blob: e57b5e0873444fc8587243aedd252bc32a68bfca [file] [log] [blame]
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "internal.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"
// TODO:
// the integral image may overflow 32bit, consider using 64bit
static const enum AVPixelFormat supported_formats[] = {
AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P,
AV_PIX_FMT_GBRP,
};
static int is_format_supported(enum AVPixelFormat fmt)
{
int i;
for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++)
if (supported_formats[i] == fmt)
return 1;
return 0;
}
typedef struct NLMeansOpenCLContext {
OpenCLFilterContext ocf;
int initialised;
cl_kernel vert_kernel;
cl_kernel horiz_kernel;
cl_kernel accum_kernel;
cl_kernel average_kernel;
cl_mem integral_img;
cl_mem weight;
cl_mem sum;
cl_mem overflow; // overflow in integral image?
double sigma;
float h;
int chroma_w;
int chroma_h;
int patch_size;
int patch_size_uv;
int research_size;
int research_size_uv;
cl_command_queue command_queue;
} NLMeansOpenCLContext;
static int nlmeans_opencl_init(AVFilterContext *avctx, int width, int height)
{
NLMeansOpenCLContext *ctx = avctx->priv;
cl_int cle;
int err;
int weight_buf_size = width * height * sizeof(float);
ctx->h = ctx->sigma * 10;
if (!(ctx->research_size & 1)) {
ctx->research_size |= 1;
av_log(avctx, AV_LOG_WARNING,
"research_size should be odd, set to %d",
ctx->research_size);
}
if (!(ctx->patch_size & 1)) {
ctx->patch_size |= 1;
av_log(avctx, AV_LOG_WARNING,
"patch_size should be odd, set to %d",
ctx->patch_size);
}
if (!ctx->research_size_uv)
ctx->research_size_uv = ctx->research_size;
if (!ctx->patch_size_uv)
ctx->patch_size_uv = ctx->patch_size;
err = ff_opencl_filter_load_program(avctx, &ff_opencl_source_nlmeans, 1);
if (err < 0)
goto fail;
ctx->command_queue = clCreateCommandQueue(ctx->ocf.hwctx->context,
ctx->ocf.hwctx->device_id,
0, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL "
"command queue %d.\n", cle);
ctx->vert_kernel = clCreateKernel(ctx->ocf.program,
"vert_sum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"vert_sum kernel %d.\n", cle);
ctx->horiz_kernel = clCreateKernel(ctx->ocf.program,
"horiz_sum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"horiz_sum kernel %d.\n", cle);
ctx->accum_kernel = clCreateKernel(ctx->ocf.program,
"weight_accum", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"accum kernel %d.\n", cle);
ctx->average_kernel = clCreateKernel(ctx->ocf.program,
"average", &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"average kernel %d.\n", cle);
ctx->integral_img = clCreateBuffer(ctx->ocf.hwctx->context, 0,
4 * width * height * sizeof(cl_int),
NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"integral image %d.\n", cle);
ctx->weight = clCreateBuffer(ctx->ocf.hwctx->context, 0,
weight_buf_size, NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"weight buffer %d.\n", cle);
ctx->sum = clCreateBuffer(ctx->ocf.hwctx->context, 0,
weight_buf_size, NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"sum buffer %d.\n", cle);
ctx->overflow = clCreateBuffer(ctx->ocf.hwctx->context, 0,
sizeof(cl_int), NULL, &cle);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create "
"overflow buffer %d.\n", cle);
ctx->initialised = 1;
return 0;
fail:
CL_RELEASE_KERNEL(ctx->vert_kernel);
CL_RELEASE_KERNEL(ctx->horiz_kernel);
CL_RELEASE_KERNEL(ctx->accum_kernel);
CL_RELEASE_KERNEL(ctx->average_kernel);
CL_RELEASE_MEMORY(ctx->integral_img);
CL_RELEASE_MEMORY(ctx->weight);
CL_RELEASE_MEMORY(ctx->sum);
CL_RELEASE_MEMORY(ctx->overflow);
CL_RELEASE_QUEUE(ctx->command_queue);
return err;
}
static int nlmeans_plane(AVFilterContext *avctx, cl_mem dst, cl_mem src,
cl_int width, cl_int height, cl_int p, cl_int r)
{
NLMeansOpenCLContext *ctx = avctx->priv;
const float zero = 0.0f;
const size_t worksize1[] = {height};
const size_t worksize2[] = {width};
const size_t worksize3[2] = {width, height};
int i, dx, dy, err = 0, weight_buf_size;
cl_int cle;
int nb_pixel, *tmp = NULL, idx = 0;
cl_int *dxdy = NULL;
weight_buf_size = width * height * sizeof(float);
cle = clEnqueueFillBuffer(ctx->command_queue, ctx->weight,
&zero, sizeof(float), 0, weight_buf_size,
