lengths(vlc, VLC_BITS, codes_count[0],
&he[0].len, sizeof(*he),
&he[0].sym, sizeof(*he), 2, 0, 0, c->avctx);
}
static int decode_plane10(UtvideoContext *c, int plane_no,
uint16_t *dst, ptrdiff_t stride,
int width, int height,
const uint8_t *src, const uint8_t *huff,
int use_pred)
{
int i, j, slice, pix, ret;
int sstart, send;
VLC vlc;
GetBitContext gb;
int prev, fsym;
if ((ret = build_huff(c, huff, &vlc, &fsym, 1024)) < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return ret;
}
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint16_t *dest;
sstart = send;
send = (height * (slice + 1) / c->slices);
dest = dst + sstart * stride;
prev = 0x200;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = fsym;
if (use_pred) {
prev += pix;
prev &= 0x3FF;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
}
return 0;
}
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint16_t *dest;
int slice_data_start, slice_data_end, slice_size;
sstart = send;
send = (height * (slice + 1) / c->slices);
dest = dst + sstart * stride;
// slice offset and size validation was done earlier
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
slice_data_end = AV_RL32(src + slice * 4);
slice_size = slice_data_end - slice_data_start;
if (!slice_size) {
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
"yet a slice has a length of zero.\n");
goto fail;
}
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
(uint32_t *)(src + slice_data_start + c->slices * 4),
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
prev = 0x200;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
if (pix < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
goto fail;
}
if (use_pred) {
prev += pix;
prev &= 0x3FF;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
if (get_bits_left(&gb) < 0) {
av_log(c->avctx, AV_LOG_ERROR,
"Slice decoding ran out of bits\n");
goto fail;
}
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING,
"%d bits left after decoding slice\n", get_bits_left(&gb));
}
ff_free_vlc(&vlc);
return 0;
fail:
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
{
const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
if (interlaced)
return ~(1 + 2 * is_luma);
return ~is_luma;
}
static int decode_plane(UtvideoContext *c, int plane_no,
uint8_t *dst, ptrdiff_t stride,
int width, int height,
const uint8_t *src, int use_pred)
{
int i, j, slice, pix;
int sstart, send;
VLC vlc;
GetBitContext gb;
int ret, prev, fsym;
const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
if (c->pack) {
send = 0;
for (slice = 0; slice < c->slices; slice++) {
GetBitContext cbit, pbit;
uint8_t *dest, *p;
ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
if (ret < 0)
return ret;
ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
if (ret < 0)
return ret;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
return AVERROR_INVALIDDATA;
for (p = dest; p < dst + send * stride; p += 8) {
int bits = get_bits_le(&cbit, 3);
if (bits == 0) {
*(uint64_t *) p = 0;
} else {
uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
int k;
if ((bits + 1) * 8 > get_bits_left(&pbit))
return AVERROR_INVALIDDATA;
for (k = 0; k < 8; k++) {
p[k] = get_bits_le(&pbit, bits + 1);
add = (~p[k] & sub) << (8 - bits);
p[k] -= sub;
p[k] += add;
}
}
}
}
return 0;
}
if (build_huff(c, src, &vlc, &fsym, 256)) {
av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
return AVERROR_INVALIDDATA;
}
if (fsym >= 0) { // build_huff reported a symbol to fill slices with
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = fsym;
if (use_pred) {
prev += (unsigned)pix;
pix = prev;
}
dest[i] = pix;
}
dest += stride;
}
}
return 0;
}
src += 256;
send = 0;
for (slice = 0; slice < c->slices; slice++) {
uint8_t *dest;
int slice_data_start, slice_data_end, slice_size;
sstart = send;
send = (height * (slice + 1) / c->slices) & cmask;
dest = dst + sstart * stride;
// slice offset and size validation was done earlier
slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
slice_data_end = AV_RL32(src + slice * 4);
slice_size = slice_data_end - slice_data_start;
if (!slice_size) {
av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
"yet a slice has a length of zero.\n");
goto fail;
}
memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
(uint32_t *)(src + slice_data_start + c->slices * 4),
(slice_data_end - slice_data_start + 3) >> 2);
init_get_bits(&gb, c->slice_bits, slice_size * 8);
prev = 0x80;
for (j = sstart; j < send; j++) {
for (i = 0; i < width; i++) {
pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
if (pix < 0) {
av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
goto fail;
}
if (use_pred) {
prev += pix;
pix = prev;
}
dest[i] = pix;
}
if (get_bits_left(&gb) < 0) {
av_log(c->avctx, AV_LOG_ERROR,
"Slice decoding ran out of bits\n");
goto fail;
}
dest += stride;
}
if (get_bits_left(&gb) > 32)
av_log(c->avctx, AV_LOG_WARNING,
"%d bits left after decoding slice\n", get_bits_left(&gb));
}
ff_free_vlc(&vlc);
return 0;
fail:
ff_free_vlc(&vlc);
return AVERROR_INVALIDDATA;
}
#undef A
#undef B
#undef C
static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~rmode;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
bsrc += stride;
if (slice_height <= 1)
continue;
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride];
bsrc[0] += C;
A = bsrc[0];
for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
B = bsrc[i - stride];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
if (width > 16)
c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
bsrc + 16, width - 16, &A, &B);
bsrc += stride;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
c->llviddsp.add_median_pred(bsrc, bsrc - stride,
bsrc, width, &A, &B);
bsrc += stride;
}
}
}
/* UtVideo interlaced mode treats every two lines as a single one,
* so restoring function should take care of possible padding between
* two parts of the same "line".
