| /* |
| * Copyright (c) 2011 Jan Kokemüller |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * This file is based on libebur128 which is available at |
| * https://github.com/jiixyj/libebur128/ |
| * |
| * Libebur128 has the following copyright: |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "ebur128.h" |
| |
| #include <float.h> |
| #include <limits.h> |
| #include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */ |
| |
| #include "libavutil/common.h" |
| #include "libavutil/mem.h" |
| #include "libavutil/mem_internal.h" |
| #include "libavutil/thread.h" |
| |
| #define CHECK_ERROR(condition, errorcode, goto_point) \ |
| if ((condition)) { \ |
| errcode = (errorcode); \ |
| goto goto_point; \ |
| } |
| |
| #define ALMOST_ZERO 0.000001 |
| |
| #define RELATIVE_GATE (-10.0) |
| #define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0) |
| #define MINUS_20DB pow(10.0, -20.0 / 10.0) |
| |
| struct FFEBUR128StateInternal { |
| /** Filtered audio data (used as ring buffer). */ |
| double *audio_data; |
| /** Size of audio_data array. */ |
| size_t audio_data_frames; |
| /** Current index for audio_data. */ |
| size_t audio_data_index; |
| /** How many frames are needed for a gating block. Will correspond to 400ms |
| * of audio at initialization, and 100ms after the first block (75% overlap |
| * as specified in the 2011 revision of BS1770). */ |
| unsigned long needed_frames; |
| /** The channel map. Has as many elements as there are channels. */ |
| int *channel_map; |
| /** How many samples fit in 100ms (rounded). */ |
| unsigned long samples_in_100ms; |
| /** BS.1770 filter coefficients (nominator). */ |
| double b[5]; |
| /** BS.1770 filter coefficients (denominator). */ |
| double a[5]; |
| /** BS.1770 filter state. */ |
| double v[5][5]; |
| /** Histograms, used to calculate LRA. */ |
| unsigned long *block_energy_histogram; |
| unsigned long *short_term_block_energy_histogram; |
| /** Keeps track of when a new short term block is needed. */ |
| size_t short_term_frame_counter; |
| /** Maximum sample peak, one per channel */ |
| double *sample_peak; |
| /** The maximum window duration in ms. */ |
| unsigned long window; |
| /** Data pointer array for interleaved data */ |
| void **data_ptrs; |
| }; |
| |
| static AVOnce histogram_init = AV_ONCE_INIT; |
| static DECLARE_ALIGNED(32, double, histogram_energies)[1000]; |
| static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001]; |
| |
| static void ebur128_init_filter(FFEBUR128State * st) |
| { |
| int i, j; |
| |
| double f0 = 1681.974450955533; |
| double G = 3.999843853973347; |
| double Q = 0.7071752369554196; |
| |
| double K = tan(M_PI * f0 / (double) st->samplerate); |
| double Vh = pow(10.0, G / 20.0); |
| double Vb = pow(Vh, 0.4996667741545416); |
| |
| double pb[3] = { 0.0, 0.0, 0.0 }; |
| double pa[3] = { 1.0, 0.0, 0.0 }; |
| double rb[3] = { 1.0, -2.0, 1.0 }; |
| double ra[3] = { 1.0, 0.0, 0.0 }; |
| |
| double a0 = 1.0 + K / Q + K * K; |
| pb[0] = (Vh + Vb * K / Q + K * K) / a0; |
| pb[1] = 2.0 * (K * K - Vh) / a0; |
| pb[2] = (Vh - Vb * K / Q + K * K) / a0; |
| pa[1] = 2.0 * (K * K - 1.0) / a0; |
| pa[2] = (1.0 - K / Q + K * K) / a0; |
| |
| f0 = 38.13547087602444; |
| Q = 0.5003270373238773; |
| K = tan(M_PI * f0 / (double) st->samplerate); |
| |
| ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K); |
| ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K); |
| |
| st->d->b[0] = pb[0] * rb[0]; |
| st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0]; |
| st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0]; |
