| /* |
| * Copyright (c) 2013 Clément Bœsch |
| * Copyright (c) 2018 Paul B Mahol |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * 3D Lookup table filter |
| */ |
| |
| #include "float.h" |
| |
| #include "libavutil/opt.h" |
| #include "libavutil/file.h" |
| #include "libavutil/intreadwrite.h" |
| #include "libavutil/intfloat.h" |
| #include "libavutil/avassert.h" |
| #include "libavutil/pixdesc.h" |
| #include "libavutil/avstring.h" |
| #include "avfilter.h" |
| #include "drawutils.h" |
| #include "formats.h" |
| #include "framesync.h" |
| #include "internal.h" |
| #include "video.h" |
| |
| #define R 0 |
| #define G 1 |
| #define B 2 |
| #define A 3 |
| |
| enum interp_mode { |
| INTERPOLATE_NEAREST, |
| INTERPOLATE_TRILINEAR, |
| INTERPOLATE_TETRAHEDRAL, |
| INTERPOLATE_PYRAMID, |
| INTERPOLATE_PRISM, |
| NB_INTERP_MODE |
| }; |
| |
| struct rgbvec { |
| float r, g, b; |
| }; |
| |
| /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT |
| * of 512x512 (64x64x64) */ |
| #define MAX_LEVEL 256 |
| #define PRELUT_SIZE 65536 |
| |
| typedef struct Lut3DPreLut { |
| int size; |
| float min[3]; |
| float max[3]; |
| float scale[3]; |
| float* lut[3]; |
| } Lut3DPreLut; |
| |
| typedef struct LUT3DContext { |
| const AVClass *class; |
| int interpolation; ///<interp_mode |
| char *file; |
| uint8_t rgba_map[4]; |
| int step; |
| avfilter_action_func *interp; |
| struct rgbvec scale; |
| struct rgbvec *lut; |
| int lutsize; |
| int lutsize2; |
| Lut3DPreLut prelut; |
| #if CONFIG_HALDCLUT_FILTER |
| uint8_t clut_rgba_map[4]; |
| int clut_step; |
| int clut_bits; |
| int clut_planar; |
| int clut_float; |
| int clut_width; |
| FFFrameSync fs; |
| #endif |
| } LUT3DContext; |
| |
| typedef struct ThreadData { |
| AVFrame *in, *out; |
| } ThreadData; |
| |
| #define OFFSET(x) offsetof(LUT3DContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM |
| #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
| #define COMMON_OPTIONS \ |
| { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \ |
| { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, \ |
| { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, "interp_mode" }, \ |
| { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \ |
| { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, "interp_mode" }, \ |
| { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, "interp_mode" }, \ |
| { NULL } |
| |
| #define EXPONENT_MASK 0x7F800000 |
| #define MANTISSA_MASK 0x007FFFFF |
| #define SIGN_MASK 0x80000000 |
| |
| static inline float sanitizef(float f) |
| { |
| union av_intfloat32 t; |
| t.f = f; |
| |
| if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) { |
| if ((t.i & MANTISSA_MASK) != 0) { |
| // NAN |
| return 0.0f; |
| } else if (t.i & SIGN_MASK) { |
| // -INF |
| return -FLT_MAX; |
| } else { |
| // +INF |
| return FLT_MAX; |
| } |
| } |
| return f; |
| } |
| |
| static inline float lerpf(float v0, float v1, float f) |
| { |
| return v0 + (v1 - v0) * f; |
| } |
| |
| static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f) |
| { |
| struct rgbvec v = { |
| lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f) |
| }; |
| return v; |
| } |
| |
| #define NEAR(x) ((int)((x) + .5)) |
| #define PREV(x) ((int)(x)) |
| #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) |
| |
| /** |
| * Get the nearest defined point |
| */ |
| static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)]; |
| } |
| |
| /** |
| * Interpolate using the 8 vertices of a cube |
| * @see https://en.wikipedia.org/wiki/Trilinear_interpolation |
| */ |
| static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int lutsize2 = lut3d->lutsize2; |
| const int lutsize = lut3d->lutsize; |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| const struct rgbvec c00 = lerp(&c000, &c100, d.r); |
| const struct rgbvec c10 = lerp(&c010, &c110, d.r); |
| const struct rgbvec c01 = lerp(&c001, &c101, d.r); |
| const struct rgbvec c11 = lerp(&c011, &c111, d.r); |
| const struct rgbvec c0 = lerp(&c00, &c10, d.g); |
| const struct rgbvec c1 = lerp(&c01, &c11, d.g); |
| const struct rgbvec c = lerp(&c0, &c1, d.b); |
| return c; |
| } |
| |
| static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int lutsize2 = lut3d->lutsize2; |
| const int lutsize = lut3d->lutsize; |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| struct rgbvec c; |
| |
| if (d.g > d.r && d.b > d.r) { |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| |
| c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b + |
| (c011.r - c001.r - c010.r + c000.r) * d.g * d.b; |
| c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b + |
| (c011.g - c001.g - c010.g + c000.g) * d.g * d.b; |
| c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b + |
| (c011.b - c001.b - c010.b + c000.b) * d.g * d.b; |
| } else if (d.r > d.g && d.b > d.g) { |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| |
| c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b + |
| (c101.r - c001.r - c100.r + c000.r) * d.r * d.b; |
| c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b + |
| (c101.g - c001.g - c100.g + c000.g) * d.r * d.b; |
| c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b + |
| (c101.b - c001.b - c100.b + c000.b) * d.r * d.b; |
| } else { |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| |
| c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b + |
| (c110.r - c100.r - c010.r + c000.r) * d.r * d.g; |
| c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b + |
| (c110.g - c100.g - c010.g + c000.g) * d.r * d.g; |
| c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b + |
| (c110.b - c100.b - c010.b + c000.b) * d.r * d.g; |
| } |
| |
| return c; |
| } |
| |
| static inline struct rgbvec interp_prism(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int lutsize2 = lut3d->lutsize2; |
| const int lutsize = lut3d->lutsize; |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| struct rgbvec c; |
| |
| if (d.b > d.r) { |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| |
| c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g + |
| (c000.r - c010.r - c001.r + c011.r) * d.b * d.g + |
| (c001.r - c011.r - c101.r + c111.r) * d.r * d.g; |
| c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g + |
| (c000.g - c010.g - c001.g + c011.g) * d.b * d.g + |
| (c001.g - c011.g - c101.g + c111.g) * d.r * d.g; |
| c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g + |
| (c000.b - c010.b - c001.b + c011.b) * d.b * d.g + |
| (c001.b - c011.b - c101.b + c111.b) * d.r * d.g; |
| } else { |
| const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| |
| c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + |
| (c100.r - c110.r - c101.r + c111.r) * d.b * d.g + |
| (c000.r - c010.r - c100.r + c110.r) * d.r * d.g; |
| c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + |
| (c100.g - c110.g - c101.g + c111.g) * d.b * d.g + |
| (c000.g - c010.g - c100.g + c110.g) * d.r * d.g; |
| c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + |
| (c100.b - c110.b - c101.b + c111.b) * d.b * d.g + |
| (c000.b - c010.b - c100.b + c110.b) * d.r * d.g; |
| } |
| |
| return c; |
| } |
| |
| /** |
| * Tetrahedral interpolation. Based on code found in Truelight Software Library paper. |
| * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf |
| */ |
| static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, |
| const struct rgbvec *s) |
| { |
| const int lutsize2 = lut3d->lutsize2; |
| const int lutsize = lut3d->lutsize; |
| const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; |
| const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; |