*/
static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const ptrdiff_t stride2 = stride << 1;
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
slice_height >>= 1;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
bsrc += stride2;
if (slice_height <= 1)
continue;
// second line - first element has top prediction, the rest uses median
C = bsrc[-stride2];
bsrc[0] += C;
A = bsrc[0];
for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
B = bsrc[i - stride2];
bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
C = B;
A = bsrc[i];
}
if (width > 16)
c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
bsrc + 16, width - 16, &A, &B);
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
bsrc + stride, width, &A, &B);
bsrc += stride2;
// the rest of lines use continuous median prediction
for (j = 2; j < slice_height; j++) {
c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
bsrc, width, &A, &B);
c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
bsrc + stride, width, &A, &B);
bsrc += stride2;
}
}
}
static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~rmode;
int min_width = FFMIN(width, 32);
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
bsrc += stride;
if (slice_height <= 1)
continue;
for (j = 1; j < slice_height; j++) {
// second line - first element has top prediction, the rest uses gradient
bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
for (i = 1; i < min_width; i++) { /* dsp need align 32 */
A = bsrc[i - stride];
B = bsrc[i - (stride + 1)];
C = bsrc[i - 1];
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
}
if (width > 32)
c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
bsrc += stride;
}
}
}
static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
int width, int height, int slices, int rmode)
{
int i, j, slice;
int A, B, C;
uint8_t *bsrc;
int slice_start, slice_height;
const int cmask = ~(rmode ? 3 : 1);
const ptrdiff_t stride2 = stride << 1;
int min_width = FFMIN(width, 32);
for (slice = 0; slice < slices; slice++) {
slice_start = ((slice * height) / slices) & cmask;
slice_height = ((((slice + 1) * height) / slices) & cmask) -
slice_start;
slice_height >>= 1;
if (!slice_height)
continue;
bsrc = src + slice_start * stride;
// first line - left neighbour prediction
bsrc[0] += 0x80;
A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
bsrc += stride2;
if (slice_height <= 1)
continue;
for (j = 1; j < slice_height; j++) {
// second line - first element has top prediction, the rest uses gradient
bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
for (i = 1; i < min_width; i++) { /* dsp need align 32 */
A = bsrc[i - stride2];
B = bsrc[i - (stride2 + 1)];
C = bsrc[i - 1];
bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
}
if (width > 32)
c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
A = bsrc[-stride];
B = bsrc[-(1 + stride + stride - width)];
C = bsrc[width - 1];
bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
for (i = 1; i < width; i++) {
A = bsrc[i - stride];
B = bsrc[i - (1 + stride)];
C = bsrc[i - 1 + stride];
bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
}
bsrc += stride2;
}
}
}
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
UtvideoContext *c = avctx->priv_data;
int i, j;
const uint8_t *plane_start[5];
int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
int ret;
GetByteContext gb;
ThreadFrame frame = { .f = data };
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
/* parse plane structure to get frame flags and validate slice offsets */
bytestream2_init(&gb, buf, buf_size);
if (c->pack) {
const uint8_t *packed_stream;
const uint8_t *control_stream;
GetByteContext pb;
uint32_t nb_cbs;
int left;
c->frame_info = PRED_GRADIENT << 8;
if (bytestream2_get_byte(&gb) != 1)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, 3);
c->offset = bytestream2_get_le32(&gb);
if (buf_size <= c->offset + 8LL)
return AVERROR_INVALIDDATA;
bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
nb_cbs = bytestream2_get_le32(&pb);
if (nb_cbs > c->offset)
return AVERROR_INVALIDDATA;
packed_stream = buf + 8;
control_stream = packed_stream + (c->offset - nb_cbs);
left = control_stream - packed_stream;
for (i = 0; i < c->planes; i++) {
for (j = 0; j < c->slices; j++) {
c->packed_stream[i][j] = packed_stream;
c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
if (c->packed_stream_size[i][j] > left)
return AVERROR_INVALIDDATA;
left -= c->packed_stream_size[i][j];
packed_stream += c->packed_stream_size[i][j];
}
}
left = buf + buf_size - control_stream;
