| /* |
| * AAC decoder |
| * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org ) |
| * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com ) |
| * Copyright (c) 2008-2013 Alex Converse <alex.converse@gmail.com> |
| * |
| * AAC LATM decoder |
| * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz> |
| * Copyright (c) 2010 Janne Grunau <janne-libav@jannau.net> |
| * |
| * AAC decoder fixed-point implementation |
| * Copyright (c) 2013 |
| * MIPS Technologies, Inc., California. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * AAC decoder |
| * @author Oded Shimon ( ods15 ods15 dyndns org ) |
| * @author Maxim Gavrilov ( maxim.gavrilov gmail com ) |
| * |
| * AAC decoder fixed-point implementation |
| * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com ) |
| * @author Nedeljko Babic ( nedeljko.babic imgtec com ) |
| */ |
| |
| /* |
| * supported tools |
| * |
| * Support? Name |
| * N (code in SoC repo) gain control |
| * Y block switching |
| * Y window shapes - standard |
| * N window shapes - Low Delay |
| * Y filterbank - standard |
| * N (code in SoC repo) filterbank - Scalable Sample Rate |
| * Y Temporal Noise Shaping |
| * Y Long Term Prediction |
| * Y intensity stereo |
| * Y channel coupling |
| * Y frequency domain prediction |
| * Y Perceptual Noise Substitution |
| * Y Mid/Side stereo |
| * N Scalable Inverse AAC Quantization |
| * N Frequency Selective Switch |
| * N upsampling filter |
| * Y quantization & coding - AAC |
| * N quantization & coding - TwinVQ |
| * N quantization & coding - BSAC |
| * N AAC Error Resilience tools |
| * N Error Resilience payload syntax |
| * N Error Protection tool |
| * N CELP |
| * N Silence Compression |
| * N HVXC |
| * N HVXC 4kbits/s VR |
| * N Structured Audio tools |
| * N Structured Audio Sample Bank Format |
| * N MIDI |
| * N Harmonic and Individual Lines plus Noise |
| * N Text-To-Speech Interface |
| * Y Spectral Band Replication |
| * Y (not in this code) Layer-1 |
| * Y (not in this code) Layer-2 |
| * Y (not in this code) Layer-3 |
| * N SinuSoidal Coding (Transient, Sinusoid, Noise) |
| * Y Parametric Stereo |
| * N Direct Stream Transfer |
| * Y (not in fixed point code) Enhanced AAC Low Delay (ER AAC ELD) |
| * |
| * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication. |
| * - HE AAC v2 comprises LC AAC with Spectral Band Replication and |
| Parametric Stereo. |
| */ |
| |
| #include "libavutil/thread.h" |
| |
| static VLC vlc_scalefactors; |
| static VLC vlc_spectral[11]; |
| |
| static int output_configure(AACContext *ac, |
| uint8_t layout_map[MAX_ELEM_ID*4][3], int tags, |
| enum OCStatus oc_type, int get_new_frame); |
| |
| #define overread_err "Input buffer exhausted before END element found\n" |
| |
| static int count_channels(uint8_t (*layout)[3], int tags) |
| { |
| int i, sum = 0; |
| for (i = 0; i < tags; i++) { |
| int syn_ele = layout[i][0]; |
| int pos = layout[i][2]; |
| sum += (1 + (syn_ele == TYPE_CPE)) * |
| (pos != AAC_CHANNEL_OFF && pos != AAC_CHANNEL_CC); |
| } |
| return sum; |
| } |
| |
| /** |
| * Check for the channel element in the current channel position configuration. |
| * If it exists, make sure the appropriate element is allocated and map the |
| * channel order to match the internal FFmpeg channel layout. |
| * |
| * @param che_pos current channel position configuration |
| * @param type channel element type |
| * @param id channel element id |
| * @param channels count of the number of channels in the configuration |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static av_cold int che_configure(AACContext *ac, |
| enum ChannelPosition che_pos, |
| int type, int id, int *channels) |
| { |
| if (*channels >= MAX_CHANNELS) |
| return AVERROR_INVALIDDATA; |
| if (che_pos) { |
| if (!ac->che[type][id]) { |
| if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) |
| return AVERROR(ENOMEM); |
| AAC_RENAME(ff_aac_sbr_ctx_init)(ac, &ac->che[type][id]->sbr, type); |
| } |
| if (type != TYPE_CCE) { |
| if (*channels >= MAX_CHANNELS - (type == TYPE_CPE || (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1))) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Too many channels\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| ac->output_element[(*channels)++] = &ac->che[type][id]->ch[0]; |
| if (type == TYPE_CPE || |
| (type == TYPE_SCE && ac->oc[1].m4ac.ps == 1)) { |
| ac->output_element[(*channels)++] = &ac->che[type][id]->ch[1]; |
| } |
| } |
| } else { |
| if (ac->che[type][id]) |
| AAC_RENAME(ff_aac_sbr_ctx_close)(&ac->che[type][id]->sbr); |
| av_freep(&ac->che[type][id]); |
| } |
| return 0; |
| } |
| |
| static int frame_configure_elements(AVCodecContext *avctx) |
| { |
| AACContext *ac = avctx->priv_data; |
| int type, id, ch, ret; |
| |
| /* set channel pointers to internal buffers by default */ |
| for (type = 0; type < 4; type++) { |
| for (id = 0; id < MAX_ELEM_ID; id++) { |
| ChannelElement *che = ac->che[type][id]; |
| if (che) { |
| che->ch[0].ret = che->ch[0].ret_buf; |
| che->ch[1].ret = che->ch[1].ret_buf; |
| } |
| } |
| } |
| |
| /* get output buffer */ |
| av_frame_unref(ac->frame); |
| if (!avctx->channels) |
| return 1; |
| |
| ac->frame->nb_samples = 2048; |
| if ((ret = ff_get_buffer(avctx, ac->frame, 0)) < 0) |
| return ret; |
| |
| /* map output channel pointers to AVFrame data */ |
| for (ch = 0; ch < avctx->channels; ch++) { |
| if (ac->output_element[ch]) |
| ac->output_element[ch]->ret = (INTFLOAT *)ac->frame->extended_data[ch]; |
| } |
| |
| return 0; |
| } |
| |
| struct elem_to_channel { |
| uint64_t av_position; |
| uint8_t syn_ele; |
| uint8_t elem_id; |
| uint8_t aac_position; |
| }; |
| |
| static int assign_pair(struct elem_to_channel e2c_vec[MAX_ELEM_ID], |
| uint8_t (*layout_map)[3], int offset, uint64_t left, |
| uint64_t right, int pos, uint64_t *layout) |
| { |
| if (layout_map[offset][0] == TYPE_CPE) { |
| e2c_vec[offset] = (struct elem_to_channel) { |
| .av_position = left | right, |
| .syn_ele = TYPE_CPE, |
| .elem_id = layout_map[offset][1], |
| .aac_position = pos |
| }; |
| if (e2c_vec[offset].av_position != UINT64_MAX) |
| *layout |= e2c_vec[offset].av_position; |
| |
| return 1; |
| } else { |
| e2c_vec[offset] = (struct elem_to_channel) { |
| .av_position = left, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[offset][1], |
| .aac_position = pos |
| }; |
| e2c_vec[offset + 1] = (struct elem_to_channel) { |
| .av_position = right, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[offset + 1][1], |
| .aac_position = pos |
| }; |
| if (left != UINT64_MAX) |
| *layout |= left; |
| |
| if (right != UINT64_MAX) |
| *layout |= right; |
| |
| return 2; |
| } |
| } |
| |
| static int count_paired_channels(uint8_t (*layout_map)[3], int tags, int pos, |
| int *current) |
| { |
| int num_pos_channels = 0; |
| int first_cpe = 0; |
| int sce_parity = 0; |
| int i; |
| for (i = *current; i < tags; i++) { |
| if (layout_map[i][2] != pos) |
| break; |
| if (layout_map[i][0] == TYPE_CPE) { |
| if (sce_parity) { |
| if (pos == AAC_CHANNEL_FRONT && !first_cpe) { |
| sce_parity = 0; |
| } else { |
| return -1; |
| } |
| } |
| num_pos_channels += 2; |
| first_cpe = 1; |
| } else { |
| num_pos_channels++; |
| sce_parity ^= 1; |
| } |
| } |
| if (sce_parity && |
| ((pos == AAC_CHANNEL_FRONT && first_cpe) || pos == AAC_CHANNEL_SIDE)) |
| return -1; |
| *current = i; |
| return num_pos_channels; |
| } |
| |
| #define PREFIX_FOR_22POINT2 (AV_CH_LAYOUT_7POINT1_WIDE_BACK|AV_CH_BACK_CENTER|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_LOW_FREQUENCY_2) |
| static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) |
| { |
| int i, n, total_non_cc_elements; |
| struct elem_to_channel e2c_vec[4 * MAX_ELEM_ID] = { { 0 } }; |
| int num_front_channels, num_side_channels, num_back_channels; |
| uint64_t layout = 0; |
| |
| if (FF_ARRAY_ELEMS(e2c_vec) < tags) |
| return 0; |
| |
| i = 0; |
| num_front_channels = |
| count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i); |
| if (num_front_channels < 0) |
| return 0; |
| num_side_channels = |
| count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i); |
| if (num_side_channels < 0) |
| return 0; |
| num_back_channels = |
| count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i); |
| if (num_back_channels < 0) |
| return 0; |
| |
| if (num_side_channels == 0 && num_back_channels >= 4) { |
| num_side_channels = 2; |
| num_back_channels -= 2; |
| } |
| |
| i = 0; |