0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill weight buffer: %d.\n",
cle);
cle = clEnqueueFillBuffer(ctx->command_queue, ctx->sum,
&zero, sizeof(float), 0, weight_buf_size,
0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill sum buffer: %d.\n",
cle);
nb_pixel = (2 * r + 1) * (2 * r + 1) - 1;
dxdy = av_malloc(nb_pixel * 2 * sizeof(cl_int));
tmp = av_malloc(nb_pixel * 2 * sizeof(int));
if (!dxdy || !tmp)
goto fail;
for (dx = -r; dx <= r; dx++) {
for (dy = -r; dy <= r; dy++) {
if (dx || dy) {
tmp[idx++] = dx;
tmp[idx++] = dy;
}
}
}
// repack dx/dy seperately, as we want to do four pairs of dx/dy in a batch
for (i = 0; i < nb_pixel / 4; i++) {
dxdy[i * 8] = tmp[i * 8]; // dx0
dxdy[i * 8 + 1] = tmp[i * 8 + 2]; // dx1
dxdy[i * 8 + 2] = tmp[i * 8 + 4]; // dx2
dxdy[i * 8 + 3] = tmp[i * 8 + 6]; // dx3
dxdy[i * 8 + 4] = tmp[i * 8 + 1]; // dy0
dxdy[i * 8 + 5] = tmp[i * 8 + 3]; // dy1
dxdy[i * 8 + 6] = tmp[i * 8 + 5]; // dy2
dxdy[i * 8 + 7] = tmp[i * 8 + 7]; // dy3
}
av_freep(&tmp);
for (i = 0; i < nb_pixel / 4; i++) {
cl_int *dx_cur = dxdy + 8 * i;
cl_int *dy_cur = dxdy + 8 * i + 4;
// horizontal pass
// integral(x,y) = sum([u(v,y) - u(v+dx,y+dy)]^2) for v in [0, x]
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 0, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 1, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 2, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 3, cl_int, &height);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 4, cl_int4, dx_cur);
CL_SET_KERNEL_ARG(ctx->horiz_kernel, 5, cl_int4, dy_cur);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->horiz_kernel, 1,
NULL, worksize1, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue horiz_kernel: %d.\n",
cle);
// vertical pass
// integral(x, y) = sum(integral(x, v)) for v in [0, y]
CL_SET_KERNEL_ARG(ctx->vert_kernel, 0, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 1, cl_mem, &ctx->overflow);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 2, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->vert_kernel, 3, cl_int, &height);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->vert_kernel,
1, NULL, worksize2, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue vert_kernel: %d.\n",
cle);
// accumulate weights
CL_SET_KERNEL_ARG(ctx->accum_kernel, 0, cl_mem, &ctx->sum);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 1, cl_mem, &ctx->weight);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 2, cl_mem, &ctx->integral_img);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 3, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 4, cl_int, &width);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 5, cl_int, &height);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 6, cl_int, &p);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 7, cl_float, &ctx->h);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 8, cl_int4, dx_cur);
CL_SET_KERNEL_ARG(ctx->accum_kernel, 9, cl_int4, dy_cur);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->accum_kernel,
2, NULL, worksize3, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue kernel: %d.\n", cle);
}
av_freep(&dxdy);
// average
CL_SET_KERNEL_ARG(ctx->average_kernel, 0, cl_mem, &dst);
CL_SET_KERNEL_ARG(ctx->average_kernel, 1, cl_mem, &src);
CL_SET_KERNEL_ARG(ctx->average_kernel, 2, cl_mem, &ctx->sum);
CL_SET_KERNEL_ARG(ctx->average_kernel, 3, cl_mem, &ctx->weight);
cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->average_kernel, 2,
NULL, worksize3, NULL, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue average kernel: %d.\n",
cle);
cle = clFlush(ctx->command_queue);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to flush command queue: %d.\n", cle);
fail:
if (tmp)
av_freep(&tmp);
if (dxdy)
av_freep(&dxdy);
return err;
}
static int nlmeans_opencl_filter_frame(AVFilterLink *inlink, AVFrame *input)
{
AVFilterContext *avctx = inlink->dst;
AVFilterLink *outlink = avctx->outputs[0];
NLMeansOpenCLContext *ctx = avctx->priv;
AVFrame *output = NULL;
AVHWFramesContext *input_frames_ctx;
const AVPixFmtDescriptor *desc;
enum AVPixelFormat in_format;
cl_mem src, dst;
const cl_int zero = 0;
int w, h, err, cle, overflow, p, patch, research;
av_log(ctx, AV_LOG_DEBUG, "Filter input: %s, %ux%u (%"PRId64").\n",