for (i = 0; i < c->planes; i++) {
for (j = 0; j < c->slices; j++) {
c->control_stream[i][j] = control_stream;
c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
if (c->control_stream_size[i][j] > left)
return AVERROR_INVALIDDATA;
left -= c->control_stream_size[i][j];
control_stream += c->control_stream_size[i][j];
}
}
} else if (c->pro) {
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
return AVERROR_INVALIDDATA;
}
c->frame_info = bytestream2_get_le32u(&gb);
c->slices = ((c->frame_info >> 16) & 0xff) + 1;
for (i = 0; i < c->planes; i++) {
plane_start[i] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
return AVERROR_INVALIDDATA;
}
slice_start = 0;
slice_end = 0;
for (j = 0; j < c->slices; j++) {
slice_end = bytestream2_get_le32u(&gb);
if (slice_end < 0 || slice_end < slice_start ||
bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
return AVERROR_INVALIDDATA;
}
slice_size = slice_end - slice_start;
slice_start = slice_end;
max_slice_size = FFMAX(max_slice_size, slice_size);
}
plane_size = slice_end;
bytestream2_skipu(&gb, plane_size);
bytestream2_skipu(&gb, 1024);
}
plane_start[c->planes] = gb.buffer;
} else {
for (i = 0; i < c->planes; i++) {
plane_start[i] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
return AVERROR_INVALIDDATA;
}
bytestream2_skipu(&gb, 256);
slice_start = 0;
slice_end = 0;
for (j = 0; j < c->slices; j++) {
slice_end = bytestream2_get_le32u(&gb);
if (slice_end < 0 || slice_end < slice_start ||
bytestream2_get_bytes_left(&gb) < slice_end) {
av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
return AVERROR_INVALIDDATA;
}
slice_size = slice_end - slice_start;
slice_start = slice_end;
max_slice_size = FFMAX(max_slice_size, slice_size);
}
plane_size = slice_end;
bytestream2_skipu(&gb, plane_size);
}
plane_start[c->planes] = gb.buffer;
if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
return AVERROR_INVALIDDATA;
}
c->frame_info = bytestream2_get_le32u(&gb);
}
av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
c->frame_info);
c->frame_pred = (c->frame_info >> 8) & 3;
max_slice_size += 4*avctx->width;
if (!c->pack) {
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
if (!c->slice_bits) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
return AVERROR(ENOMEM);
}
}
switch (c->avctx->pix_fmt) {
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_GBRAP:
for (i = 0; i < c->planes; i++) {
ret = decode_plane(c, i, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, plane_start[i],
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i],
frame.f->linesize[i],
avctx->width, avctx->height, c->slices,
0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i],
frame.f->linesize[i], avctx->width,
avctx->height, c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i],
frame.f->linesize[i],
avctx->width, avctx->height, c->slices,
0);
}
}
}
c->utdsp.restore_rgb_planes(frame.f->data[2], frame.f->data[0], frame.f->data[1],
frame.f->linesize[2], frame.f->linesize[0], frame.f->linesize[1],
avctx->width, avctx->height);
break;
case AV_PIX_FMT_GBRAP10:
case AV_PIX_FMT_GBRP10:
for (i = 0; i < c->planes; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i],
frame.f->linesize[i] / 2, avctx->width,
avctx->height, plane_start[i],
plane_start[i + 1] - 1024,
c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
c->utdsp.restore_rgb_planes10((uint16_t *)frame.f->data[2], (uint16_t *)frame.f->data[0], (uint16_t *)frame.f->data[1],
frame.f->linesize[2] / 2, frame.f->linesize[0] / 2, frame.f->linesize[1] / 2,
avctx->width, avctx->height);
break;
case AV_PIX_FMT_YUV420P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
c->slices, !i);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i,
avctx->height >> !!i,
c->slices, !i);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height >> !!i,
c->slices, !i);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i,
avctx->height >> !!i,
c->slices, !i);
}
}
}
break;
case AV_PIX_FMT_YUV422P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width >> !!i, avctx->height,
c->slices, 0);
}
}
}
break;
case AV_PIX_FMT_YUV444P:
for (i = 0; i < 3; i++) {
ret = decode_plane(c, i, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
plane_start[i], c->frame_pred == PRED_LEFT);
if (ret)
return ret;
if (c->frame_pred == PRED_MEDIAN) {
if (!c->interlaced) {
restore_median_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
} else {
restore_median_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
}
} else if (c->frame_pred == PRED_GRADIENT) {
if (!c->interlaced) {