| const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; |
| const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| struct rgbvec c; |
| if (d.r > d.g) { |
| if (d.g > d.b) { |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r; |
| c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g; |
| c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b; |
| } else if (d.r > d.b) { |
| const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r; |
| c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g; |
| c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b; |
| } else { |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r; |
| c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g; |
| c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b; |
| } |
| } else { |
| if (d.b > d.g) { |
| const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r; |
| c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g; |
| c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b; |
| } else if (d.b > d.r) { |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; |
| c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r; |
| c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g; |
| c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b; |
| } else { |
| const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; |
| c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r; |
| c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g; |
| c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b; |
| } |
| } |
| return c; |
| } |
| |
| static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut, |
| int idx, const float s) |
| { |
| const int lut_max = prelut->size - 1; |
| const float scaled = (s - prelut->min[idx]) * prelut->scale[idx]; |
| const float x = av_clipf(scaled, 0.0f, lut_max); |
| const int prev = PREV(x); |
| const int next = FFMIN((int)(x) + 1, lut_max); |
| const float p = prelut->lut[idx][prev]; |
| const float n = prelut->lut[idx][next]; |
| const float d = x - (float)prev; |
| return lerpf(p, n, d); |
| } |
| |
| static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut, |
| const struct rgbvec *s) |
| { |
| struct rgbvec c; |
| |
| if (prelut->size <= 0) |
| return *s; |
| |
| c.r = prelut_interp_1d_linear(prelut, 0, s->r); |
| c.g = prelut_interp_1d_linear(prelut, 1, s->g); |
| c.b = prelut_interp_1d_linear(prelut, 2, s->b); |
| return c; |
| } |
| |
| #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \ |
| static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT3DContext *lut3d = ctx->priv; \ |
| const Lut3DPreLut *prelut = &lut3d->prelut; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ |
| uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ |
| uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ |
| uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ |
| const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ |
| const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ |
| const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ |
| const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ |
| const float lut_max = lut3d->lutsize - 1; \ |
| const float scale_f = 1.0f / ((1<<depth) - 1); \ |
| const float scale_r = lut3d->scale.r * lut_max; \ |
| const float scale_g = lut3d->scale.g * lut_max; \ |
| const float scale_b = lut3d->scale.b * lut_max; \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ |
| uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ |
| uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ |
| uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ |
| const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ |
| const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ |
| const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ |
| const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ |
| for (x = 0; x < in->width; x++) { \ |
| const struct rgbvec rgb = {srcr[x] * scale_f, \ |
| srcg[x] * scale_f, \ |
| srcb[x] * scale_f}; \ |
| const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ |
| const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ |
| av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ |
| av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ |
| struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ |
| dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \ |
| dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \ |
| dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \ |
| if (!direct && in->linesize[3]) \ |
| dsta[x] = srca[x]; \ |
| } \ |
| grow += out->linesize[0]; \ |
| brow += out->linesize[1]; \ |
| rrow += out->linesize[2]; \ |
| arow += out->linesize[3]; \ |
| srcgrow += in->linesize[0]; \ |
| srcbrow += in->linesize[1]; \ |
| srcrrow += in->linesize[2]; \ |
| srcarow += in->linesize[3]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 8, 8) |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 16, 9) |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 16, 10) |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 16, 12) |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 16, 14) |
| |
| DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR(prism, 16, 16) |
| |
| #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \ |
| static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT3DContext *lut3d = ctx->priv; \ |
| const Lut3DPreLut *prelut = &lut3d->prelut; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ |
| uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ |
| uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ |
| uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ |
| const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ |
| const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ |
| const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ |
| const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ |
| const float lut_max = lut3d->lutsize - 1; \ |
| const float scale_r = lut3d->scale.r * lut_max; \ |
| const float scale_g = lut3d->scale.g * lut_max; \ |
| const float scale_b = lut3d->scale.b * lut_max; \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| float *dstg = (float *)grow; \ |
| float *dstb = (float *)brow; \ |
| float *dstr = (float *)rrow; \ |
| float *dsta = (float *)arow; \ |
| const float *srcg = (const float *)srcgrow; \ |
| const float *srcb = (const float *)srcbrow; \ |
| const float *srcr = (const float *)srcrrow; \ |
| const float *srca = (const float *)srcarow; \ |
| for (x = 0; x < in->width; x++) { \ |
| const struct rgbvec rgb = {sanitizef(srcr[x]), \ |
| sanitizef(srcg[x]), \ |
| sanitizef(srcb[x])}; \ |
| const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ |
| const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ |
| av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ |
| av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ |
| struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ |
| dstr[x] = vec.r; \ |
| dstg[x] = vec.g; \ |
| dstb[x] = vec.b; \ |
| if (!direct && in->linesize[3]) \ |
| dsta[x] = srca[x]; \ |
| } \ |
| grow += out->linesize[0]; \ |
| brow += out->linesize[1]; \ |
| rrow += out->linesize[2]; \ |
| arow += out->linesize[3]; \ |
| srcgrow += in->linesize[0]; \ |
| srcbrow += in->linesize[1]; \ |
| srcrrow += in->linesize[2]; \ |
| srcarow += in->linesize[3]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC_PLANAR_FLOAT(nearest, 32) |
| DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32) |
| DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32) |
| DEFINE_INTERP_FUNC_PLANAR_FLOAT(pyramid, 32) |