| if (num_front_channels & 1) { |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_FRONT_CENTER, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[i][1], |
| .aac_position = AAC_CHANNEL_FRONT |
| }; |
| layout |= e2c_vec[i].av_position; |
| i++; |
| num_front_channels--; |
| } |
| if (num_front_channels >= 4) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_FRONT_LEFT_OF_CENTER, |
| AV_CH_FRONT_RIGHT_OF_CENTER, |
| AAC_CHANNEL_FRONT, &layout); |
| num_front_channels -= 2; |
| } |
| if (num_front_channels >= 2) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_FRONT_LEFT, |
| AV_CH_FRONT_RIGHT, |
| AAC_CHANNEL_FRONT, &layout); |
| num_front_channels -= 2; |
| } |
| while (num_front_channels >= 2) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| UINT64_MAX, |
| UINT64_MAX, |
| AAC_CHANNEL_FRONT, &layout); |
| num_front_channels -= 2; |
| } |
| |
| if (num_side_channels >= 2) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_SIDE_LEFT, |
| AV_CH_SIDE_RIGHT, |
| AAC_CHANNEL_FRONT, &layout); |
| num_side_channels -= 2; |
| } |
| while (num_side_channels >= 2) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| UINT64_MAX, |
| UINT64_MAX, |
| AAC_CHANNEL_SIDE, &layout); |
| num_side_channels -= 2; |
| } |
| |
| while (num_back_channels >= 4) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| UINT64_MAX, |
| UINT64_MAX, |
| AAC_CHANNEL_BACK, &layout); |
| num_back_channels -= 2; |
| } |
| if (num_back_channels >= 2) { |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_BACK_LEFT, |
| AV_CH_BACK_RIGHT, |
| AAC_CHANNEL_BACK, &layout); |
| num_back_channels -= 2; |
| } |
| if (num_back_channels) { |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_BACK_CENTER, |
| .syn_ele = TYPE_SCE, |
| .elem_id = layout_map[i][1], |
| .aac_position = AAC_CHANNEL_BACK |
| }; |
| layout |= e2c_vec[i].av_position; |
| i++; |
| num_back_channels--; |
| } |
| |
| if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_LOW_FREQUENCY, |
| .syn_ele = TYPE_LFE, |
| .elem_id = layout_map[i][1], |
| .aac_position = AAC_CHANNEL_LFE |
| }; |
| layout |= e2c_vec[i].av_position; |
| i++; |
| } |
| if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_LOW_FREQUENCY_2, |
| .syn_ele = TYPE_LFE, |
| .elem_id = layout_map[i][1], |
| .aac_position = AAC_CHANNEL_LFE |
| }; |
| layout |= e2c_vec[i].av_position; |
| i++; |
| } |
| while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = UINT64_MAX, |
| .syn_ele = TYPE_LFE, |
| .elem_id = layout_map[i][1], |
| .aac_position = AAC_CHANNEL_LFE |
| }; |
| i++; |
| } |
| |
| // The previous checks would end up at 8 at this point for 22.2 |
| if (layout == PREFIX_FOR_22POINT2 && tags == 16 && i == 8) { |
| const uint8_t (*reference_layout_map)[3] = aac_channel_layout_map[12]; |
| for (int j = 0; j < tags; j++) { |
| if (layout_map[j][0] != reference_layout_map[j][0] || |
| layout_map[j][2] != reference_layout_map[j][2]) |
| goto end_of_layout_definition; |
| } |
| |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_TOP_FRONT_CENTER, |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = layout_map[i][2] |
| }; layout |= e2c_vec[i].av_position; i++; |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_TOP_FRONT_LEFT, |
| AV_CH_TOP_FRONT_RIGHT, |
| AAC_CHANNEL_FRONT, |
| &layout); |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_TOP_SIDE_LEFT, |
| AV_CH_TOP_SIDE_RIGHT, |
| AAC_CHANNEL_SIDE, |
| &layout); |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_TOP_CENTER, |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = layout_map[i][2] |
| }; layout |= e2c_vec[i].av_position; i++; |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_TOP_BACK_LEFT, |
| AV_CH_TOP_BACK_RIGHT, |
| AAC_CHANNEL_BACK, |
| &layout); |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_TOP_BACK_CENTER, |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = layout_map[i][2] |
| }; layout |= e2c_vec[i].av_position; i++; |
| e2c_vec[i] = (struct elem_to_channel) { |
| .av_position = AV_CH_BOTTOM_FRONT_CENTER, |
| .syn_ele = layout_map[i][0], |
| .elem_id = layout_map[i][1], |
| .aac_position = layout_map[i][2] |
| }; layout |= e2c_vec[i].av_position; i++; |
| i += assign_pair(e2c_vec, layout_map, i, |
| AV_CH_BOTTOM_FRONT_LEFT, |
| AV_CH_BOTTOM_FRONT_RIGHT, |
| AAC_CHANNEL_FRONT, |
| &layout); |
| } |
| |
| end_of_layout_definition: |
| |
| total_non_cc_elements = n = i; |
| |
| if (layout == AV_CH_LAYOUT_22POINT2) { |
| // For 22.2 reorder the result as needed |
| FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[0]); // FL & FR first (final), FC third |
| FFSWAP(struct elem_to_channel, e2c_vec[2], e2c_vec[1]); // FC second (final), FLc & FRc third |
| FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[2]); // LFE1 third (final), FLc & FRc seventh |
| FFSWAP(struct elem_to_channel, e2c_vec[4], e2c_vec[3]); // BL & BR fourth (final), SiL & SiR fifth |
| FFSWAP(struct elem_to_channel, e2c_vec[6], e2c_vec[4]); // FLc & FRc fifth (final), SiL & SiR seventh |
| FFSWAP(struct elem_to_channel, e2c_vec[7], e2c_vec[6]); // LFE2 seventh (final), SiL & SiR eight (final) |
| FFSWAP(struct elem_to_channel, e2c_vec[9], e2c_vec[8]); // TpFL & TpFR ninth (final), TFC tenth (final) |
| FFSWAP(struct elem_to_channel, e2c_vec[11], e2c_vec[10]); // TC eleventh (final), TpSiL & TpSiR twelth |
| FFSWAP(struct elem_to_channel, e2c_vec[12], e2c_vec[11]); // TpBL & TpBR twelth (final), TpSiL & TpSiR thirteenth (final) |
| } else { |
| // For everything else, utilize the AV channel position define as a |
| // stable sort. |
| do { |
| int next_n = 0; |
| for (i = 1; i < n; i++) |
| if (e2c_vec[i - 1].av_position > e2c_vec[i].av_position) { |
| FFSWAP(struct elem_to_channel, e2c_vec[i - 1], e2c_vec[i]); |
| next_n = i; |
| } |
| n = next_n; |
| } while (n > 0); |
| |
| } |
| |
| for (i = 0; i < total_non_cc_elements; i++) { |
| layout_map[i][0] = e2c_vec[i].syn_ele; |
| layout_map[i][1] = e2c_vec[i].elem_id; |
| layout_map[i][2] = e2c_vec[i].aac_position; |
| } |
| |
| return layout; |
| } |
| |
| /** |
| * Save current output configuration if and only if it has been locked. |
| */ |
| static int push_output_configuration(AACContext *ac) { |
| int pushed = 0; |
| |
| if (ac->oc[1].status == OC_LOCKED || ac->oc[0].status == OC_NONE) { |
| ac->oc[0] = ac->oc[1]; |
| pushed = 1; |
| } |
| ac->oc[1].status = OC_NONE; |
| return pushed; |
| } |
| |
| /** |
| * Restore the previous output configuration if and only if the current |
| * configuration is unlocked. |
| */ |
| static void pop_output_configuration(AACContext *ac) { |
| if (ac->oc[1].status != OC_LOCKED && ac->oc[0].status != OC_NONE) { |
| ac->oc[1] = ac->oc[0]; |
| ac->avctx->channels = ac->oc[1].channels; |
| ac->avctx->channel_layout = ac->oc[1].channel_layout; |
| output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
| ac->oc[1].status, 0); |
| } |
| } |
| |
| /** |
| * Configure output channel order based on the current program |
| * configuration element. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int output_configure(AACContext *ac, |
| uint8_t layout_map[MAX_ELEM_ID * 4][3], int tags, |
| enum OCStatus oc_type, int get_new_frame) |
| { |
| AVCodecContext *avctx = ac->avctx; |
| int i, channels = 0, ret; |
| uint64_t layout = 0; |
| uint8_t id_map[TYPE_END][MAX_ELEM_ID] = {{ 0 }}; |
| uint8_t type_counts[TYPE_END] = { 0 }; |
| |
| if (ac->oc[1].layout_map != layout_map) { |
| memcpy(ac->oc[1].layout_map, layout_map, tags * sizeof(layout_map[0])); |
| ac->oc[1].layout_map_tags = tags; |
| } |
| for (i = 0; i < tags; i++) { |
| int type = layout_map[i][0]; |
| int id = layout_map[i][1]; |
| id_map[type][id] = type_counts[type]++; |
| if (id_map[type][id] >= MAX_ELEM_ID) { |
| avpriv_request_sample(ac->avctx, "Too large remapped id"); |
| return AVERROR_PATCHWELCOME; |
| } |
| } |
| // Try to sniff a reasonable channel order, otherwise output the |
| // channels in the order the PCE declared them. |
| if (avctx->request_channel_layout != AV_CH_LAYOUT_NATIVE) |
| layout = sniff_channel_order(layout_map, tags); |
| for (i = 0; i < tags; i++) { |
| int type = layout_map[i][0]; |
| int id = layout_map[i][1]; |
| int iid = id_map[type][id]; |
| int position = layout_map[i][2]; |
| // Allocate or free elements depending on if they are in the |
| // current program configuration. |
| ret = che_configure(ac, position, type, iid, &channels); |
| if (ret < 0) |
| return ret; |
| ac->tag_che_map[type][id] = ac->che[type][iid]; |
| } |