av_get_pix_fmt_name(input->format),
input->width, input->height, input->pts);
if (!input->hw_frames_ctx)
return AVERROR(EINVAL);
input_frames_ctx = (AVHWFramesContext*)input->hw_frames_ctx->data;
in_format = input_frames_ctx->sw_format;
output = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!output) {
err = AVERROR(ENOMEM);
goto fail;
}
err = av_frame_copy_props(output, input);
if (err < 0)
goto fail;
if (!ctx->initialised) {
desc = av_pix_fmt_desc_get(in_format);
if (!is_format_supported(in_format)) {
err = AVERROR(EINVAL);
av_log(avctx, AV_LOG_ERROR, "input format %s not supported\n",
av_get_pix_fmt_name(in_format));
goto fail;
}
ctx->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
ctx->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
err = nlmeans_opencl_init(avctx, inlink->w, inlink->h);
if (err < 0)
goto fail;
}
cle = clEnqueueWriteBuffer(ctx->command_queue, ctx->overflow, CL_FALSE,
0, sizeof(cl_int), &zero, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to initialize overflow"
"detection buffer %d.\n", cle);
for (p = 0; p < FF_ARRAY_ELEMS(output->data); p++) {
src = (cl_mem) input->data[p];
dst = (cl_mem) output->data[p];
if (!dst)
break;
av_assert0(src);
w = p ? ctx->chroma_w : inlink->w;
h = p ? ctx->chroma_h : inlink->h;
patch = (p ? ctx->patch_size_uv : ctx->patch_size) / 2;
research = (p ? ctx->research_size_uv : ctx->research_size) / 2;
err = nlmeans_plane(avctx, dst, src, w, h, patch, research);
if (err < 0)
goto fail;
}
// overflow occurred?
cle = clEnqueueReadBuffer(ctx->command_queue, ctx->overflow, CL_FALSE,
0, sizeof(cl_int), &overflow, 0, NULL, NULL);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read overflow: %d.\n", cle);
cle = clFinish(ctx->command_queue);
CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to finish kernel: %d.\n", cle);
if (overflow > 0)
av_log(avctx, AV_LOG_ERROR, "integral image overflow %d\n", overflow);
av_frame_free(&input);
av_log(ctx, AV_LOG_DEBUG, "Filter output: %s, %ux%u (%"PRId64").\n",
av_get_pix_fmt_name(output->format),
output->width, output->height, output->pts);
return ff_filter_frame(outlink, output);
fail:
clFinish(ctx->command_queue);
av_frame_free(&input);
av_frame_free(&output);
return err;
}
static av_cold void nlmeans_opencl_uninit(AVFilterContext *avctx)
{
NLMeansOpenCLContext *ctx = avctx->priv;
cl_int cle;
CL_RELEASE_KERNEL(ctx->vert_kernel);
CL_RELEASE_KERNEL(ctx->horiz_kernel);
CL_RELEASE_KERNEL(ctx->accum_kernel);
CL_RELEASE_KERNEL(ctx->average_kernel);
CL_RELEASE_MEMORY(ctx->integral_img);
CL_RELEASE_MEMORY(ctx->weight);
CL_RELEASE_MEMORY(ctx->sum);
CL_RELEASE_MEMORY(ctx->overflow);
CL_RELEASE_QUEUE(ctx->command_queue);
ff_opencl_filter_uninit(avctx);
}
#define OFFSET(x) offsetof(NLMeansOpenCLContext, x)
#define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVOption nlmeans_opencl_options[] = {
{ "s", "denoising strength", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 1.0, 30.0, FLAGS },
{ "p", "patch size", OFFSET(patch_size), AV_OPT_TYPE_INT, { .i64 = 2*3+1 }, 0, 99, FLAGS },
{ "pc", "patch size for chroma planes", OFFSET(patch_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS },
{ "r", "research window", OFFSET(research_size), AV_OPT_TYPE_INT, { .i64 = 7*2+1 }, 0, 99, FLAGS },
{ "rc", "research window for chroma planes", OFFSET(research_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(nlmeans_opencl);
static const AVFilterPad nlmeans_opencl_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = &nlmeans_opencl_filter_frame,
.config_props = &ff_opencl_filter_config_input,
},
{ NULL }
};
static const AVFilterPad nlmeans_opencl_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = &ff_opencl_filter_config_output,
},
{ NULL }
};
AVFilter ff_vf_nlmeans_opencl = {
.name = "nlmeans_opencl",
.description = NULL_IF_CONFIG_SMALL("Non-local means denoiser through OpenCL"),
.priv_size = sizeof(NLMeansOpenCLContext),
.priv_class = &nlmeans_opencl_class,
.init = &ff_opencl_filter_init,
.uninit = &nlmeans_opencl_uninit,
.query_formats = &ff_opencl_filter_query_formats,
.inputs = nlmeans_opencl_inputs,
.outputs = nlmeans_opencl_outputs,
.flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE,
};