| DEFINE_INTERP_FUNC_PLANAR_FLOAT(prism, 32) |
| |
| #define DEFINE_INTERP_FUNC(name, nbits) \ |
| static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT3DContext *lut3d = ctx->priv; \ |
| const Lut3DPreLut *prelut = &lut3d->prelut; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int step = lut3d->step; \ |
| const uint8_t r = lut3d->rgba_map[R]; \ |
| const uint8_t g = lut3d->rgba_map[G]; \ |
| const uint8_t b = lut3d->rgba_map[B]; \ |
| const uint8_t a = lut3d->rgba_map[A]; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ |
| const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ |
| const float lut_max = lut3d->lutsize - 1; \ |
| const float scale_f = 1.0f / ((1<<nbits) - 1); \ |
| const float scale_r = lut3d->scale.r * lut_max; \ |
| const float scale_g = lut3d->scale.g * lut_max; \ |
| const float scale_b = lut3d->scale.b * lut_max; \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ |
| const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ |
| for (x = 0; x < in->width * step; x += step) { \ |
| const struct rgbvec rgb = {src[x + r] * scale_f, \ |
| src[x + g] * scale_f, \ |
| src[x + b] * scale_f}; \ |
| const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ |
| const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ |
| av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ |
| av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ |
| struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ |
| dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \ |
| dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \ |
| dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \ |
| if (!direct && step == 4) \ |
| dst[x + a] = src[x + a]; \ |
| } \ |
| dstrow += out->linesize[0]; \ |
| srcrow += in ->linesize[0]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC(nearest, 8) |
| DEFINE_INTERP_FUNC(trilinear, 8) |
| DEFINE_INTERP_FUNC(tetrahedral, 8) |
| DEFINE_INTERP_FUNC(pyramid, 8) |
| DEFINE_INTERP_FUNC(prism, 8) |
| |
| DEFINE_INTERP_FUNC(nearest, 16) |
| DEFINE_INTERP_FUNC(trilinear, 16) |
| DEFINE_INTERP_FUNC(tetrahedral, 16) |
| DEFINE_INTERP_FUNC(pyramid, 16) |
| DEFINE_INTERP_FUNC(prism, 16) |
| |
| #define MAX_LINE_SIZE 512 |
| |
| static int skip_line(const char *p) |
| { |
| while (*p && av_isspace(*p)) |
| p++; |
| return !*p || *p == '#'; |
| } |
| |
| static char* fget_next_word(char* dst, int max, FILE* f) |
| { |
| int c; |
| char *p = dst; |
| |
| /* for null */ |
| max--; |
| /* skip until next non whitespace char */ |
| while ((c = fgetc(f)) != EOF) { |
| if (av_isspace(c)) |
| continue; |
| |
| *p++ = c; |
| max--; |
| break; |
| } |
| |
| /* get max bytes or up until next whitespace char */ |
| for (; max > 0; max--) { |
| if ((c = fgetc(f)) == EOF) |
| break; |
| |
| if (av_isspace(c)) |
| break; |
| |
| *p++ = c; |
| } |
| |
| *p = 0; |
| if (p == dst) |
| return NULL; |
| return p; |
| } |
| |
| #define NEXT_LINE(loop_cond) do { \ |
| if (!fgets(line, sizeof(line), f)) { \ |
| av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ |
| return AVERROR_INVALIDDATA; \ |
| } \ |
| } while (loop_cond) |
| |
| #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \ |
| if (!fgets(line, sizeof(line), f)) { \ |
| av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ |
| ret = AVERROR_INVALIDDATA; \ |
| goto label; \ |
| } \ |
| } while (loop_cond) |
| |
| static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| int i; |
| if (lutsize < 2 || lutsize > MAX_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| av_freep(&lut3d->lut); |
| lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut)); |
| if (!lut3d->lut) |
| return AVERROR(ENOMEM); |
| |
| if (prelut) { |
| lut3d->prelut.size = PRELUT_SIZE; |
| for (i = 0; i < 3; i++) { |
| av_freep(&lut3d->prelut.lut[i]); |
| lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0])); |
| if (!lut3d->prelut.lut[i]) |
| return AVERROR(ENOMEM); |
| } |
| } else { |
| lut3d->prelut.size = 0; |
| for (i = 0; i < 3; i++) { |
| av_freep(&lut3d->prelut.lut[i]); |
| } |
| } |
| lut3d->lutsize = lutsize; |
| lut3d->lutsize2 = lutsize * lutsize; |
| return 0; |
| } |
| |
| /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE |
| * directive; seems to be generated by Davinci */ |
| static int parse_dat(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| int ret, i, j, k, size, size2; |
| |
| lut3d->lutsize = size = 33; |
| size2 = size * size; |
| |
| NEXT_LINE(skip_line(line)); |
| if (!strncmp(line, "3DLUTSIZE ", 10)) { |
| size = strtol(line + 10, NULL, 0); |
| |
| NEXT_LINE(skip_line(line)); |
| } |
| |
| ret = allocate_3dlut(ctx, size, 0); |
| if (ret < 0) |
| return ret; |
| |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; |
| if (k != 0 || j != 0 || i != 0) |
| NEXT_LINE(skip_line(line)); |
| if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Iridas format */ |
| static int parse_cube(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| float min[3] = {0.0, 0.0, 0.0}; |
| float max[3] = {1.0, 1.0, 1.0}; |
| |
| while (fgets(line, sizeof(line), f)) { |
| if (!strncmp(line, "LUT_3D_SIZE", 11)) { |
| int ret, i, j, k; |
| const int size = strtol(line + 12, NULL, 0); |
| const int size2 = size * size; |
| |
| ret = allocate_3dlut(ctx, size, 0); |
| if (ret < 0) |
| return ret; |
| |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k]; |
| |
| do { |
| try_again: |
| NEXT_LINE(0); |
| if (!strncmp(line, "DOMAIN_", 7)) { |
| float *vals = NULL; |
| if (!strncmp(line + 7, "MIN ", 4)) vals = min; |
| else if (!strncmp(line + 7, "MAX ", 4)) vals = max; |
| if (!vals) |
| return AVERROR_INVALIDDATA; |
| av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); |
| av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", |
| min[0], min[1], min[2], max[0], max[1], max[2]); |
| goto try_again; |
| } else if (!strncmp(line, "TITLE", 5)) { |
| goto try_again; |
| } |
| } while (skip_line(line)); |
| if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| break; |
| } |
| } |
| |
| lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f); |
| lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f); |
| lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f); |
| |
| return 0; |
| } |
| |
| /* Assume 17x17x17 LUT with a 16-bit depth |
| * FIXME: it seems there are various 3dl formats */ |
| static int parse_3dl(AVFilterContext *ctx, FILE *f) |
| { |
| char line[MAX_LINE_SIZE]; |
| LUT3DContext *lut3d = ctx->priv; |
| int ret, i, j, k; |
| const int size = 17; |
| const int size2 = 17 * 17; |
| const float scale = 16*16*16; |
| |
| lut3d->lutsize = size; |
| |
| ret = allocate_3dlut(ctx, size, 0); |
| if (ret < 0) |
| return ret; |
| |
| NEXT_LINE(skip_line(line)); |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| int r, g, b; |
| struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; |
| |
| NEXT_LINE(skip_line(line)); |
| if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3) |
| return AVERROR_INVALIDDATA; |
| vec->r = r / scale; |
| vec->g = g / scale; |
| vec->b = b / scale; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Pandora format */ |
| static int parse_m3d(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| float scale; |
| int ret, i, j, k, size, size2, in = -1, out = -1; |
| char line[MAX_LINE_SIZE]; |
| uint8_t rgb_map[3] = {0, 1, 2}; |
| |
| while (fgets(line, sizeof(line), f)) { |
| if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0); |
| else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0); |
| else if (!strncmp(line, "values", 6)) { |
| const char *p = line + 6; |
| #define SET_COLOR(id) do { \ |