| if (ac->oc[1].m4ac.ps == 1 && channels == 2) { |
| if (layout == AV_CH_FRONT_CENTER) { |
| layout = AV_CH_FRONT_LEFT|AV_CH_FRONT_RIGHT; |
| } else { |
| layout = 0; |
| } |
| } |
| |
| if (layout) avctx->channel_layout = layout; |
| ac->oc[1].channel_layout = layout; |
| avctx->channels = ac->oc[1].channels = channels; |
| ac->oc[1].status = oc_type; |
| |
| if (get_new_frame) { |
| if ((ret = frame_configure_elements(ac->avctx)) < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void flush(AVCodecContext *avctx) |
| { |
| AACContext *ac= avctx->priv_data; |
| int type, i, j; |
| |
| for (type = 3; type >= 0; type--) { |
| for (i = 0; i < MAX_ELEM_ID; i++) { |
| ChannelElement *che = ac->che[type][i]; |
| if (che) { |
| for (j = 0; j <= 1; j++) { |
| memset(che->ch[j].saved, 0, sizeof(che->ch[j].saved)); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Set up channel positions based on a default channel configuration |
| * as specified in table 1.17. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int set_default_channel_config(AACContext *ac, AVCodecContext *avctx, |
| uint8_t (*layout_map)[3], |
| int *tags, |
| int channel_config) |
| { |
| if (channel_config < 1 || (channel_config > 7 && channel_config < 11) || |
| channel_config > 13) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid default channel configuration (%d)\n", |
| channel_config); |
| return AVERROR_INVALIDDATA; |
| } |
| *tags = tags_per_config[channel_config]; |
| memcpy(layout_map, aac_channel_layout_map[channel_config - 1], |
| *tags * sizeof(*layout_map)); |
| |
| /* |
| * AAC specification has 7.1(wide) as a default layout for 8-channel streams. |
| * However, at least Nero AAC encoder encodes 7.1 streams using the default |
| * channel config 7, mapping the side channels of the original audio stream |
| * to the second AAC_CHANNEL_FRONT pair in the AAC stream. Similarly, e.g. FAAD |
| * decodes the second AAC_CHANNEL_FRONT pair as side channels, therefore decoding |
| * the incorrect streams as if they were correct (and as the encoder intended). |
| * |
| * As actual intended 7.1(wide) streams are very rare, default to assuming a |
| * 7.1 layout was intended. |
| */ |
| if (channel_config == 7 && avctx->strict_std_compliance < FF_COMPLIANCE_STRICT && (!ac || !ac->warned_71_wide++)) { |
| av_log(avctx, AV_LOG_INFO, "Assuming an incorrectly encoded 7.1 channel layout" |
| " instead of a spec-compliant 7.1(wide) layout, use -strict %d to decode" |
| " according to the specification instead.\n", FF_COMPLIANCE_STRICT); |
| layout_map[2][2] = AAC_CHANNEL_SIDE; |
| } |
| |
| return 0; |
| } |
| |
| static ChannelElement *get_che(AACContext *ac, int type, int elem_id) |
| { |
| /* For PCE based channel configurations map the channels solely based |
| * on tags. */ |
| if (!ac->oc[1].m4ac.chan_config) { |
| return ac->tag_che_map[type][elem_id]; |
| } |
| // Allow single CPE stereo files to be signalled with mono configuration. |
| if (!ac->tags_mapped && type == TYPE_CPE && |
| ac->oc[1].m4ac.chan_config == 1) { |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int layout_map_tags; |
| push_output_configuration(ac); |
| |
| av_log(ac->avctx, AV_LOG_DEBUG, "mono with CPE\n"); |
| |
| if (set_default_channel_config(ac, ac->avctx, layout_map, |
| &layout_map_tags, 2) < 0) |
| return NULL; |
| if (output_configure(ac, layout_map, layout_map_tags, |
| OC_TRIAL_FRAME, 1) < 0) |
| return NULL; |
| |
| ac->oc[1].m4ac.chan_config = 2; |
| ac->oc[1].m4ac.ps = 0; |
| } |
| // And vice-versa |
| if (!ac->tags_mapped && type == TYPE_SCE && |
| ac->oc[1].m4ac.chan_config == 2) { |
| uint8_t layout_map[MAX_ELEM_ID * 4][3]; |
| int layout_map_tags; |
| push_output_configuration(ac); |
| |
| av_log(ac->avctx, AV_LOG_DEBUG, "stereo with SCE\n"); |
| |
| if (set_default_channel_config(ac, ac->avctx, layout_map, |
| &layout_map_tags, 1) < 0) |
| return NULL; |
| if (output_configure(ac, layout_map, layout_map_tags, |
| OC_TRIAL_FRAME, 1) < 0) |
| return NULL; |
| |
| ac->oc[1].m4ac.chan_config = 1; |
| if (ac->oc[1].m4ac.sbr) |
| ac->oc[1].m4ac.ps = -1; |
| } |
| /* For indexed channel configurations map the channels solely based |
| * on position. */ |
| switch (ac->oc[1].m4ac.chan_config) { |
| case 13: |
| if (ac->tags_mapped > 3 && ((type == TYPE_CPE && elem_id < 8) || |
| (type == TYPE_SCE && elem_id < 6) || |
| (type == TYPE_LFE && elem_id < 2))) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[type][elem_id]; |
| } |
| case 12: |
| case 7: |
| if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
| } |
| case 11: |
| if (ac->tags_mapped == 2 && |
| ac->oc[1].m4ac.chan_config == 11 && |
| type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| case 6: |
| /* Some streams incorrectly code 5.1 audio as |
| * SCE[0] CPE[0] CPE[1] SCE[1] |
| * instead of |
| * SCE[0] CPE[0] CPE[1] LFE[0]. |
| * If we seem to have encountered such a stream, transfer |
| * the LFE[0] element to the SCE[1]'s mapping */ |
| if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
| if (!ac->warned_remapping_once && (type != TYPE_LFE || elem_id != 0)) { |
| av_log(ac->avctx, AV_LOG_WARNING, |
| "This stream seems to incorrectly report its last channel as %s[%d], mapping to LFE[0]\n", |
| type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
| ac->warned_remapping_once++; |
| } |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
| } |
| case 5: |
| if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
| } |
| case 4: |
| /* Some streams incorrectly code 4.0 audio as |
| * SCE[0] CPE[0] LFE[0] |
| * instead of |
| * SCE[0] CPE[0] SCE[1]. |
| * If we seem to have encountered such a stream, transfer |
| * the SCE[1] element to the LFE[0]'s mapping */ |
| if (ac->tags_mapped == tags_per_config[ac->oc[1].m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
| if (!ac->warned_remapping_once && (type != TYPE_SCE || elem_id != 1)) { |
| av_log(ac->avctx, AV_LOG_WARNING, |
| "This stream seems to incorrectly report its last channel as %s[%d], mapping to SCE[1]\n", |
| type == TYPE_SCE ? "SCE" : "LFE", elem_id); |
| ac->warned_remapping_once++; |
| } |
| ac->tags_mapped++; |
| return ac->tag_che_map[type][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| if (ac->tags_mapped == 2 && |
| ac->oc[1].m4ac.chan_config == 4 && |
| type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
| } |
| case 3: |
| case 2: |
| if (ac->tags_mapped == (ac->oc[1].m4ac.chan_config != 2) && |
| type == TYPE_CPE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
| } else if (ac->oc[1].m4ac.chan_config == 2) { |
| return NULL; |
| } |
| case 1: |
| if (!ac->tags_mapped && type == TYPE_SCE) { |
| ac->tags_mapped++; |
| return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
| } |
| default: |
| return NULL; |
| } |
| } |
| |
| /** |
| * Decode an array of 4 bit element IDs, optionally interleaved with a |
| * stereo/mono switching bit. |
| * |
| * @param type speaker type/position for these channels |
| */ |
| static void decode_channel_map(uint8_t layout_map[][3], |
| enum ChannelPosition type, |
| GetBitContext *gb, int n) |
| { |
| while (n--) { |
| enum RawDataBlockType syn_ele; |
| switch (type) { |
| case AAC_CHANNEL_FRONT: |
| case AAC_CHANNEL_BACK: |
| case AAC_CHANNEL_SIDE: |
| syn_ele = get_bits1(gb); |
| break; |
| case AAC_CHANNEL_CC: |
| skip_bits1(gb); |
| syn_ele = TYPE_CCE; |
| break; |
| case AAC_CHANNEL_LFE: |
| syn_ele = TYPE_LFE; |
| break; |
| default: |
| // AAC_CHANNEL_OFF has no channel map |
| av_assert0(0); |
| } |
| layout_map[0][0] = syn_ele; |
| layout_map[0][1] = get_bits(gb, 4); |
| layout_map[0][2] = type; |
| layout_map++; |
| } |
| } |
| |
| static inline void relative_align_get_bits(GetBitContext *gb, |
| int reference_position) { |
| int n = (reference_position - get_bits_count(gb) & 7); |
| if (n) |
| skip_bits(gb, n); |
| } |
| |
| /** |
| * Decode program configuration element; reference: table 4.2. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, |
| uint8_t (*layout_map)[3], |
| GetBitContext *gb, int byte_align_ref) |
| { |
| int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc; |
| int sampling_index; |
| int comment_len; |
| int tags; |
| |
| skip_bits(gb, 2); // object_type |
| |
| sampling_index = get_bits(gb, 4); |
| if (m4ac->sampling_index != sampling_index) |
| av_log(avctx, AV_LOG_WARNING, |
| "Sample rate index in program config element does not " |
| "match the sample rate index configured by the container.\n"); |
| |