| st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1]; |
| st->d->b[4] = pb[2] * rb[2]; |
| |
| st->d->a[0] = pa[0] * ra[0]; |
| st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0]; |
| st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0]; |
| st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1]; |
| st->d->a[4] = pa[2] * ra[2]; |
| |
| for (i = 0; i < 5; ++i) { |
| for (j = 0; j < 5; ++j) { |
| st->d->v[i][j] = 0.0; |
| } |
| } |
| } |
| |
| static int ebur128_init_channel_map(FFEBUR128State * st) |
| { |
| size_t i; |
| st->d->channel_map = |
| (int *) av_malloc_array(st->channels, sizeof(*st->d->channel_map)); |
| if (!st->d->channel_map) |
| return AVERROR(ENOMEM); |
| if (st->channels == 4) { |
| st->d->channel_map[0] = FF_EBUR128_LEFT; |
| st->d->channel_map[1] = FF_EBUR128_RIGHT; |
| st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND; |
| st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND; |
| } else if (st->channels == 5) { |
| st->d->channel_map[0] = FF_EBUR128_LEFT; |
| st->d->channel_map[1] = FF_EBUR128_RIGHT; |
| st->d->channel_map[2] = FF_EBUR128_CENTER; |
| st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND; |
| st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND; |
| } else { |
| for (i = 0; i < st->channels; ++i) { |
| switch (i) { |
| case 0: |
| st->d->channel_map[i] = FF_EBUR128_LEFT; |
| break; |
| case 1: |
| st->d->channel_map[i] = FF_EBUR128_RIGHT; |
| break; |
| case 2: |
| st->d->channel_map[i] = FF_EBUR128_CENTER; |
| break; |
| case 3: |
| st->d->channel_map[i] = FF_EBUR128_UNUSED; |
| break; |
| case 4: |
| st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND; |
| break; |
| case 5: |
| st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND; |
| break; |
| default: |
| st->d->channel_map[i] = FF_EBUR128_UNUSED; |
| break; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static inline void init_histogram(void) |
| { |
| int i; |
| /* initialize static constants */ |
| histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0); |
| for (i = 0; i < 1000; ++i) { |
| histogram_energies[i] = |
| pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0); |
| } |
| for (i = 1; i < 1001; ++i) { |
| histogram_energy_boundaries[i] = |
| pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0); |
| } |
| } |
| |
| FFEBUR128State *ff_ebur128_init(unsigned int channels, |
| unsigned long samplerate, |
| unsigned long window, int mode) |
| { |
| int errcode; |
| FFEBUR128State *st; |
| |
| st = (FFEBUR128State *) av_malloc(sizeof(*st)); |
| CHECK_ERROR(!st, 0, exit) |
| st->d = (struct FFEBUR128StateInternal *) |
| av_malloc(sizeof(*st->d)); |
| CHECK_ERROR(!st->d, 0, free_state) |
| st->channels = channels; |
| errcode = ebur128_init_channel_map(st); |
| CHECK_ERROR(errcode, 0, free_internal) |
| |
| st->d->sample_peak = |
| (double *) av_mallocz_array(channels, sizeof(*st->d->sample_peak)); |
| CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map) |
| |
| st->samplerate = samplerate; |
| st->d->samples_in_100ms = (st->samplerate + 5) / 10; |
| st->mode = mode; |
| if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) { |
| st->d->window = FFMAX(window, 3000); |
| } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) { |
| st->d->window = FFMAX(window, 400); |
| } else { |
| goto free_sample_peak; |
| } |
| st->d->audio_data_frames = st->samplerate * st->d->window / 1000; |
| if (st->d->audio_data_frames % st->d->samples_in_100ms) { |
| /* round up to multiple of samples_in_100ms */ |
| st->d->audio_data_frames = st->d->audio_data_frames |