| while (av_isspace(*p)) \ |
| p++; \ |
| switch (*p) { \ |
| case 'r': rgb_map[id] = 0; break; \ |
| case 'g': rgb_map[id] = 1; break; \ |
| case 'b': rgb_map[id] = 2; break; \ |
| } \ |
| while (*p && !av_isspace(*p)) \ |
| p++; \ |
| } while (0) |
| SET_COLOR(0); |
| SET_COLOR(1); |
| SET_COLOR(2); |
| break; |
| } |
| } |
| |
| if (in == -1 || out == -1) { |
| av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| if (in < 2 || out < 2 || |
| in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL || |
| out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out); |
| return AVERROR_INVALIDDATA; |
| } |
| for (size = 1; size*size*size < in; size++); |
| lut3d->lutsize = size; |
| size2 = size * size; |
| |
| ret = allocate_3dlut(ctx, size, 0); |
| if (ret < 0) |
| return ret; |
| |
| scale = 1. / (out - 1); |
| |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; |
| float val[3]; |
| |
| NEXT_LINE(0); |
| if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3) |
| return AVERROR_INVALIDDATA; |
| vec->r = val[rgb_map[0]] * scale; |
| vec->g = val[rgb_map[1]] * scale; |
| vec->b = val[rgb_map[2]] * scale; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int nearest_sample_index(float *data, float x, int low, int hi) |
| { |
| int mid; |
| if (x < data[low]) |
| return low; |
| |
| if (x > data[hi]) |
| return hi; |
| |
| for (;;) { |
| av_assert0(x >= data[low]); |
| av_assert0(x <= data[hi]); |
| av_assert0((hi-low) > 0); |
| |
| if (hi - low == 1) |
| return low; |
| |
| mid = (low + hi) / 2; |
| |
| if (x < data[mid]) |
| hi = mid; |
| else |
| low = mid; |
| } |
| |
| return 0; |
| } |
| |
| #define NEXT_FLOAT_OR_GOTO(value, label) \ |
| if (!fget_next_word(line, sizeof(line) ,f)) { \ |
| ret = AVERROR_INVALIDDATA; \ |
| goto label; \ |
| } \ |
| if (av_sscanf(line, "%f", &value) != 1) { \ |
| ret = AVERROR_INVALIDDATA; \ |
| goto label; \ |
| } |
| |
| static int parse_cinespace(AVFilterContext *ctx, FILE *f) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| float in_min[3] = {0.0, 0.0, 0.0}; |
| float in_max[3] = {1.0, 1.0, 1.0}; |
| float out_min[3] = {0.0, 0.0, 0.0}; |
| float out_max[3] = {1.0, 1.0, 1.0}; |
| int inside_metadata = 0, size, size2; |
| int prelut = 0; |
| int ret = 0; |
| |
| int prelut_sizes[3] = {0, 0, 0}; |
| float *in_prelut[3] = {NULL, NULL, NULL}; |
| float *out_prelut[3] = {NULL, NULL, NULL}; |
| |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| if (strncmp(line, "CSPLUTV100", 10)) { |
| av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n"); |
| ret = AVERROR(EINVAL); |
| goto end; |
| } |
| |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| if (strncmp(line, "3D", 2)) { |
| av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n"); |
| ret = AVERROR(EINVAL); |
| goto end; |
| } |
| |
| while (1) { |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| |
| if (!strncmp(line, "BEGIN METADATA", 14)) { |
| inside_metadata = 1; |
| continue; |
| } |
| if (!strncmp(line, "END METADATA", 12)) { |
| inside_metadata = 0; |
| continue; |
| } |
| if (inside_metadata == 0) { |
| int size_r, size_g, size_b; |
| |
| for (int i = 0; i < 3; i++) { |
| int npoints = strtol(line, NULL, 0); |
| |
| if (npoints > 2) { |
| float v,last; |
| |
| if (npoints > PRELUT_SIZE) { |
| av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| |
| if (in_prelut[i] || out_prelut[i]) { |
| av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| |
| in_prelut[i] = (float*)av_malloc(npoints * sizeof(float)); |
| out_prelut[i] = (float*)av_malloc(npoints * sizeof(float)); |
| if (!in_prelut[i] || !out_prelut[i]) { |
| ret = AVERROR(ENOMEM); |
| goto end; |
| } |
| |
| prelut_sizes[i] = npoints; |
| in_min[i] = FLT_MAX; |
| in_max[i] = -FLT_MAX; |
| out_min[i] = FLT_MAX; |
| out_max[i] = -FLT_MAX; |
| |
| for (int j = 0; j < npoints; j++) { |
| NEXT_FLOAT_OR_GOTO(v, end) |
| in_min[i] = FFMIN(in_min[i], v); |
| in_max[i] = FFMAX(in_max[i], v); |
| in_prelut[i][j] = v; |
| if (j > 0 && v < last) { |
| av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n"); |
| ret = AVERROR(ENOMEM); |
| goto end; |
| } |
| last = v; |
| } |
| |
| for (int j = 0; j < npoints; j++) { |
| NEXT_FLOAT_OR_GOTO(v, end) |
| out_min[i] = FFMIN(out_min[i], v); |
| out_max[i] = FFMAX(out_max[i], v); |
| out_prelut[i][j] = v; |
| } |
| |
| } else if (npoints == 2) { |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) { |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) { |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| |
| } else { |
| av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n"); |
| ret = AVERROR_PATCHWELCOME; |
| goto end; |
| } |
| |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| } |
| |
| if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) { |
| ret = AVERROR(EINVAL); |
| goto end; |
| } |
| if (size_r != size_g || size_r != size_b) { |
| av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b); |
| ret = AVERROR_PATCHWELCOME; |
| goto end; |
| } |
| |
| size = size_r; |
| size2 = size * size; |
| |
| if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2]) |
| prelut = 1; |
| |
| ret = allocate_3dlut(ctx, size, prelut); |
| if (ret < 0) |
| return ret; |
| |
| for (int k = 0; k < size; k++) { |
| for (int j = 0; j < size; j++) { |
| for (int i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k]; |
| |
| NEXT_LINE_OR_GOTO(skip_line(line), end); |
| if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) { |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| |
| vec->r *= out_max[0] - out_min[0]; |
| vec->g *= out_max[1] - out_min[1]; |
| vec->b *= out_max[2] - out_min[2]; |
| } |
| } |
| } |
| |
| break; |
| } |
| } |
| |
| if (prelut) { |
| for (int c = 0; c < 3; c++) { |
| |
| lut3d->prelut.min[c] = in_min[c]; |
| lut3d->prelut.max[c] = in_max[c]; |
| lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1); |
| |
| for (int i = 0; i < lut3d->prelut.size; ++i) { |
| float mix = (float) i / (float)(lut3d->prelut.size - 1); |
| float x = lerpf(in_min[c], in_max[c], mix), a, b; |
| |
| int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1); |
| av_assert0(idx + 1 < prelut_sizes[c]); |
| |
| a = out_prelut[c][idx + 0]; |
| b = out_prelut[c][idx + 1]; |
| mix = x - in_prelut[c][idx]; |
| |
| lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix)); |
| } |
| } |
| lut3d->scale.r = 1.00f; |
| lut3d->scale.g = 1.00f; |
| lut3d->scale.b = 1.00f; |
| |
| } else { |
| lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f); |
| lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f); |
| lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f); |
| } |
| |
| end: |
| for (int c = 0; c < 3; c++) { |
| av_freep(&in_prelut[c]); |
| av_freep(&out_prelut[c]); |
| } |
| return ret; |
| } |
| |
| static int set_identity_matrix(AVFilterContext *ctx, int size) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| int ret, i, j, k; |
| const int size2 = size * size; |
| const float c = 1. / (size - 1); |
| |
| ret = allocate_3dlut(ctx, size, 0); |
| if (ret < 0) |
| return ret; |
| |
| for (k = 0; k < size; k++) { |
| for (j = 0; j < size; j++) { |
| for (i = 0; i < size; i++) { |
| struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; |
| vec->r = k * c; |
| vec->g = j * c; |
| vec->b = i * c; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat pix_fmts[] = { |
| AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, |
| AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, |
| AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, |
| AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, |
| AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, |
| AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, |
| AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, |
| AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, |
| AV_PIX_FMT_GBRP9, |
| AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10, |
| AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12, |
| AV_PIX_FMT_GBRP14, |
| AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16, |
| AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32, |
| AV_PIX_FMT_NONE |
| }; |
| AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
| if (!fmts_list) |
| return AVERROR(ENOMEM); |
| return ff_set_common_formats(ctx, fmts_list); |
| } |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| int depth, is16bit, isfloat, planar; |
| LUT3DContext *lut3d = inlink->dst->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| |
| depth = desc->comp[0].depth; |
| is16bit = desc->comp[0].depth > 8; |
| planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; |
| isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT; |
| ff_fill_rgba_map(lut3d->rgba_map, inlink->format); |
| lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); |
| |
| #define SET_FUNC(name) do { \ |
| if (planar && !isfloat) { \ |
| switch (depth) { \ |
| case 8: lut3d->interp = interp_8_##name##_p8; break; \ |
| case 9: lut3d->interp = interp_16_##name##_p9; break; \ |
| case 10: lut3d->interp = interp_16_##name##_p10; break; \ |
| case 12: lut3d->interp = interp_16_##name##_p12; break; \ |
| case 14: lut3d->interp = interp_16_##name##_p14; break; \ |
| case 16: lut3d->interp = interp_16_##name##_p16; break; \ |
| } \ |
| } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \ |
| } else if (is16bit) { lut3d->interp = interp_16_##name; \ |
| } else { lut3d->interp = interp_8_##name; } \ |
| } while (0) |
| |
| switch (lut3d->interpolation) { |
| case INTERPOLATE_NEAREST: SET_FUNC(nearest); break; |
| case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break; |
| case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break; |
| case INTERPOLATE_PYRAMID: SET_FUNC(pyramid); break; |
| case INTERPOLATE_PRISM: SET_FUNC(prism); break; |
| default: |
| av_assert0(0); |
| } |
| |
| return 0; |
| } |
| |
| static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| LUT3DContext *lut3d = ctx->priv; |
| AVFilterLink *outlink = inlink->dst->outputs[0]; |
| AVFrame *out; |
| ThreadData td; |
| |
| if (av_frame_is_writable(in)) { |
| out = in; |
| } else { |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) { |
| av_frame_free(&in); |
| return NULL; |
| } |
| av_frame_copy_props(out, in); |
| } |
| |
| td.in = in; |
| td.out = out; |
| ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); |
| |
| if (out != in) |
| av_frame_free(&in); |
| |
| return out; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterLink *outlink = inlink->dst->outputs[0]; |
| AVFrame *out = apply_lut(inlink, in); |
| if (!out) |
| return AVERROR(ENOMEM); |
| return ff_filter_frame(outlink, out); |
| } |
| |
| static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, |
| char *res, int res_len, int flags) |
| { |
| int ret; |
| |
| ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); |
| if (ret < 0) |
| return ret; |
| |
| return config_input(ctx->inputs[0]); |
| } |
| |
| #if CONFIG_LUT3D_FILTER |
| static const AVOption lut3d_options[] = { |
| { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, |
| COMMON_OPTIONS |
| }; |
| |
| AVFILTER_DEFINE_CLASS(lut3d); |
| |
| static av_cold int lut3d_init(AVFilterContext *ctx) |
| { |
| int ret; |
| FILE *f; |
| const char *ext; |
| LUT3DContext *lut3d = ctx->priv; |
| |
| lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f; |
| |
| if (!lut3d->file) { |
| return set_identity_matrix(ctx, 32); |
| } |
| |
| f = av_fopen_utf8(lut3d->file, "r"); |
| if (!f) { |
| ret = AVERROR(errno); |
| av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret)); |
| return ret; |
| } |
| |
| ext = strrchr(lut3d->file, '.'); |
| if (!ext) { |
| av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto end; |
| } |
| ext++; |
| |
| if (!av_strcasecmp(ext, "dat")) { |
| ret = parse_dat(ctx, f); |
| } else if (!av_strcasecmp(ext, "3dl")) { |
| ret = parse_3dl(ctx, f); |
| } else if (!av_strcasecmp(ext, "cube")) { |
| ret = parse_cube(ctx, f); |
| } else if (!av_strcasecmp(ext, "m3d")) { |
| ret = parse_m3d(ctx, f); |
| } else if (!av_strcasecmp(ext, "csp")) { |
| ret = parse_cinespace(ctx, f); |
| } else { |
| av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext); |
| ret = AVERROR(EINVAL); |
| } |
| |
| if (!ret && !lut3d->lutsize) { |
| av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n"); |
| ret = AVERROR_INVALIDDATA; |
| } |
| |
| end: |
| fclose(f); |
| return ret; |
| } |
| |
| static av_cold void lut3d_uninit(AVFilterContext *ctx) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| int i; |
| av_freep(&lut3d->lut); |
| |
| for (i = 0; i < 3; i++) { |
| av_freep(&lut3d->prelut.lut[i]); |
| } |
| } |
| |
| static const AVFilterPad lut3d_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| .config_props = config_input, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad lut3d_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_lut3d = { |
| .name = "lut3d", |
| .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."), |
| .priv_size = sizeof(LUT3DContext), |
| .init = lut3d_init, |
| .uninit = lut3d_uninit, |
| .query_formats = query_formats, |
| .inputs = lut3d_inputs, |
| .outputs = lut3d_outputs, |
| .priv_class = &lut3d_class, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, |
| .process_command = process_command, |
| }; |
| #endif |
| |
| #if CONFIG_HALDCLUT_FILTER |
| |
| static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame) |
| { |
| const uint8_t *data = frame->data[0]; |
| const int linesize = frame->linesize[0]; |
| const int w = lut3d->clut_width; |
| const int step = lut3d->clut_step; |
| const uint8_t *rgba_map = lut3d->clut_rgba_map; |
| const int level = lut3d->lutsize; |
| const int level2 = lut3d->lutsize2; |
| |
| #define LOAD_CLUT(nbits) do { \ |
| int i, j, k, x = 0, y = 0; \ |
| \ |
| for (k = 0; k < level; k++) { \ |
| for (j = 0; j < level; j++) { \ |
| for (i = 0; i < level; i++) { \ |
| const uint##nbits##_t *src = (const uint##nbits##_t *) \ |
| (data + y*linesize + x*step); \ |
| struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \ |
| vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ |
| vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ |
| vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ |
| if (++x == w) { \ |
| x = 0; \ |
| y++; \ |
| } \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| switch (lut3d->clut_bits) { |
| case 8: LOAD_CLUT(8); break; |
| case 16: LOAD_CLUT(16); break; |
| } |
| } |
| |
| static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame) |
| { |
| const uint8_t *datag = frame->data[0]; |
| const uint8_t *datab = frame->data[1]; |
| const uint8_t *datar = frame->data[2]; |
| const int glinesize = frame->linesize[0]; |
| const int blinesize = frame->linesize[1]; |
| const int rlinesize = frame->linesize[2]; |
| const int w = lut3d->clut_width; |
| const int level = lut3d->lutsize; |
| const int level2 = lut3d->lutsize2; |
| |
| #define LOAD_CLUT_PLANAR(nbits, depth) do { \ |
| int i, j, k, x = 0, y = 0; \ |
| \ |
| for (k = 0; k < level; k++) { \ |
| for (j = 0; j < level; j++) { \ |
| for (i = 0; i < level; i++) { \ |
| const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \ |
| (datag + y*glinesize); \ |
| const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \ |
| (datab + y*blinesize); \ |
| const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \ |
| (datar + y*rlinesize); \ |
| struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \ |
| vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \ |
| vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \ |
| vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \ |
| if (++x == w) { \ |
| x = 0; \ |
| y++; \ |
| } \ |
| } \ |
| } \ |
| } \ |
| } while (0) |
| |
| switch (lut3d->clut_bits) { |
| case 8: LOAD_CLUT_PLANAR(8, 8); break; |
| case 9: LOAD_CLUT_PLANAR(16, 9); break; |
| case 10: LOAD_CLUT_PLANAR(16, 10); break; |
| case 12: LOAD_CLUT_PLANAR(16, 12); break; |
| case 14: LOAD_CLUT_PLANAR(16, 14); break; |
| case 16: LOAD_CLUT_PLANAR(16, 16); break; |
| } |
| } |
| |
| static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame) |
| { |
| const uint8_t *datag = frame->data[0]; |
| const uint8_t *datab = frame->data[1]; |
| const uint8_t *datar = frame->data[2]; |
| const int glinesize = frame->linesize[0]; |
| const int blinesize = frame->linesize[1]; |
| const int rlinesize = frame->linesize[2]; |
| const int w = lut3d->clut_width; |
| const int level = lut3d->lutsize; |
| const int level2 = lut3d->lutsize2; |
| |
| int i, j, k, x = 0, y = 0; |
| |
| for (k = 0; k < level; k++) { |
| for (j = 0; j < level; j++) { |
| for (i = 0; i < level; i++) { |
| const float *gsrc = (const float *)(datag + y*glinesize); |
| const float *bsrc = (const float *)(datab + y*blinesize); |
| const float *rsrc = (const float *)(datar + y*rlinesize); |
| struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; |
| vec->r = rsrc[x]; |
| vec->g = gsrc[x]; |
| vec->b = bsrc[x]; |
| if (++x == w) { |
| x = 0; |
| y++; |
| } |
| } |
| } |
| } |
| } |
| |
| static int config_output(AVFilterLink *outlink) |
| { |
| AVFilterContext *ctx = outlink->src; |
| LUT3DContext *lut3d = ctx->priv; |
| int ret; |
| |
| ret = ff_framesync_init_dualinput(&lut3d->fs, ctx); |
| if (ret < 0) |
| return ret; |
| outlink->w = ctx->inputs[0]->w; |
| outlink->h = ctx->inputs[0]->h; |
| outlink->time_base = ctx->inputs[0]->time_base; |
| if ((ret = ff_framesync_configure(&lut3d->fs)) < 0) |
| return ret; |
| return 0; |
| } |
| |
| static int activate(AVFilterContext *ctx) |
| { |
| LUT3DContext *s = ctx->priv; |
| return ff_framesync_activate(&s->fs); |
| } |
| |
| static int config_clut(AVFilterLink *inlink) |
| { |
| int size, level, w, h; |
| AVFilterContext *ctx = inlink->dst; |
| LUT3DContext *lut3d = ctx->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| |
| av_assert0(desc); |
| |
| lut3d->clut_bits = desc->comp[0].depth; |
| lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1; |
| lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT; |
| |
| lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3; |
| ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format); |
| |
| if (inlink->w > inlink->h) |
| av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the " |
| "Hald CLUT will be ignored\n", inlink->w - inlink->h); |
| else if (inlink->w < inlink->h) |
| av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the " |
| "Hald CLUT will be ignored\n", inlink->h - inlink->w); |
| lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h); |
| |
| for (level = 1; level*level*level < w; level++); |
| size = level*level*level; |
| if (size != w) { |
| av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| av_assert0(w == h && w == size); |
| level *= level; |
| if (level > MAX_LEVEL) { |
| const int max_clut_level = sqrt(MAX_LEVEL); |
| const int max_clut_size = max_clut_level*max_clut_level*max_clut_level; |
| av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT " |
| "(maximum level is %d, or %dx%d CLUT)\n", |
| max_clut_level, max_clut_size, max_clut_size); |
| return AVERROR(EINVAL); |
| } |
| |
| return allocate_3dlut(ctx, level, 0); |
| } |
| |
| static int update_apply_clut(FFFrameSync *fs) |
| { |
| AVFilterContext *ctx = fs->parent; |
| LUT3DContext *lut3d = ctx->priv; |
| AVFilterLink *inlink = ctx->inputs[0]; |
| AVFrame *master, *second, *out; |
| int ret; |
| |
| ret = ff_framesync_dualinput_get(fs, &master, &second); |
| if (ret < 0) |
| return ret; |
| if (!second) |
| return ff_filter_frame(ctx->outputs[0], master); |
| if (lut3d->clut_float) |
| update_clut_float(ctx->priv, second); |
| else if (lut3d->clut_planar) |
| update_clut_planar(ctx->priv, second); |
| else |
| update_clut_packed(ctx->priv, second); |
| out = apply_lut(inlink, master); |
| return ff_filter_frame(ctx->outputs[0], out); |
| } |
| |
| static av_cold int haldclut_init(AVFilterContext *ctx) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f; |
| lut3d->fs.on_event = update_apply_clut; |
| return 0; |
| } |
| |
| static av_cold void haldclut_uninit(AVFilterContext *ctx) |
| { |
| LUT3DContext *lut3d = ctx->priv; |
| ff_framesync_uninit(&lut3d->fs); |
| av_freep(&lut3d->lut); |
| } |
| |
| static const AVOption haldclut_options[] = { |
| COMMON_OPTIONS |
| }; |
| |
| FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs); |
| |
| static const AVFilterPad haldclut_inputs[] = { |
| { |
| .name = "main", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_input, |
| },{ |
| .name = "clut", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_clut, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad haldclut_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_output, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_haldclut = { |
| .name = "haldclut", |
| .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."), |
| .priv_size = sizeof(LUT3DContext), |
| .preinit = haldclut_framesync_preinit, |
| .init = haldclut_init, |
| .uninit = haldclut_uninit, |
| .query_formats = query_formats, |
| .activate = activate, |
| .inputs = haldclut_inputs, |
| .outputs = haldclut_outputs, |
| .priv_class = &haldclut_class, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, |
| .process_command = process_command, |
| }; |
| #endif |
| |
| #if CONFIG_LUT1D_FILTER |
| |
| enum interp_1d_mode { |
| INTERPOLATE_1D_NEAREST, |
| INTERPOLATE_1D_LINEAR, |
| INTERPOLATE_1D_CUBIC, |
| INTERPOLATE_1D_COSINE, |
| INTERPOLATE_1D_SPLINE, |
| NB_INTERP_1D_MODE |
| }; |
| |
| #define MAX_1D_LEVEL 65536 |
| |
| typedef struct LUT1DContext { |
| const AVClass *class; |
| char *file; |
| int interpolation; ///<interp_1d_mode |
| struct rgbvec scale; |
| uint8_t rgba_map[4]; |
| int step; |
| float lut[3][MAX_1D_LEVEL]; |
| int lutsize; |
| avfilter_action_func *interp; |
| } LUT1DContext; |
| |
| #undef OFFSET |
| #define OFFSET(x) offsetof(LUT1DContext, x) |
| |
| static void set_identity_matrix_1d(LUT1DContext *lut1d, int size) |
| { |
| const float c = 1. / (size - 1); |
| int i; |
| |
| lut1d->lutsize = size; |
| for (i = 0; i < size; i++) { |
| lut1d->lut[0][i] = i * c; |
| lut1d->lut[1][i] = i * c; |
| lut1d->lut[2][i] = i * c; |
| } |
| } |
| |
| static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f) |
| { |
| LUT1DContext *lut1d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| float in_min[3] = {0.0, 0.0, 0.0}; |
| float in_max[3] = {1.0, 1.0, 1.0}; |
| float out_min[3] = {0.0, 0.0, 0.0}; |
| float out_max[3] = {1.0, 1.0, 1.0}; |
| int inside_metadata = 0, size; |
| |
| NEXT_LINE(skip_line(line)); |
| if (strncmp(line, "CSPLUTV100", 10)) { |
| av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| NEXT_LINE(skip_line(line)); |
| if (strncmp(line, "1D", 2)) { |