| num_front = get_bits(gb, 4); |
| num_side = get_bits(gb, 4); |
| num_back = get_bits(gb, 4); |
| num_lfe = get_bits(gb, 2); |
| num_assoc_data = get_bits(gb, 3); |
| num_cc = get_bits(gb, 4); |
| |
| if (get_bits1(gb)) |
| skip_bits(gb, 4); // mono_mixdown_tag |
| if (get_bits1(gb)) |
| skip_bits(gb, 4); // stereo_mixdown_tag |
| |
| if (get_bits1(gb)) |
| skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
| |
| if (get_bits_left(gb) < 5 * (num_front + num_side + num_back + num_cc) + 4 *(num_lfe + num_assoc_data + num_cc)) { |
| av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
| return -1; |
| } |
| decode_channel_map(layout_map , AAC_CHANNEL_FRONT, gb, num_front); |
| tags = num_front; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_SIDE, gb, num_side); |
| tags += num_side; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_BACK, gb, num_back); |
| tags += num_back; |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_LFE, gb, num_lfe); |
| tags += num_lfe; |
| |
| skip_bits_long(gb, 4 * num_assoc_data); |
| |
| decode_channel_map(layout_map + tags, AAC_CHANNEL_CC, gb, num_cc); |
| tags += num_cc; |
| |
| relative_align_get_bits(gb, byte_align_ref); |
| |
| /* comment field, first byte is length */ |
| comment_len = get_bits(gb, 8) * 8; |
| if (get_bits_left(gb) < comment_len) { |
| av_log(avctx, AV_LOG_ERROR, "decode_pce: " overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, comment_len); |
| return tags; |
| } |
| |
| /** |
| * Decode GA "General Audio" specific configuration; reference: table 4.1. |
| * |
| * @param ac pointer to AACContext, may be null |
| * @param avctx pointer to AVCCodecContext, used for logging |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, |
| GetBitContext *gb, |
| int get_bit_alignment, |
| MPEG4AudioConfig *m4ac, |
| int channel_config) |
| { |
| int extension_flag, ret, ep_config, res_flags; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int tags = 0; |
| |
| #if USE_FIXED |
| if (get_bits1(gb)) { // frameLengthFlag |
| avpriv_report_missing_feature(avctx, "Fixed point 960/120 MDCT window"); |
| return AVERROR_PATCHWELCOME; |
| } |
| m4ac->frame_length_short = 0; |
| #else |
| m4ac->frame_length_short = get_bits1(gb); |
| if (m4ac->frame_length_short && m4ac->sbr == 1) { |
| avpriv_report_missing_feature(avctx, "SBR with 960 frame length"); |
| if (ac) ac->warned_960_sbr = 1; |
| m4ac->sbr = 0; |
| m4ac->ps = 0; |
| } |
| #endif |
| |
| if (get_bits1(gb)) // dependsOnCoreCoder |
| skip_bits(gb, 14); // coreCoderDelay |
| extension_flag = get_bits1(gb); |
| |
| if (m4ac->object_type == AOT_AAC_SCALABLE || |
| m4ac->object_type == AOT_ER_AAC_SCALABLE) |
| skip_bits(gb, 3); // layerNr |
| |
| if (channel_config == 0) { |
| skip_bits(gb, 4); // element_instance_tag |
| tags = decode_pce(avctx, m4ac, layout_map, gb, get_bit_alignment); |
| if (tags < 0) |
| return tags; |
| } else { |
| if ((ret = set_default_channel_config(ac, avctx, layout_map, |
| &tags, channel_config))) |
| return ret; |
| } |
| |
| if (count_channels(layout_map, tags) > 1) { |
| m4ac->ps = 0; |
| } else if (m4ac->sbr == 1 && m4ac->ps == -1) |
| m4ac->ps = 1; |
| |
| if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
| return ret; |
| |
| if (extension_flag) { |
| switch (m4ac->object_type) { |
| case AOT_ER_BSAC: |
| skip_bits(gb, 5); // numOfSubFrame |
| skip_bits(gb, 11); // layer_length |
| break; |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LTP: |
| case AOT_ER_AAC_SCALABLE: |
| case AOT_ER_AAC_LD: |
| res_flags = get_bits(gb, 3); |
| if (res_flags) { |
| avpriv_report_missing_feature(avctx, |
| "AAC data resilience (flags %x)", |
| res_flags); |
| return AVERROR_PATCHWELCOME; |
| } |
| break; |
| } |
| skip_bits1(gb); // extensionFlag3 (TBD in version 3) |
| } |
| switch (m4ac->object_type) { |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LTP: |
| case AOT_ER_AAC_SCALABLE: |
| case AOT_ER_AAC_LD: |
| ep_config = get_bits(gb, 2); |
| if (ep_config) { |
| avpriv_report_missing_feature(avctx, |
| "epConfig %d", ep_config); |
| return AVERROR_PATCHWELCOME; |
| } |
| } |
| return 0; |
| } |
| |
| static int decode_eld_specific_config(AACContext *ac, AVCodecContext *avctx, |
| GetBitContext *gb, |
| MPEG4AudioConfig *m4ac, |
| int channel_config) |
| { |
| int ret, ep_config, res_flags; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int tags = 0; |
| const int ELDEXT_TERM = 0; |
| |
| m4ac->ps = 0; |
| m4ac->sbr = 0; |
| #if USE_FIXED |
| if (get_bits1(gb)) { // frameLengthFlag |
| avpriv_request_sample(avctx, "960/120 MDCT window"); |
| return AVERROR_PATCHWELCOME; |
| } |
| #else |
| m4ac->frame_length_short = get_bits1(gb); |
| #endif |
| res_flags = get_bits(gb, 3); |
| if (res_flags) { |
| avpriv_report_missing_feature(avctx, |
| "AAC data resilience (flags %x)", |
| res_flags); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (get_bits1(gb)) { // ldSbrPresentFlag |
| avpriv_report_missing_feature(avctx, |
| "Low Delay SBR"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| while (get_bits(gb, 4) != ELDEXT_TERM) { |
| int len = get_bits(gb, 4); |
| if (len == 15) |
| len += get_bits(gb, 8); |
| if (len == 15 + 255) |
| len += get_bits(gb, 16); |
| if (get_bits_left(gb) < len * 8 + 4) { |
| av_log(avctx, AV_LOG_ERROR, overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, 8 * len); |
| } |
| |
| if ((ret = set_default_channel_config(ac, avctx, layout_map, |
| &tags, channel_config))) |
| return ret; |
| |
| if (ac && (ret = output_configure(ac, layout_map, tags, OC_GLOBAL_HDR, 0))) |
| return ret; |
| |
| ep_config = get_bits(gb, 2); |
| if (ep_config) { |
| avpriv_report_missing_feature(avctx, |
| "epConfig %d", ep_config); |
| return AVERROR_PATCHWELCOME; |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode audio specific configuration; reference: table 1.13. |
| * |
| * @param ac pointer to AACContext, may be null |
| * @param avctx pointer to AVCCodecContext, used for logging |
| * @param m4ac pointer to MPEG4AudioConfig, used for parsing |
| * @param gb buffer holding an audio specific config |
| * @param get_bit_alignment relative alignment for byte align operations |
| * @param sync_extension look for an appended sync extension |
| * |
| * @return Returns error status or number of consumed bits. <0 - error |
| */ |
| static int decode_audio_specific_config_gb(AACContext *ac, |
| AVCodecContext *avctx, |
| MPEG4AudioConfig *m4ac, |
| GetBitContext *gb, |
| int get_bit_alignment, |
| int sync_extension) |
| { |
| int i, ret; |
| GetBitContext gbc = *gb; |
| |
| if ((i = ff_mpeg4audio_get_config_gb(m4ac, &gbc, sync_extension, avctx)) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| if (m4ac->sampling_index > 12) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid sampling rate index %d\n", |
| m4ac->sampling_index); |
| return AVERROR_INVALIDDATA; |
| } |
| if (m4ac->object_type == AOT_ER_AAC_LD && |
| (m4ac->sampling_index < 3 || m4ac->sampling_index > 7)) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid low delay sampling rate index %d\n", |
| m4ac->sampling_index); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| skip_bits_long(gb, i); |
| |
| switch (m4ac->object_type) { |
| case AOT_AAC_MAIN: |
| case AOT_AAC_LC: |
| case AOT_AAC_SSR: |
| case AOT_AAC_LTP: |
| case AOT_ER_AAC_LC: |
| case AOT_ER_AAC_LD: |
| if ((ret = decode_ga_specific_config(ac, avctx, gb, get_bit_alignment, |
| m4ac, m4ac->chan_config)) < 0) |
| return ret; |
| break; |
| case AOT_ER_AAC_ELD: |
| if ((ret = decode_eld_specific_config(ac, avctx, gb, |
| m4ac, m4ac->chan_config)) < 0) |
| return ret; |
| break; |
| default: |
| avpriv_report_missing_feature(avctx, |
| "Audio object type %s%d", |
| m4ac->sbr == 1 ? "SBR+" : "", |
| m4ac->object_type); |
| return AVERROR(ENOSYS); |
| } |
| |
| ff_dlog(avctx, |
| "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", |
| m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, |
| m4ac->sample_rate, m4ac->sbr, |
| m4ac->ps); |
| |
| return get_bits_count(gb); |
| } |
| |
| static int decode_audio_specific_config(AACContext *ac, |
| AVCodecContext *avctx, |
| MPEG4AudioConfig *m4ac, |
| const uint8_t *data, int64_t bit_size, |
| int sync_extension) |
| { |
| int i, ret; |
| GetBitContext gb; |
| |
| if (bit_size < 0 || bit_size > INT_MAX) { |
| av_log(avctx, AV_LOG_ERROR, "Audio specific config size is invalid\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ff_dlog(avctx, "audio specific config size %d\n", (int)bit_size >> 3); |