restore_gradient_planar(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
} else {
restore_gradient_planar_il(c, frame.f->data[i], frame.f->linesize[i],
avctx->width, avctx->height,
c->slices, 0);
}
}
}
break;
case AV_PIX_FMT_YUV420P10:
for (i = 0; i < 3; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
avctx->width >> !!i, avctx->height >> !!i,
plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
break;
case AV_PIX_FMT_YUV422P10:
for (i = 0; i < 3; i++) {
ret = decode_plane10(c, i, (uint16_t *)frame.f->data[i], frame.f->linesize[i] / 2,
avctx->width >> !!i, avctx->height,
plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
if (ret)
return ret;
}
break;
}
frame.f->key_frame = 1;
frame.f->pict_type = AV_PICTURE_TYPE_I;
frame.f->interlaced_frame = !!c->interlaced;
*got_frame = 1;
/* always report that the buffer was completely consumed */
return buf_size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
int h_shift, v_shift;
c->avctx = avctx;
ff_utvideodsp_init(&c->utdsp);
ff_bswapdsp_init(&c->bdsp);
ff_llviddsp_init(&c->llviddsp);
c->slice_bits_size = 0;
switch (avctx->codec_tag) {
case MKTAG('U', 'L', 'R', 'G'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_GBRP;
break;
case MKTAG('U', 'L', 'R', 'A'):
c->planes = 4;
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
break;
case MKTAG('U', 'L', 'Y', '0'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'L', 'Y', '2'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'L', 'Y', '4'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'Q', 'Y', '0'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
break;
case MKTAG('U', 'Q', 'Y', '2'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
break;
case MKTAG('U', 'Q', 'R', 'G'):
c->planes = 3;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRP10;
break;
case MKTAG('U', 'Q', 'R', 'A'):
c->planes = 4;
c->pro = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
break;
case MKTAG('U', 'L', 'H', '0'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'L', 'H', '2'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'L', 'H', '4'):
c->planes = 3;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'Y', '2'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'M', 'H', '2'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV422P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'Y', '4'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT470BG;
break;
case MKTAG('U', 'M', 'H', '4'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_YUV444P;
avctx->colorspace = AVCOL_SPC_BT709;
break;
case MKTAG('U', 'M', 'R', 'G'):
c->planes = 3;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRP;
break;
case MKTAG('U', 'M', 'R', 'A'):
c->planes = 4;
c->pack = 1;
avctx->pix_fmt = AV_PIX_FMT_GBRAP;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
avctx->codec_tag);
return AVERROR_INVALIDDATA;
}
av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
if ((avctx->width & ((1<<h_shift)-1)) ||
(avctx->height & ((1<<v_shift)-1))) {
avpriv_request_sample(avctx, "Odd dimensions");
return AVERROR_PATCHWELCOME;
}
if (c->pack && avctx->extradata_size >= 16) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->compression = avctx->extradata[8];
if (c->compression != 2)
avpriv_request_sample(avctx, "Unknown compression type");
c->slices = avctx->extradata[9] + 1;
} else if (!c->pro && avctx->extradata_size >= 16) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->frame_info_size = AV_RL32(avctx->extradata + 8);
c->flags = AV_RL32(avctx->extradata + 12);
if (c->frame_info_size != 4)
avpriv_request_sample(avctx, "Frame info not 4 bytes");
av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
c->slices = (c->flags >> 24) + 1;
c->compression = c->flags & 1;
c->interlaced = c->flags & 0x800;
} else if (c->pro && avctx->extradata_size == 8) {
av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
avctx->extradata[3], avctx->extradata[2],
avctx->extradata[1], avctx->extradata[0]);
av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
AV_RB32(avctx->extradata + 4));
c->interlaced = 0;
c->frame_info_size = 4;
} else {
av_log(avctx, AV_LOG_ERROR,
"Insufficient extradata size %d, should be at least 16\n",
avctx->extradata_size);
return AVERROR_INVALIDDATA;
}
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
UtvideoContext * const c = avctx->priv_data;
av_freep(&c->slice_bits);
return 0;
}
AVCodec ff_utvideo_decoder = {
.name = "utvideo",
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_UTVIDEO,
.priv_data_size = sizeof(UtvideoContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};