| av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| while (1) { |
| NEXT_LINE(skip_line(line)); |
| |
| if (!strncmp(line, "BEGIN METADATA", 14)) { |
| inside_metadata = 1; |
| continue; |
| } |
| if (!strncmp(line, "END METADATA", 12)) { |
| inside_metadata = 0; |
| continue; |
| } |
| if (inside_metadata == 0) { |
| for (int i = 0; i < 3; i++) { |
| int npoints = strtol(line, NULL, 0); |
| |
| if (npoints != 2) { |
| av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| NEXT_LINE(skip_line(line)); |
| if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) |
| return AVERROR_INVALIDDATA; |
| NEXT_LINE(skip_line(line)); |
| if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) |
| return AVERROR_INVALIDDATA; |
| NEXT_LINE(skip_line(line)); |
| } |
| |
| size = strtol(line, NULL, 0); |
| |
| if (size < 2 || size > MAX_1D_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| lut1d->lutsize = size; |
| |
| for (int i = 0; i < size; i++) { |
| NEXT_LINE(skip_line(line)); |
| if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3) |
| return AVERROR_INVALIDDATA; |
| lut1d->lut[0][i] *= out_max[0] - out_min[0]; |
| lut1d->lut[1][i] *= out_max[1] - out_min[1]; |
| lut1d->lut[2][i] *= out_max[2] - out_min[2]; |
| } |
| |
| break; |
| } |
| } |
| |
| lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f); |
| lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f); |
| lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f); |
| |
| return 0; |
| } |
| |
| static int parse_cube_1d(AVFilterContext *ctx, FILE *f) |
| { |
| LUT1DContext *lut1d = ctx->priv; |
| char line[MAX_LINE_SIZE]; |
| float min[3] = {0.0, 0.0, 0.0}; |
| float max[3] = {1.0, 1.0, 1.0}; |
| |
| while (fgets(line, sizeof(line), f)) { |
| if (!strncmp(line, "LUT_1D_SIZE", 11)) { |
| const int size = strtol(line + 12, NULL, 0); |
| int i; |
| |
| if (size < 2 || size > MAX_1D_LEVEL) { |
| av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n"); |
| return AVERROR(EINVAL); |
| } |
| lut1d->lutsize = size; |
| for (i = 0; i < size; i++) { |
| do { |
| try_again: |
| NEXT_LINE(0); |
| if (!strncmp(line, "DOMAIN_", 7)) { |
| float *vals = NULL; |
| if (!strncmp(line + 7, "MIN ", 4)) vals = min; |
| else if (!strncmp(line + 7, "MAX ", 4)) vals = max; |
| if (!vals) |
| return AVERROR_INVALIDDATA; |
| av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); |
| av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", |
| min[0], min[1], min[2], max[0], max[1], max[2]); |
| goto try_again; |
| } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) { |
| av_sscanf(line + 19, "%f %f", min, max); |
| min[1] = min[2] = min[0]; |
| max[1] = max[2] = max[0]; |
| goto try_again; |
| } else if (!strncmp(line, "TITLE", 5)) { |
| goto try_again; |
| } |
| } while (skip_line(line)); |
| if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3) |
| return AVERROR_INVALIDDATA; |
| } |
| break; |
| } |
| } |
| |
| lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f); |
| lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f); |
| lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f); |
| |
| return 0; |
| } |
| |
| static const AVOption lut1d_options[] = { |
| { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS }, |
| { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, "interp_mode" }, |
| { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, |
| { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0, TFLAGS, "interp_mode" }, |
| { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0, TFLAGS, "interp_mode" }, |
| { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0, TFLAGS, "interp_mode" }, |
| { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0, TFLAGS, "interp_mode" }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(lut1d); |
| |
| static inline float interp_1d_nearest(const LUT1DContext *lut1d, |
| int idx, const float s) |
| { |
| return lut1d->lut[idx][NEAR(s)]; |
| } |
| |
| #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1)) |
| |
| static inline float interp_1d_linear(const LUT1DContext *lut1d, |
| int idx, const float s) |
| { |
| const int prev = PREV(s); |
| const int next = NEXT1D(s); |
| const float d = s - prev; |
| const float p = lut1d->lut[idx][prev]; |
| const float n = lut1d->lut[idx][next]; |
| |
| return lerpf(p, n, d); |
| } |
| |
| static inline float interp_1d_cosine(const LUT1DContext *lut1d, |
| int idx, const float s) |
| { |
| const int prev = PREV(s); |
| const int next = NEXT1D(s); |
| const float d = s - prev; |
| const float p = lut1d->lut[idx][prev]; |
| const float n = lut1d->lut[idx][next]; |
| const float m = (1.f - cosf(d * M_PI)) * .5f; |
| |
| return lerpf(p, n, m); |
| } |
| |
| static inline float interp_1d_cubic(const LUT1DContext *lut1d, |
| int idx, const float s) |
| { |
| const int prev = PREV(s); |
| const int next = NEXT1D(s); |
| const float mu = s - prev; |
| float a0, a1, a2, a3, mu2; |
| |
| float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)]; |
| float y1 = lut1d->lut[idx][prev]; |
| float y2 = lut1d->lut[idx][next]; |
| float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)]; |
| |
| |
| mu2 = mu * mu; |
| a0 = y3 - y2 - y0 + y1; |
| a1 = y0 - y1 - a0; |
| a2 = y2 - y0; |
| a3 = y1; |
| |
| return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3; |
| } |
| |
| static inline float interp_1d_spline(const LUT1DContext *lut1d, |
| int idx, const float s) |
| { |
| const int prev = PREV(s); |
| const int next = NEXT1D(s); |
| const float x = s - prev; |
| float c0, c1, c2, c3; |
| |
| float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)]; |
| float y1 = lut1d->lut[idx][prev]; |
| float y2 = lut1d->lut[idx][next]; |
| float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)]; |
| |
| c0 = y1; |
| c1 = .5f * (y2 - y0); |
| c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3; |
| c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2); |
| |
| return ((c3 * x + c2) * x + c1) * x + c0; |
| } |
| |
| #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \ |
| static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \ |
| void *arg, int jobnr, \ |
| int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT1DContext *lut1d = ctx->priv; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ |
| uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ |
| uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ |
| uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ |
| const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ |
| const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ |
| const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ |
| const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ |
| const float factor = (1 << depth) - 1; \ |
| const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ |
| const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ |
| const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ |
| uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ |
| uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ |
| uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ |
| const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ |
| const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ |
| const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ |
| const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ |
| for (x = 0; x < in->width; x++) { \ |
| float r = srcr[x] * scale_r; \ |
| float g = srcg[x] * scale_g; \ |
| float b = srcb[x] * scale_b; \ |
| r = interp_1d_##name(lut1d, 0, r); \ |
| g = interp_1d_##name(lut1d, 1, g); \ |
| b = interp_1d_##name(lut1d, 2, b); \ |