| for (i = 0; i < bit_size >> 3; i++) |
| ff_dlog(avctx, "%02x ", data[i]); |
| ff_dlog(avctx, "\n"); |
| |
| if ((ret = init_get_bits(&gb, data, bit_size)) < 0) |
| return ret; |
| |
| return decode_audio_specific_config_gb(ac, avctx, m4ac, &gb, 0, |
| sync_extension); |
| } |
| |
| /** |
| * linear congruential pseudorandom number generator |
| * |
| * @param previous_val pointer to the current state of the generator |
| * |
| * @return Returns a 32-bit pseudorandom integer |
| */ |
| static av_always_inline int lcg_random(unsigned previous_val) |
| { |
| union { unsigned u; int s; } v = { previous_val * 1664525u + 1013904223 }; |
| return v.s; |
| } |
| |
| static void reset_all_predictors(PredictorState *ps) |
| { |
| int i; |
| for (i = 0; i < MAX_PREDICTORS; i++) |
| reset_predict_state(&ps[i]); |
| } |
| |
| static int sample_rate_idx (int rate) |
| { |
| if (92017 <= rate) return 0; |
| else if (75132 <= rate) return 1; |
| else if (55426 <= rate) return 2; |
| else if (46009 <= rate) return 3; |
| else if (37566 <= rate) return 4; |
| else if (27713 <= rate) return 5; |
| else if (23004 <= rate) return 6; |
| else if (18783 <= rate) return 7; |
| else if (13856 <= rate) return 8; |
| else if (11502 <= rate) return 9; |
| else if (9391 <= rate) return 10; |
| else return 11; |
| } |
| |
| static void reset_predictor_group(PredictorState *ps, int group_num) |
| { |
| int i; |
| for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) |
| reset_predict_state(&ps[i]); |
| } |
| |
| static void aacdec_init(AACContext *ac); |
| |
| static av_cold void aac_static_table_init(void) |
| { |
| static VLC_TYPE vlc_buf[304 + 270 + 550 + 300 + 328 + |
| 294 + 306 + 268 + 510 + 366 + 462][2]; |
| for (unsigned i = 0, offset = 0; i < 11; i++) { |
| vlc_spectral[i].table = &vlc_buf[offset]; |
| vlc_spectral[i].table_allocated = FF_ARRAY_ELEMS(vlc_buf) - offset; |
| ff_init_vlc_sparse(&vlc_spectral[i], 8, ff_aac_spectral_sizes[i], |
| ff_aac_spectral_bits[i], sizeof(ff_aac_spectral_bits[i][0]), |
| sizeof(ff_aac_spectral_bits[i][0]), |
| ff_aac_spectral_codes[i], sizeof(ff_aac_spectral_codes[i][0]), |
| sizeof(ff_aac_spectral_codes[i][0]), |
| ff_aac_codebook_vector_idx[i], sizeof(ff_aac_codebook_vector_idx[i][0]), |
| sizeof(ff_aac_codebook_vector_idx[i][0]), |
| INIT_VLC_STATIC_OVERLONG); |
| offset += vlc_spectral[i].table_size; |
| } |
| |
| AAC_RENAME(ff_aac_sbr_init)(); |
| |
| ff_aac_tableinit(); |
| |
| INIT_VLC_STATIC(&vlc_scalefactors, 7, |
| FF_ARRAY_ELEMS(ff_aac_scalefactor_code), |
| ff_aac_scalefactor_bits, |
| sizeof(ff_aac_scalefactor_bits[0]), |
| sizeof(ff_aac_scalefactor_bits[0]), |
| ff_aac_scalefactor_code, |
| sizeof(ff_aac_scalefactor_code[0]), |
| sizeof(ff_aac_scalefactor_code[0]), |
| 352); |
| |
| // window initialization |
| #if !USE_FIXED |
| AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_long_960), 4.0, 960); |
| AAC_RENAME(ff_kbd_window_init)(AAC_RENAME(aac_kbd_short_120), 6.0, 120); |
| AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_960), 960); |
| AAC_RENAME(ff_sine_window_init)(AAC_RENAME(sine_120), 120); |
| ff_aac_float_common_init(); |
| #else |
| AAC_RENAME(ff_kbd_window_init)(AAC_KBD_RENAME(kbd_long_1024), 4.0, 1024); |
| AAC_RENAME(ff_kbd_window_init)(AAC_KBD_RENAME(kbd_short_128), 6.0, 128); |
| AAC_RENAME(ff_init_ff_sine_windows)(10); |
| AAC_RENAME(ff_init_ff_sine_windows)( 7); |
| #endif |
| AAC_RENAME(ff_init_ff_sine_windows)( 9); |
| |
| AAC_RENAME(ff_cbrt_tableinit)(); |
| } |
| |
| static AVOnce aac_table_init = AV_ONCE_INIT; |
| |
| static av_cold int aac_decode_init(AVCodecContext *avctx) |
| { |
| AACContext *ac = avctx->priv_data; |
| int ret; |
| |
| if (avctx->sample_rate > 96000) |
| return AVERROR_INVALIDDATA; |
| |
| ret = ff_thread_once(&aac_table_init, &aac_static_table_init); |
| if (ret != 0) |
| return AVERROR_UNKNOWN; |
| |
| ac->avctx = avctx; |
| ac->oc[1].m4ac.sample_rate = avctx->sample_rate; |
| |
| aacdec_init(ac); |
| #if USE_FIXED |
| avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
| #else |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| #endif /* USE_FIXED */ |
| |
| if (avctx->extradata_size > 0) { |
| if ((ret = decode_audio_specific_config(ac, ac->avctx, &ac->oc[1].m4ac, |
| avctx->extradata, |
| avctx->extradata_size * 8LL, |
| 1)) < 0) |
| return ret; |
| } else { |
| int sr, i; |
| uint8_t layout_map[MAX_ELEM_ID*4][3]; |
| int layout_map_tags; |
| |
| sr = sample_rate_idx(avctx->sample_rate); |
| ac->oc[1].m4ac.sampling_index = sr; |
| ac->oc[1].m4ac.channels = avctx->channels; |
| ac->oc[1].m4ac.sbr = -1; |
| ac->oc[1].m4ac.ps = -1; |
| |
| for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++) |
| if (ff_mpeg4audio_channels[i] == avctx->channels) |
| break; |
| if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) { |
| i = 0; |
| } |
| ac->oc[1].m4ac.chan_config = i; |
| |
| if (ac->oc[1].m4ac.chan_config) { |
| int ret = set_default_channel_config(ac, avctx, layout_map, |
| &layout_map_tags, ac->oc[1].m4ac.chan_config); |
| if (!ret) |
| output_configure(ac, layout_map, layout_map_tags, |
| OC_GLOBAL_HDR, 0); |
| else if (avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| if (avctx->channels > MAX_CHANNELS) { |
| av_log(avctx, AV_LOG_ERROR, "Too many channels\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| #if USE_FIXED |
| ac->fdsp = avpriv_alloc_fixed_dsp(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
| #else |
| ac->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
| #endif /* USE_FIXED */ |
| if (!ac->fdsp) { |
| return AVERROR(ENOMEM); |
| } |
| |
| ac->random_state = 0x1f2e3d4c; |
| |
| AAC_RENAME_32(ff_mdct_init)(&ac->mdct, 11, 1, 1.0 / RANGE15(1024.0)); |
| AAC_RENAME_32(ff_mdct_init)(&ac->mdct_ld, 10, 1, 1.0 / RANGE15(512.0)); |
| AAC_RENAME_32(ff_mdct_init)(&ac->mdct_small, 8, 1, 1.0 / RANGE15(128.0)); |
| AAC_RENAME_32(ff_mdct_init)(&ac->mdct_ltp, 11, 0, RANGE15(-2.0)); |
| #if !USE_FIXED |
| ret = ff_mdct15_init(&ac->mdct120, 1, 3, 1.0f/(16*1024*120*2)); |
| if (ret < 0) |
| return ret; |
| ret = ff_mdct15_init(&ac->mdct480, 1, 5, 1.0f/(16*1024*960)); |
| if (ret < 0) |
| return ret; |
| ret = ff_mdct15_init(&ac->mdct960, 1, 6, 1.0f/(16*1024*960*2)); |
| if (ret < 0) |
| return ret; |
| #endif |
| |
| return 0; |
| } |
| |
| /** |
| * Skip data_stream_element; reference: table 4.10. |
| */ |
| static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) |
| { |
| int byte_align = get_bits1(gb); |
| int count = get_bits(gb, 8); |
| if (count == 255) |
| count += get_bits(gb, 8); |
| if (byte_align) |
| align_get_bits(gb); |
| |
| if (get_bits_left(gb) < 8 * count) { |
| av_log(ac->avctx, AV_LOG_ERROR, "skip_data_stream_element: "overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits_long(gb, 8 * count); |
| return 0; |
| } |
| |
| static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, |
| GetBitContext *gb) |
| { |
| int sfb; |
| if (get_bits1(gb)) { |
| ics->predictor_reset_group = get_bits(gb, 5); |
| if (ics->predictor_reset_group == 0 || |
| ics->predictor_reset_group > 30) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Invalid Predictor Reset Group.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]); sfb++) { |
| ics->prediction_used[sfb] = get_bits1(gb); |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Long Term Prediction data; reference: table 4.xx. |
| */ |
| static void decode_ltp(LongTermPrediction *ltp, |
| GetBitContext *gb, uint8_t max_sfb) |
| { |
| int sfb; |
| |
| ltp->lag = get_bits(gb, 11); |
| ltp->coef = ltp_coef[get_bits(gb, 3)]; |
| for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++) |
| ltp->used[sfb] = get_bits1(gb); |
| } |
| |
| /** |
| * Decode Individual Channel Stream info; reference: table 4.6. |
| */ |
| static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, |
| GetBitContext *gb) |
| { |
| const MPEG4AudioConfig *const m4ac = &ac->oc[1].m4ac; |
| const int aot = m4ac->object_type; |
| const int sampling_index = m4ac->sampling_index; |
| int ret_fail = AVERROR_INVALIDDATA; |
| |
| if (aot != AOT_ER_AAC_ELD) { |
| if (get_bits1(gb)) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n"); |
| if (ac->avctx->err_recognition & AV_EF_BITSTREAM) |
| return AVERROR_INVALIDDATA; |
| } |
| ics->window_sequence[1] = ics->window_sequence[0]; |
| ics->window_sequence[0] = get_bits(gb, 2); |
| if (aot == AOT_ER_AAC_LD && |