| + st->d->samples_in_100ms |
| - (st->d->audio_data_frames % st->d->samples_in_100ms); |
| } |
| st->d->audio_data = |
| (double *) av_mallocz_array(st->d->audio_data_frames, |
| st->channels * sizeof(*st->d->audio_data)); |
| CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak) |
| |
| ebur128_init_filter(st); |
| |
| st->d->block_energy_histogram = |
| av_mallocz(1000 * sizeof(*st->d->block_energy_histogram)); |
| CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data) |
| st->d->short_term_block_energy_histogram = |
| av_mallocz(1000 * sizeof(*st->d->short_term_block_energy_histogram)); |
| CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0, |
| free_block_energy_histogram) |
| st->d->short_term_frame_counter = 0; |
| |
| /* the first block needs 400ms of audio data */ |
| st->d->needed_frames = st->d->samples_in_100ms * 4; |
| /* start at the beginning of the buffer */ |
| st->d->audio_data_index = 0; |
| |
| if (ff_thread_once(&histogram_init, &init_histogram) != 0) |
| goto free_short_term_block_energy_histogram; |
| |
| st->d->data_ptrs = av_malloc_array(channels, sizeof(*st->d->data_ptrs)); |
| CHECK_ERROR(!st->d->data_ptrs, 0, |
| free_short_term_block_energy_histogram); |
| |
| return st; |
| |
| free_short_term_block_energy_histogram: |
| av_free(st->d->short_term_block_energy_histogram); |
| free_block_energy_histogram: |
| av_free(st->d->block_energy_histogram); |
| free_audio_data: |
| av_free(st->d->audio_data); |
| free_sample_peak: |
| av_free(st->d->sample_peak); |
| free_channel_map: |
| av_free(st->d->channel_map); |
| free_internal: |
| av_free(st->d); |
| free_state: |
| av_free(st); |
| exit: |
| return NULL; |
| } |
| |
| void ff_ebur128_destroy(FFEBUR128State ** st) |
| { |
| av_free((*st)->d->block_energy_histogram); |
| av_free((*st)->d->short_term_block_energy_histogram); |
| av_free((*st)->d->audio_data); |
| av_free((*st)->d->channel_map); |
| av_free((*st)->d->sample_peak); |
| av_free((*st)->d->data_ptrs); |
| av_free((*st)->d); |
| av_free(*st); |
| *st = NULL; |
| } |
| |
| #define EBUR128_FILTER(type, scaling_factor) \ |
| static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \ |
| size_t src_index, size_t frames, \ |
| int stride) { \ |
| double* audio_data = st->d->audio_data + st->d->audio_data_index; \ |
| size_t i, c; \ |
| \ |
| if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \ |
| for (c = 0; c < st->channels; ++c) { \ |
| double max = 0.0; \ |
| for (i = 0; i < frames; ++i) { \ |
| type v = srcs[c][src_index + i * stride]; \ |
| if (v > max) { \ |
| max = v; \ |
| } else if (-v > max) { \ |
| max = -1.0 * v; \ |
| } \ |
| } \ |
| max /= scaling_factor; \ |
| if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \ |
| } \ |
| } \ |
| for (c = 0; c < st->channels; ++c) { \ |
| int ci = st->d->channel_map[c] - 1; \ |
| if (ci < 0) continue; \ |
| else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \ |
| for (i = 0; i < frames; ++i) { \ |
| st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \ |
| - st->d->a[1] * st->d->v[ci][1] \ |
| - st->d->a[2] * st->d->v[ci][2] \ |
| - st->d->a[3] * st->d->v[ci][3] \ |
| - st->d->a[4] * st->d->v[ci][4]; \ |
| audio_data[i * st->channels + c] = \ |
| st->d->b[0] * st->d->v[ci][0] \ |
| + st->d->b[1] * st->d->v[ci][1] \ |
| + st->d->b[2] * st->d->v[ci][2] \ |
| + st->d->b[3] * st->d->v[ci][3] \ |
| + st->d->b[4] * st->d->v[ci][4]; \ |
| st->d->v[ci][4] = st->d->v[ci][3]; \ |
| st->d->v[ci][3] = st->d->v[ci][2]; \ |
| st->d->v[ci][2] = st->d->v[ci][1]; \ |
| st->d->v[ci][1] = st->d->v[ci][0]; \ |