| dstr[x] = av_clip_uintp2(r * factor, depth); \ |
| dstg[x] = av_clip_uintp2(g * factor, depth); \ |
| dstb[x] = av_clip_uintp2(b * factor, depth); \ |
| if (!direct && in->linesize[3]) \ |
| dsta[x] = srca[x]; \ |
| } \ |
| grow += out->linesize[0]; \ |
| brow += out->linesize[1]; \ |
| rrow += out->linesize[2]; \ |
| arow += out->linesize[3]; \ |
| srcgrow += in->linesize[0]; \ |
| srcbrow += in->linesize[1]; \ |
| srcrrow += in->linesize[2]; \ |
| srcarow += in->linesize[3]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8) |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9) |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10) |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12) |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14) |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16) |
| DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16) |
| |
| #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \ |
| static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \ |
| void *arg, int jobnr, \ |
| int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT1DContext *lut1d = ctx->priv; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ |
| uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ |
| uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ |
| uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ |
| const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ |
| const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ |
| const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ |
| const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ |
| const float lutsize = lut1d->lutsize - 1; \ |
| const float scale_r = lut1d->scale.r * lutsize; \ |
| const float scale_g = lut1d->scale.g * lutsize; \ |
| const float scale_b = lut1d->scale.b * lutsize; \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| float *dstg = (float *)grow; \ |
| float *dstb = (float *)brow; \ |
| float *dstr = (float *)rrow; \ |
| float *dsta = (float *)arow; \ |
| const float *srcg = (const float *)srcgrow; \ |
| const float *srcb = (const float *)srcbrow; \ |
| const float *srcr = (const float *)srcrrow; \ |
| const float *srca = (const float *)srcarow; \ |
| for (x = 0; x < in->width; x++) { \ |
| float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \ |
| float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \ |
| float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \ |
| r = interp_1d_##name(lut1d, 0, r); \ |
| g = interp_1d_##name(lut1d, 1, g); \ |
| b = interp_1d_##name(lut1d, 2, b); \ |
| dstr[x] = r; \ |
| dstg[x] = g; \ |
| dstb[x] = b; \ |
| if (!direct && in->linesize[3]) \ |
| dsta[x] = srca[x]; \ |
| } \ |
| grow += out->linesize[0]; \ |
| brow += out->linesize[1]; \ |
| rrow += out->linesize[2]; \ |
| arow += out->linesize[3]; \ |
| srcgrow += in->linesize[0]; \ |
| srcbrow += in->linesize[1]; \ |
| srcrrow += in->linesize[2]; \ |
| srcarow += in->linesize[3]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32) |
| DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32) |
| DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32) |
| DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32) |
| DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32) |
| |
| #define DEFINE_INTERP_FUNC_1D(name, nbits) \ |
| static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \ |
| int jobnr, int nb_jobs) \ |
| { \ |
| int x, y; \ |
| const LUT1DContext *lut1d = ctx->priv; \ |
| const ThreadData *td = arg; \ |
| const AVFrame *in = td->in; \ |
| const AVFrame *out = td->out; \ |
| const int direct = out == in; \ |
| const int step = lut1d->step; \ |
| const uint8_t r = lut1d->rgba_map[R]; \ |
| const uint8_t g = lut1d->rgba_map[G]; \ |
| const uint8_t b = lut1d->rgba_map[B]; \ |
| const uint8_t a = lut1d->rgba_map[A]; \ |
| const int slice_start = (in->height * jobnr ) / nb_jobs; \ |
| const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ |
| uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ |
| const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ |
| const float factor = (1 << nbits) - 1; \ |
| const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ |
| const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ |
| const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ |
| \ |
| for (y = slice_start; y < slice_end; y++) { \ |
| uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ |
| const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ |
| for (x = 0; x < in->width * step; x += step) { \ |
| float rr = src[x + r] * scale_r; \ |
| float gg = src[x + g] * scale_g; \ |
| float bb = src[x + b] * scale_b; \ |
| rr = interp_1d_##name(lut1d, 0, rr); \ |
| gg = interp_1d_##name(lut1d, 1, gg); \ |
| bb = interp_1d_##name(lut1d, 2, bb); \ |
| dst[x + r] = av_clip_uint##nbits(rr * factor); \ |
| dst[x + g] = av_clip_uint##nbits(gg * factor); \ |
| dst[x + b] = av_clip_uint##nbits(bb * factor); \ |
| if (!direct && step == 4) \ |
| dst[x + a] = src[x + a]; \ |
| } \ |
| dstrow += out->linesize[0]; \ |
| srcrow += in ->linesize[0]; \ |
| } \ |
| return 0; \ |
| } |
| |
| DEFINE_INTERP_FUNC_1D(nearest, 8) |
| DEFINE_INTERP_FUNC_1D(linear, 8) |
| DEFINE_INTERP_FUNC_1D(cosine, 8) |
| DEFINE_INTERP_FUNC_1D(cubic, 8) |
| DEFINE_INTERP_FUNC_1D(spline, 8) |
| |
| DEFINE_INTERP_FUNC_1D(nearest, 16) |
| DEFINE_INTERP_FUNC_1D(linear, 16) |
| DEFINE_INTERP_FUNC_1D(cosine, 16) |
| DEFINE_INTERP_FUNC_1D(cubic, 16) |
| DEFINE_INTERP_FUNC_1D(spline, 16) |
| |
| static int config_input_1d(AVFilterLink *inlink) |
| { |
| int depth, is16bit, isfloat, planar; |
| LUT1DContext *lut1d = inlink->dst->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| |
| depth = desc->comp[0].depth; |
| is16bit = desc->comp[0].depth > 8; |
| planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; |
| isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT; |
| ff_fill_rgba_map(lut1d->rgba_map, inlink->format); |
| lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); |
| |
| #define SET_FUNC_1D(name) do { \ |
| if (planar && !isfloat) { \ |
| switch (depth) { \ |
| case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \ |
| case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \ |
| case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \ |
| case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \ |
| case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \ |
| case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \ |
| } \ |
| } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \ |
| } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \ |
| } else { lut1d->interp = interp_1d_8_##name; } \ |
| } while (0) |
| |
| switch (lut1d->interpolation) { |
| case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break; |
| case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break; |
| case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break; |
| case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break; |
| case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break; |
| default: |
| av_assert0(0); |
| } |
| |
| return 0; |
| } |
| |
| static av_cold int lut1d_init(AVFilterContext *ctx) |
| { |
| int ret; |
| FILE *f; |
| const char *ext; |
| LUT1DContext *lut1d = ctx->priv; |
| |
| lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f; |
| |
| if (!lut1d->file) { |
| set_identity_matrix_1d(lut1d, 32); |
| return 0; |
| } |
| |
| f = av_fopen_utf8(lut1d->file, "r"); |
| if (!f) { |
| ret = AVERROR(errno); |
| av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret)); |
|