| ics->window_sequence[0] != ONLY_LONG_SEQUENCE) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "AAC LD is only defined for ONLY_LONG_SEQUENCE but " |
| "window sequence %d found.\n", ics->window_sequence[0]); |
| ics->window_sequence[0] = ONLY_LONG_SEQUENCE; |
| return AVERROR_INVALIDDATA; |
| } |
| ics->use_kb_window[1] = ics->use_kb_window[0]; |
| ics->use_kb_window[0] = get_bits1(gb); |
| } |
| ics->num_window_groups = 1; |
| ics->group_len[0] = 1; |
| if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
| int i; |
| ics->max_sfb = get_bits(gb, 4); |
| for (i = 0; i < 7; i++) { |
| if (get_bits1(gb)) { |
| ics->group_len[ics->num_window_groups - 1]++; |
| } else { |
| ics->num_window_groups++; |
| ics->group_len[ics->num_window_groups - 1] = 1; |
| } |
| } |
| ics->num_windows = 8; |
| if (m4ac->frame_length_short) { |
| ics->swb_offset = ff_swb_offset_120[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_120[sampling_index]; |
| } else { |
| ics->swb_offset = ff_swb_offset_128[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_128[sampling_index]; |
| } |
| ics->tns_max_bands = ff_tns_max_bands_128[sampling_index]; |
| ics->predictor_present = 0; |
| } else { |
| ics->max_sfb = get_bits(gb, 6); |
| ics->num_windows = 1; |
| if (aot == AOT_ER_AAC_LD || aot == AOT_ER_AAC_ELD) { |
| if (m4ac->frame_length_short) { |
| ics->swb_offset = ff_swb_offset_480[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_480[sampling_index]; |
| ics->tns_max_bands = ff_tns_max_bands_480[sampling_index]; |
| } else { |
| ics->swb_offset = ff_swb_offset_512[sampling_index]; |
| ics->num_swb = ff_aac_num_swb_512[sampling_index]; |
| ics->tns_max_bands = ff_tns_max_bands_512[sampling_index]; |
| } |
| if (!ics->num_swb || !ics->swb_offset) { |
| ret_fail = AVERROR_BUG; |
| goto fail; |
| } |
| } else { |
| if (m4ac->frame_length_short) { |
| ics->num_swb = ff_aac_num_swb_960[sampling_index]; |
| ics->swb_offset = ff_swb_offset_960[sampling_index]; |
| } else { |
| ics->num_swb = ff_aac_num_swb_1024[sampling_index]; |
| ics->swb_offset = ff_swb_offset_1024[sampling_index]; |
| } |
| ics->tns_max_bands = ff_tns_max_bands_1024[sampling_index]; |
| } |
| if (aot != AOT_ER_AAC_ELD) { |
| ics->predictor_present = get_bits1(gb); |
| ics->predictor_reset_group = 0; |
| } |
| if (ics->predictor_present) { |
| if (aot == AOT_AAC_MAIN) { |
| if (decode_prediction(ac, ics, gb)) { |
| goto fail; |
| } |
| } else if (aot == AOT_AAC_LC || |
| aot == AOT_ER_AAC_LC) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Prediction is not allowed in AAC-LC.\n"); |
| goto fail; |
| } else { |
| if (aot == AOT_ER_AAC_LD) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "LTP in ER AAC LD not yet implemented.\n"); |
| ret_fail = AVERROR_PATCHWELCOME; |
| goto fail; |
| } |
| if ((ics->ltp.present = get_bits(gb, 1))) |
| decode_ltp(&ics->ltp, gb, ics->max_sfb); |
| } |
| } |
| } |
| |
| if (ics->max_sfb > ics->num_swb) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Number of scalefactor bands in group (%d) " |
| "exceeds limit (%d).\n", |
| ics->max_sfb, ics->num_swb); |
| goto fail; |
| } |
| |
| return 0; |
| fail: |
| ics->max_sfb = 0; |
| return ret_fail; |
| } |
| |
| /** |
| * Decode band types (section_data payload); reference: table 4.46. |
| * |
| * @param band_type array of the used band type |
| * @param band_type_run_end array of the last scalefactor band of a band type run |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_band_types(AACContext *ac, enum BandType band_type[120], |
| int band_type_run_end[120], GetBitContext *gb, |
| IndividualChannelStream *ics) |
| { |
| int g, idx = 0; |
| const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
| for (g = 0; g < ics->num_window_groups; g++) { |
| int k = 0; |
| while (k < ics->max_sfb) { |
| uint8_t sect_end = k; |
| int sect_len_incr; |
| int sect_band_type = get_bits(gb, 4); |
| if (sect_band_type == 12) { |
| av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| do { |
| sect_len_incr = get_bits(gb, bits); |
| sect_end += sect_len_incr; |
| if (get_bits_left(gb) < 0) { |
| av_log(ac->avctx, AV_LOG_ERROR, "decode_band_types: "overread_err); |
| return AVERROR_INVALIDDATA; |
| } |
| if (sect_end > ics->max_sfb) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Number of bands (%d) exceeds limit (%d).\n", |
| sect_end, ics->max_sfb); |
| return AVERROR_INVALIDDATA; |
| } |
| } while (sect_len_incr == (1 << bits) - 1); |
| for (; k < sect_end; k++) { |
| band_type [idx] = sect_band_type; |
| band_type_run_end[idx++] = sect_end; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode scalefactors; reference: table 4.47. |
| * |
| * @param global_gain first scalefactor value as scalefactors are differentially coded |
| * @param band_type array of the used band type |
| * @param band_type_run_end array of the last scalefactor band of a band type run |
| * @param sf array of scalefactors or intensity stereo positions |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_scalefactors(AACContext *ac, INTFLOAT sf[120], GetBitContext *gb, |
| unsigned int global_gain, |
| IndividualChannelStream *ics, |
| enum BandType band_type[120], |
| int band_type_run_end[120]) |
| { |
| int g, i, idx = 0; |
| int offset[3] = { global_gain, global_gain - NOISE_OFFSET, 0 }; |
| int clipped_offset; |
| int noise_flag = 1; |
| for (g = 0; g < ics->num_window_groups; g++) { |
| for (i = 0; i < ics->max_sfb;) { |
| int run_end = band_type_run_end[idx]; |
| if (band_type[idx] == ZERO_BT) { |
| for (; i < run_end; i++, idx++) |
| sf[idx] = FIXR(0.); |
| } else if ((band_type[idx] == INTENSITY_BT) || |
| (band_type[idx] == INTENSITY_BT2)) { |
| for (; i < run_end; i++, idx++) { |
| offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
| clipped_offset = av_clip(offset[2], -155, 100); |
| if (offset[2] != clipped_offset) { |
| avpriv_request_sample(ac->avctx, |
| "If you heard an audible artifact, there may be a bug in the decoder. " |
| "Clipped intensity stereo position (%d -> %d)", |
| offset[2], clipped_offset); |
| } |
| #if USE_FIXED |
| sf[idx] = 100 - clipped_offset; |
| #else |
| sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO]; |
| #endif /* USE_FIXED */ |
| } |
| } else if (band_type[idx] == NOISE_BT) { |
| for (; i < run_end; i++, idx++) { |
| if (noise_flag-- > 0) |
| offset[1] += get_bits(gb, NOISE_PRE_BITS) - NOISE_PRE; |
| else |
| offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
| clipped_offset = av_clip(offset[1], -100, 155); |
| if (offset[1] != clipped_offset) { |
| avpriv_request_sample(ac->avctx, |
| "If you heard an audible artifact, there may be a bug in the decoder. " |
| "Clipped noise gain (%d -> %d)", |
| offset[1], clipped_offset); |
| } |
| #if USE_FIXED |
| sf[idx] = -(100 + clipped_offset); |
| #else |
| sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO]; |
| #endif /* USE_FIXED */ |
| } |
| } else { |
| for (; i < run_end; i++, idx++) { |
| offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - SCALE_DIFF_ZERO; |
| if (offset[0] > 255U) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Scalefactor (%d) out of range.\n", offset[0]); |
| return AVERROR_INVALIDDATA; |
| } |
| #if USE_FIXED |
| sf[idx] = -offset[0]; |
| #else |
| sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO]; |
| #endif /* USE_FIXED */ |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode pulse data; reference: table 4.7. |
| */ |
| static int decode_pulses(Pulse *pulse, GetBitContext *gb, |
| const uint16_t *swb_offset, int num_swb) |
| { |
| int i, pulse_swb; |
| pulse->num_pulse = get_bits(gb, 2) + 1; |
| pulse_swb = get_bits(gb, 6); |
| if (pulse_swb >= num_swb) |
| return -1; |
| pulse->pos[0] = swb_offset[pulse_swb]; |
| pulse->pos[0] += get_bits(gb, 5); |
| if (pulse->pos[0] >= swb_offset[num_swb]) |
| return -1; |
| pulse->amp[0] = get_bits(gb, 4); |
| for (i = 1; i < pulse->num_pulse; i++) { |
| pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; |
| if (pulse->pos[i] >= swb_offset[num_swb]) |
| return -1; |
| pulse->amp[i] = get_bits(gb, 4); |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Temporal Noise Shaping data; reference: table 4.48. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, |
| GetBitContext *gb, const IndividualChannelStream *ics) |
| { |
| int w, filt, i, coef_len, coef_res, coef_compress; |
| const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
| const int tns_max_order = is8 ? 7 : ac->oc[1].m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