| } \ |
| st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \ |
| st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \ |
| st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \ |
| st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \ |
| } \ |
| } |
| EBUR128_FILTER(double, 1.0) |
| |
| static double ebur128_energy_to_loudness(double energy) |
| { |
| return 10 * log10(energy) - 0.691; |
| } |
| |
| static size_t find_histogram_index(double energy) |
| { |
| size_t index_min = 0; |
| size_t index_max = 1000; |
| size_t index_mid; |
| |
| do { |
| index_mid = (index_min + index_max) / 2; |
| if (energy >= histogram_energy_boundaries[index_mid]) { |
| index_min = index_mid; |
| } else { |
| index_max = index_mid; |
| } |
| } while (index_max - index_min != 1); |
| |
| return index_min; |
| } |
| |
| static void ebur128_calc_gating_block(FFEBUR128State * st, |
| size_t frames_per_block, |
| double *optional_output) |
| { |
| size_t i, c; |
| double sum = 0.0; |
| double channel_sum; |
| for (c = 0; c < st->channels; ++c) { |
| if (st->d->channel_map[c] == FF_EBUR128_UNUSED) |
| continue; |
| channel_sum = 0.0; |
| if (st->d->audio_data_index < frames_per_block * st->channels) { |
| for (i = 0; i < st->d->audio_data_index / st->channels; ++i) { |
| channel_sum += st->d->audio_data[i * st->channels + c] * |
| st->d->audio_data[i * st->channels + c]; |
| } |
| for (i = st->d->audio_data_frames - |
| (frames_per_block - |
| st->d->audio_data_index / st->channels); |
| i < st->d->audio_data_frames; ++i) { |
| channel_sum += st->d->audio_data[i * st->channels + c] * |
| st->d->audio_data[i * st->channels + c]; |
| } |
| } else { |
| for (i = |
| st->d->audio_data_index / st->channels - frames_per_block; |
| i < st->d->audio_data_index / st->channels; ++i) { |
| channel_sum += |
| st->d->audio_data[i * st->channels + |
| c] * st->d->audio_data[i * |
| st->channels + |
| c]; |
| } |
| } |
| if (st->d->channel_map[c] == FF_EBUR128_Mp110 || |
| st->d->channel_map[c] == FF_EBUR128_Mm110 || |
| st->d->channel_map[c] == FF_EBUR128_Mp060 || |
| st->d->channel_map[c] == FF_EBUR128_Mm060 || |
| st->d->channel_map[c] == FF_EBUR128_Mp090 || |
| st->d->channel_map[c] == FF_EBUR128_Mm090) { |
| channel_sum *= 1.41; |
| } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) { |
| channel_sum *= 2.0; |
| } |
| sum += channel_sum; |
| } |
| sum /= (double) frames_per_block; |
| if (optional_output) { |
| *optional_output = sum; |
| } else if (sum >= histogram_energy_boundaries[0]) { |
| ++st->d->block_energy_histogram[find_histogram_index(sum)]; |
| } |
| } |
| |
| int ff_ebur128_set_channel(FFEBUR128State * st, |
| unsigned int channel_number, int value) |
| { |
| if (channel_number >= st->channels) { |
| return 1; |
| } |
| if (value == FF_EBUR128_DUAL_MONO && |
| (st->channels != 1 || channel_number != 0)) { |
| return 1; |
| } |
| st->d->channel_map[channel_number] = value; |
| return 0; |
| } |
| |
| static int ebur128_energy_shortterm(FFEBUR128State * st, double *out); |
| #define EBUR128_ADD_FRAMES_PLANAR(type) \ |
| static void ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \ |
| size_t frames, int stride) { \ |
| size_t src_index = 0; \ |
| while (frames > 0) { \ |
| if (frames >= st->d->needed_frames) { \ |
| ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \ |
| src_index += st->d->needed_frames * stride; \ |
| frames -= st->d->needed_frames; \ |
| st->d->audio_data_index += st->d->needed_frames * st->channels; \ |
| /* calculate the new gating block */ \ |
| if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \ |
| ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \ |
| } \ |
| if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ |
| st->d->short_term_frame_counter += st->d->needed_frames; \ |
| if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \ |
| double st_energy; \ |
| ebur128_energy_shortterm(st, &st_energy); \ |
| if (st_energy >= histogram_energy_boundaries[0]) { \ |
| ++st->d->short_term_block_energy_histogram[ \ |
| find_histogram_index(st_energy)]; \ |
| } \ |
| st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \ |
| } \ |
| } \ |
| /* 100ms are needed for all blocks besides the first one */ \ |
| st->d->needed_frames = st->d->samples_in_100ms; \ |
| /* reset audio_data_index when buffer full */ \ |
| if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \ |
| st->d->audio_data_index = 0; \ |
| } \ |
| } else { \ |
| ebur128_filter_##type(st, srcs, src_index, frames, stride); \ |
| st->d->audio_data_index += frames * st->channels; \ |
| if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \ |
| st->d->short_term_frame_counter += frames; \ |
| } \ |
| st->d->needed_frames -= frames; \ |
| frames = 0; \ |
| } \ |
| } \ |
| } |
| EBUR128_ADD_FRAMES_PLANAR(double) |
| #define FF_EBUR128_ADD_FRAMES(type) \ |
| void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \ |
| size_t frames) { \ |
| int i; \ |
| const type **buf = (const type**)st->d->data_ptrs; \ |
| for (i = 0; i < st->channels; i++) \ |
| buf[i] = src + i; \ |
| ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \ |
| } |
| FF_EBUR128_ADD_FRAMES(double) |
| |
| static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size, |
| double *relative_threshold) |
| { |
| size_t i, j; |
| int above_thresh_counter = 0; |
| *relative_threshold = 0.0; |
| |
| for (i = 0; i < size; i++) { |
| unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram; |
| for (j = 0; j < 1000; ++j) { |
| *relative_threshold += block_energy_histogram[j] * histogram_energies[j]; |
| above_thresh_counter += block_energy_histogram[j]; |
| } |
| } |
| |
| if (above_thresh_counter != 0) { |
| *relative_threshold /= (double)above_thresh_counter; |
| *relative_threshold *= RELATIVE_GATE_FACTOR; |
| } |
| |
| return above_thresh_counter; |
| } |
| |
| static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size, |
| double *out) |
| { |
| double gated_loudness = 0.0; |
| double relative_threshold; |
| size_t above_thresh_counter; |
| size_t i, j, start_index; |
| |
| for (i = 0; i < size; i++) |
| if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) |
| return AVERROR(EINVAL); |
| |
| if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) { |
| *out = -HUGE_VAL; |
| return 0; |
| } |
| |
| above_thresh_counter = 0; |
| if (relative_threshold < histogram_energy_boundaries[0]) { |
| start_index = 0; |
| } else { |
| start_index = find_histogram_index(relative_threshold); |
| if (relative_threshold > histogram_energies[start_index]) { |
| ++start_index; |
| } |
| } |
| for (i = 0; i < size; i++) { |
| for (j = start_index; j < 1000; ++j) { |
| gated_loudness += sts[i]->d->block_energy_histogram[j] * |
| histogram_energies[j]; |
| above_thresh_counter += sts[i]->d->block_energy_histogram[j]; |
| } |
| } |
| if (!above_thresh_counter) { |
| *out = -HUGE_VAL; |
| return 0; |
| } |
| gated_loudness /= (double) above_thresh_counter; |
| *out = ebur128_energy_to_loudness(gated_loudness); |
| return 0; |
| } |
| |
| int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out) |
| { |
| double relative_threshold; |
| |
| if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I) |