| for (w = 0; w < ics->num_windows; w++) { |
| if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
| coef_res = get_bits1(gb); |
| |
| for (filt = 0; filt < tns->n_filt[w]; filt++) { |
| int tmp2_idx; |
| tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); |
| |
| if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "TNS filter order %d is greater than maximum %d.\n", |
| tns->order[w][filt], tns_max_order); |
| tns->order[w][filt] = 0; |
| return AVERROR_INVALIDDATA; |
| } |
| if (tns->order[w][filt]) { |
| tns->direction[w][filt] = get_bits1(gb); |
| coef_compress = get_bits1(gb); |
| coef_len = coef_res + 3 - coef_compress; |
| tmp2_idx = 2 * coef_compress + coef_res; |
| |
| for (i = 0; i < tns->order[w][filt]; i++) |
| tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Decode Mid/Side data; reference: table 4.54. |
| * |
| * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
| * [1] mask is decoded from bitstream; [2] mask is all 1s; |
| * [3] reserved for scalable AAC |
| */ |
| static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, |
| int ms_present) |
| { |
| int idx; |
| int max_idx = cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; |
| if (ms_present == 1) { |
| for (idx = 0; idx < max_idx; idx++) |
| cpe->ms_mask[idx] = get_bits1(gb); |
| } else if (ms_present == 2) { |
| memset(cpe->ms_mask, 1, max_idx * sizeof(cpe->ms_mask[0])); |
| } |
| } |
| |
| /** |
| * Decode spectral data; reference: table 4.50. |
| * Dequantize and scale spectral data; reference: 4.6.3.3. |
| * |
| * @param coef array of dequantized, scaled spectral data |
| * @param sf array of scalefactors or intensity stereo positions |
| * @param pulse_present set if pulses are present |
| * @param pulse pointer to pulse data struct |
| * @param band_type array of the used band type |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_spectrum_and_dequant(AACContext *ac, INTFLOAT coef[1024], |
| GetBitContext *gb, const INTFLOAT sf[120], |
| int pulse_present, const Pulse *pulse, |
| const IndividualChannelStream *ics, |
| enum BandType band_type[120]) |
| { |
| int i, k, g, idx = 0; |
| const int c = 1024 / ics->num_windows; |
| const uint16_t *offsets = ics->swb_offset; |
| INTFLOAT *coef_base = coef; |
| |
| for (g = 0; g < ics->num_windows; g++) |
| memset(coef + g * 128 + offsets[ics->max_sfb], 0, |
| sizeof(INTFLOAT) * (c - offsets[ics->max_sfb])); |
| |
| for (g = 0; g < ics->num_window_groups; g++) { |
| unsigned g_len = ics->group_len[g]; |
| |
| for (i = 0; i < ics->max_sfb; i++, idx++) { |
| const unsigned cbt_m1 = band_type[idx] - 1; |
| INTFLOAT *cfo = coef + offsets[i]; |
| int off_len = offsets[i + 1] - offsets[i]; |
| int group; |
| |
| if (cbt_m1 >= INTENSITY_BT2 - 1) { |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| memset(cfo, 0, off_len * sizeof(*cfo)); |
| } |
| } else if (cbt_m1 == NOISE_BT - 1) { |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| INTFLOAT band_energy; |
| #if USE_FIXED |
| for (k = 0; k < off_len; k++) { |
| ac->random_state = lcg_random(ac->random_state); |
| cfo[k] = ac->random_state >> 3; |
| } |
| |
| band_energy = ac->fdsp->scalarproduct_fixed(cfo, cfo, off_len); |
| band_energy = fixed_sqrt(band_energy, 31); |
| noise_scale(cfo, sf[idx], band_energy, off_len); |
| #else |
| float scale; |
| |
| for (k = 0; k < off_len; k++) { |
| ac->random_state = lcg_random(ac->random_state); |
| cfo[k] = ac->random_state; |
| } |
| |
| band_energy = ac->fdsp->scalarproduct_float(cfo, cfo, off_len); |
| scale = sf[idx] / sqrtf(band_energy); |
| ac->fdsp->vector_fmul_scalar(cfo, cfo, scale, off_len); |
| #endif /* USE_FIXED */ |
| } |
| } else { |
| #if !USE_FIXED |
| const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; |
| #endif /* !USE_FIXED */ |
| VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table; |
| OPEN_READER(re, gb); |
| |
| switch (cbt_m1 >> 1) { |
| case 0: |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| INTFLOAT *cf = cfo; |
| int len = off_len; |
| |
| do { |
| int code; |
| unsigned cb_idx; |
| |
| UPDATE_CACHE(re, gb); |
| GET_VLC(code, re, gb, vlc_tab, 8, 2); |
| cb_idx = code; |
| #if USE_FIXED |
| cf = DEC_SQUAD(cf, cb_idx); |
| #else |
| cf = VMUL4(cf, vq, cb_idx, sf + idx); |
| #endif /* USE_FIXED */ |
| } while (len -= 4); |
| } |
| break; |
| |
| case 1: |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| INTFLOAT *cf = cfo; |
| int len = off_len; |
| |
| do { |
| int code; |
| unsigned nnz; |
| unsigned cb_idx; |
| uint32_t bits; |
| |
| UPDATE_CACHE(re, gb); |
| GET_VLC(code, re, gb, vlc_tab, 8, 2); |
| cb_idx = code; |
| nnz = cb_idx >> 8 & 15; |
| bits = nnz ? GET_CACHE(re, gb) : 0; |
| LAST_SKIP_BITS(re, gb, nnz); |
| #if USE_FIXED |
| cf = DEC_UQUAD(cf, cb_idx, bits); |
| #else |
| cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); |
| #endif /* USE_FIXED */ |
| } while (len -= 4); |
| } |
| break; |
| |
| case 2: |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| INTFLOAT *cf = cfo; |
| int len = off_len; |
| |
| do { |
| int code; |
| unsigned cb_idx; |
| |
| UPDATE_CACHE(re, gb); |
| GET_VLC(code, re, gb, vlc_tab, 8, 2); |
| cb_idx = code; |
| #if USE_FIXED |
| cf = DEC_SPAIR(cf, cb_idx); |
| #else |
| cf = VMUL2(cf, vq, cb_idx, sf + idx); |
| #endif /* USE_FIXED */ |
| } while (len -= 2); |
| } |
| break; |
| |
| case 3: |
| case 4: |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| INTFLOAT *cf = cfo; |
| int len = off_len; |
| |
| do { |
| int code; |
| unsigned nnz; |
| unsigned cb_idx; |
| unsigned sign; |
| |
| UPDATE_CACHE(re, gb); |
| GET_VLC(code, re, gb, vlc_tab, 8, 2); |
| cb_idx = code; |
| nnz = cb_idx >> 8 & 15; |
| sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0; |
| LAST_SKIP_BITS(re, gb, nnz); |
| #if USE_FIXED |
| cf = DEC_UPAIR(cf, cb_idx, sign); |
| #else |
| cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); |
| #endif /* USE_FIXED */ |
| } while (len -= 2); |
| } |
| break; |
| |
| default: |
| for (group = 0; group < (AAC_SIGNE)g_len; group++, cfo+=128) { |
| #if USE_FIXED |
| int *icf = cfo; |
| int v; |
| #else |
| float *cf = cfo; |
| uint32_t *icf = (uint32_t *) cf; |
| #endif /* USE_FIXED */ |
| int len = off_len; |
| |
| do { |
| int code; |
| unsigned nzt, nnz; |
| unsigned cb_idx; |
| uint32_t bits; |
| int j; |
| |
| UPDATE_CACHE(re, gb); |
| GET_VLC(code, re, gb, vlc_tab, 8, 2); |
| cb_idx = code; |
| |
| if (cb_idx == 0x0000) { |
| *icf++ = 0; |
| *icf++ = 0; |
| continue; |
| } |
| |
| nnz = cb_idx >> 12; |
| nzt = cb_idx >> 8; |
| bits = SHOW_UBITS(re, gb, nnz) << (32-nnz); |
| LAST_SKIP_BITS(re, gb, nnz); |
| |
| for (j = 0; j < 2; j++) { |
| if (nzt & 1<<j) { |
| uint32_t b; |
| int n; |
| /* The total length of escape_sequence must be < 22 bits according |
| to the specification (i.e. max is 111111110xxxxxxxxxxxx). */ |
| UPDATE_CACHE(re, gb); |
| b = GET_CACHE(re, gb); |
| b = 31 - av_log2(~b); |
| |
| if (b > 8) { |
| av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| SKIP_BITS(re, gb, b + 1); |
| b += 4; |
| n = (1 << b) + SHOW_UBITS(re, gb, b); |
| LAST_SKIP_BITS(re, gb, b); |
| #if USE_FIXED |
| v = n; |
| if (bits & 1U<<31) |
| v = -v; |
| *icf++ = v; |
| #else |
| *icf++ = ff_cbrt_tab[n] | (bits & 1U<<31); |
| #endif /* USE_FIXED */ |
| bits <<= 1; |
| } else { |
| #if USE_FIXED |
| v = cb_idx & 15; |
| if (bits & 1U<<31) |
| v = -v; |
| *icf++ = v; |
| #else |
| unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; |
| *icf++ = (bits & 1U<<31) | v; |
| #endif /* USE_FIXED */ |
| bits <<= !!v; |
| } |
| cb_idx >>= 4; |
| } |
| } while (len -= 2); |
| #if !USE_FIXED |
| ac->fdsp->vector_fmul_scalar(cfo, cfo, sf[idx], off_len); |
| #endif /* !USE_FIXED */ |
| } |
| } |
| |
| CLOSE_READER(re, gb); |
| } |
| } |
| coef += g_len << 7; |
| } |
| |
| if (pulse_present) { |
| idx = 0; |
| for (i = 0; i < pulse->num_pulse; i++) { |
| INTFLOAT co = coef_base[ pulse->pos[i] ]; |
| while (offsets[idx + 1] <= pulse->pos[i]) |
| idx++; |
| if (band_type[idx] != NOISE_BT && sf[idx]) { |
| INTFLOAT ico = -pulse->amp[i]; |
| #if USE_FIXED |
| if (co) { |
| ico = co + (co > 0 ? -ico : ico); |
| } |
| coef_base[ pulse->pos[i] ] = ico; |
| #else |
| if (co) { |
| co /= sf[idx]; |
| ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico); |
| } |
| coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; |
| #endif /* USE_FIXED */ |
| } |
| } |
| } |
| #if USE_FIXED |
| coef = coef_base; |
| idx = 0; |