| return AVERROR(EINVAL); |
| |
| if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) { |
| *out = -70.0; |
| return 0; |
| } |
| |
| *out = ebur128_energy_to_loudness(relative_threshold); |
| return 0; |
| } |
| |
| int ff_ebur128_loudness_global(FFEBUR128State * st, double *out) |
| { |
| return ebur128_gated_loudness(&st, 1, out); |
| } |
| |
| static int ebur128_energy_in_interval(FFEBUR128State * st, |
| size_t interval_frames, double *out) |
| { |
| if (interval_frames > st->d->audio_data_frames) { |
| return AVERROR(EINVAL); |
| } |
| ebur128_calc_gating_block(st, interval_frames, out); |
| return 0; |
| } |
| |
| static int ebur128_energy_shortterm(FFEBUR128State * st, double *out) |
| { |
| return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30, |
| out); |
| } |
| |
| int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out) |
| { |
| double energy; |
| int error = ebur128_energy_shortterm(st, &energy); |
| if (error) { |
| return error; |
| } else if (energy <= 0.0) { |
| *out = -HUGE_VAL; |
| return 0; |
| } |
| *out = ebur128_energy_to_loudness(energy); |
| return 0; |
| } |
| |
| /* EBU - TECH 3342 */ |
| int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size, |
| double *out) |
| { |
| size_t i, j; |
| size_t stl_size; |
| double stl_power, stl_integrated; |
| /* High and low percentile energy */ |
| double h_en, l_en; |
| unsigned long hist[1000] = { 0 }; |
| size_t percentile_low, percentile_high; |
| size_t index; |
| |
| for (i = 0; i < size; ++i) { |
| if (sts[i]) { |
| if ((sts[i]->mode & FF_EBUR128_MODE_LRA) != |
| FF_EBUR128_MODE_LRA) { |
| return AVERROR(EINVAL); |
| } |
| } |
| } |
| |
| stl_size = 0; |
| stl_power = 0.0; |
| for (i = 0; i < size; ++i) { |
| if (!sts[i]) |
| continue; |
| for (j = 0; j < 1000; ++j) { |
| hist[j] += sts[i]->d->short_term_block_energy_histogram[j]; |
| stl_size += sts[i]->d->short_term_block_energy_histogram[j]; |
| stl_power += sts[i]->d->short_term_block_energy_histogram[j] |
| * histogram_energies[j]; |
| } |
| } |
| if (!stl_size) { |
| *out = 0.0; |
| return 0; |
| } |
| |
| stl_power /= stl_size; |
| stl_integrated = MINUS_20DB * stl_power; |
| |
| if (stl_integrated < histogram_energy_boundaries[0]) { |
| index = 0; |
| } else { |
| index = find_histogram_index(stl_integrated); |
| if (stl_integrated > histogram_energies[index]) { |
| ++index; |
| } |
| } |
| stl_size = 0; |
| for (j = index; j < 1000; ++j) { |
| stl_size += hist[j]; |
| } |
| if (!stl_size) { |
| *out = 0.0; |
| return 0; |
| } |
| |
| percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5); |
| percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5); |
| |
| stl_size = 0; |
| j = index; |
| while (stl_size <= percentile_low) { |
| stl_size += hist[j++]; |
| } |
| l_en = histogram_energies[j - 1]; |
| while (stl_size <= percentile_high) { |
| stl_size += hist[j++]; |
| } |
| h_en = histogram_energies[j - 1]; |
| *out = |
| ebur128_energy_to_loudness(h_en) - |
| ebur128_energy_to_loudness(l_en); |
| return 0; |
| } |
| |
| int ff_ebur128_loudness_range(FFEBUR128State * st, double *out) |
| { |
| return ff_ebur128_loudness_range_multiple(&st, 1, out); |
| } |
| |
| int ff_ebur128_sample_peak(FFEBUR128State * st, |
| unsigned int channel_number, double *out) |
| { |
| if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) != |
| FF_EBUR128_MODE_SAMPLE_PEAK) { |
| return AVERROR(EINVAL); |
| } else if (channel_number >= st->channels) { |
| return AVERROR(EINVAL); |
| } |
| *out = st->d->sample_peak[channel_number]; |
| return 0; |
| } |