| for (g = 0; g < ics->num_window_groups; g++) { |
| unsigned g_len = ics->group_len[g]; |
| |
| for (i = 0; i < ics->max_sfb; i++, idx++) { |
| const unsigned cbt_m1 = band_type[idx] - 1; |
| int *cfo = coef + offsets[i]; |
| int off_len = offsets[i + 1] - offsets[i]; |
| int group; |
| |
| if (cbt_m1 < NOISE_BT - 1) { |
| for (group = 0; group < (int)g_len; group++, cfo+=128) { |
| ac->vector_pow43(cfo, off_len); |
| ac->subband_scale(cfo, cfo, sf[idx], 34, off_len, ac->avctx); |
| } |
| } |
| } |
| coef += g_len << 7; |
| } |
| #endif /* USE_FIXED */ |
| return 0; |
| } |
| |
| /** |
| * Apply AAC-Main style frequency domain prediction. |
| */ |
| static void apply_prediction(AACContext *ac, SingleChannelElement *sce) |
| { |
| int sfb, k; |
| |
| if (!sce->ics.predictor_initialized) { |
| reset_all_predictors(sce->predictor_state); |
| sce->ics.predictor_initialized = 1; |
| } |
| |
| if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
| for (sfb = 0; |
| sfb < ff_aac_pred_sfb_max[ac->oc[1].m4ac.sampling_index]; |
| sfb++) { |
| for (k = sce->ics.swb_offset[sfb]; |
| k < sce->ics.swb_offset[sfb + 1]; |
| k++) { |
| predict(&sce->predictor_state[k], &sce->coeffs[k], |
| sce->ics.predictor_present && |
| sce->ics.prediction_used[sfb]); |
| } |
| } |
| if (sce->ics.predictor_reset_group) |
| reset_predictor_group(sce->predictor_state, |
| sce->ics.predictor_reset_group); |
| } else |
| reset_all_predictors(sce->predictor_state); |
| } |
| |
| static void decode_gain_control(SingleChannelElement * sce, GetBitContext * gb) |
| { |
| // wd_num, wd_test, aloc_size |
| static const uint8_t gain_mode[4][3] = { |
| {1, 0, 5}, // ONLY_LONG_SEQUENCE = 0, |
| {2, 1, 2}, // LONG_START_SEQUENCE, |
| {8, 0, 2}, // EIGHT_SHORT_SEQUENCE, |
| {2, 1, 5}, // LONG_STOP_SEQUENCE |
| }; |
| |
| const int mode = sce->ics.window_sequence[0]; |
| uint8_t bd, wd, ad; |
| |
| // FIXME: Store the gain control data on |sce| and do something with it. |
| uint8_t max_band = get_bits(gb, 2); |
| for (bd = 0; bd < max_band; bd++) { |
| for (wd = 0; wd < gain_mode[mode][0]; wd++) { |
| uint8_t adjust_num = get_bits(gb, 3); |
| for (ad = 0; ad < adjust_num; ad++) { |
| skip_bits(gb, 4 + ((wd == 0 && gain_mode[mode][1]) |
| ? 4 |
| : gain_mode[mode][2])); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Decode an individual_channel_stream payload; reference: table 4.44. |
| * |
| * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information. |
| * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.) |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_ics(AACContext *ac, SingleChannelElement *sce, |
| GetBitContext *gb, int common_window, int scale_flag) |
| { |
| Pulse pulse; |
| TemporalNoiseShaping *tns = &sce->tns; |
| IndividualChannelStream *ics = &sce->ics; |
| INTFLOAT *out = sce->coeffs; |
| int global_gain, eld_syntax, er_syntax, pulse_present = 0; |
| int ret; |
| |
| eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| er_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_LC || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_LTP || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_LD || |
| ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| |
| /* This assignment is to silence a GCC warning about the variable being used |
| * uninitialized when in fact it always is. |
| */ |
| pulse.num_pulse = 0; |
| |
| global_gain = get_bits(gb, 8); |
| |
| if (!common_window && !scale_flag) { |
| ret = decode_ics_info(ac, ics, gb); |
| if (ret < 0) |
| goto fail; |
| } |
| |
| if ((ret = decode_band_types(ac, sce->band_type, |
| sce->band_type_run_end, gb, ics)) < 0) |
| goto fail; |
| if ((ret = decode_scalefactors(ac, sce->sf, gb, global_gain, ics, |
| sce->band_type, sce->band_type_run_end)) < 0) |
| goto fail; |
| |
| pulse_present = 0; |
| if (!scale_flag) { |
| if (!eld_syntax && (pulse_present = get_bits1(gb))) { |
| if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Pulse tool not allowed in eight short sequence.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) { |
| av_log(ac->avctx, AV_LOG_ERROR, |
| "Pulse data corrupt or invalid.\n"); |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| } |
| tns->present = get_bits1(gb); |
| if (tns->present && !er_syntax) { |
| ret = decode_tns(ac, tns, gb, ics); |
| if (ret < 0) |
| goto fail; |
| } |
| if (!eld_syntax && get_bits1(gb)) { |
| decode_gain_control(sce, gb); |
| if (!ac->warned_gain_control) { |
| avpriv_report_missing_feature(ac->avctx, "Gain control"); |
| ac->warned_gain_control = 1; |
| } |
| } |
| // I see no textual basis in the spec for this occurring after SSR gain |
| // control, but this is what both reference and real implmentations do |
| if (tns->present && er_syntax) { |
| ret = decode_tns(ac, tns, gb, ics); |
| if (ret < 0) |
| goto fail; |
| } |
| } |
| |
| ret = decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, |
| &pulse, ics, sce->band_type); |
| if (ret < 0) |
| goto fail; |
| |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN && !common_window) |
| apply_prediction(ac, sce); |
| |
| return 0; |
| fail: |
| tns->present = 0; |
| return ret; |
| } |
| |
| /** |
| * Mid/Side stereo decoding; reference: 4.6.8.1.3. |
| */ |
| static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) |
| { |
| const IndividualChannelStream *ics = &cpe->ch[0].ics; |
| INTFLOAT *ch0 = cpe->ch[0].coeffs; |
| INTFLOAT *ch1 = cpe->ch[1].coeffs; |
| int g, i, group, idx = 0; |
| const uint16_t *offsets = ics->swb_offset; |
| for (g = 0; g < ics->num_window_groups; g++) { |
| for (i = 0; i < ics->max_sfb; i++, idx++) { |
| if (cpe->ms_mask[idx] && |
| cpe->ch[0].band_type[idx] < NOISE_BT && |
| cpe->ch[1].band_type[idx] < NOISE_BT) { |
| #if USE_FIXED |
| for (group = 0; group < ics->group_len[g]; group++) { |
| ac->fdsp->butterflies_fixed(ch0 + group * 128 + offsets[i], |
| ch1 + group * 128 + offsets[i], |
| offsets[i+1] - offsets[i]); |
| #else |
| for (group = 0; group < ics->group_len[g]; group++) { |
| ac->fdsp->butterflies_float(ch0 + group * 128 + offsets[i], |
| ch1 + group * 128 + offsets[i], |
| offsets[i+1] - offsets[i]); |
| #endif /* USE_FIXED */ |
| } |
| } |
| } |
| ch0 += ics->group_len[g] * 128; |
| ch1 += ics->group_len[g] * 128; |
| } |
| } |
| |
| /** |
| * intensity stereo decoding; reference: 4.6.8.2.3 |
| * |
| * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s; |
| * [1] mask is decoded from bitstream; [2] mask is all 1s; |
| * [3] reserved for scalable AAC |
| */ |
| static void apply_intensity_stereo(AACContext *ac, |
| ChannelElement *cpe, int ms_present) |
| { |
| const IndividualChannelStream *ics = &cpe->ch[1].ics; |
| SingleChannelElement *sce1 = &cpe->ch[1]; |
| INTFLOAT *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; |
| const uint16_t *offsets = ics->swb_offset; |
| int g, group, i, idx = 0; |
| int c; |
| INTFLOAT scale; |
| for (g = 0; g < ics->num_window_groups; g++) { |
| for (i = 0; i < ics->max_sfb;) { |
| if (sce1->band_type[idx] == INTENSITY_BT || |
| sce1->band_type[idx] == INTENSITY_BT2) { |
| const int bt_run_end = sce1->band_type_run_end[idx]; |
| for (; i < bt_run_end; i++, idx++) { |
| c = -1 + 2 * (sce1->band_type[idx] - 14); |
| if (ms_present) |
| c *= 1 - 2 * cpe->ms_mask[idx]; |
| scale = c * sce1->sf[idx]; |
| for (group = 0; group < ics->group_len[g]; group++) |
| #if USE_FIXED |
| ac->subband_scale(coef1 + group * 128 + offsets[i], |
| coef0 + group * 128 + offsets[i], |
| scale, |
| 23, |
| offsets[i + 1] - offsets[i] ,ac->avctx); |
| #else |
| ac->fdsp->vector_fmul_scalar(coef1 + group * 128 + offsets[i], |
| coef0 + group * 128 + offsets[i], |
| scale, |
| offsets[i + 1] - offsets[i]); |
| #endif /* USE_FIXED */ |
| } |
| } else { |
| int bt_run_end = sce1->band_type_run_end[idx]; |
| idx += bt_run_end - i; |
| i = bt_run_end; |
| } |
| } |
| coef0 += ics->group_len[g] * 128; |
| coef1 += ics->group_len[g] * 128; |
| } |
| } |
| |
| /** |
| * Decode a channel_pair_element; reference: table 4.4. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) |
| { |
| int i, ret, common_window, ms_present = 0; |
| int eld_syntax = ac->oc[1].m4ac.object_type == AOT_ER_AAC_ELD; |
| |
| common_window = eld_syntax || get_bits1(gb); |
| if (common_window) { |
| if (decode_ics_info(ac, &cpe->ch[0].ics, gb)) |
| return AVERROR_INVALIDDATA; |
| i = cpe->ch[1].ics.use_kb_window[0]; |
| cpe->ch[1].ics = cpe->ch[0].ics; |
| cpe->ch[1].ics.use_kb_window[1] = i; |
| if (cpe->ch[1].ics.predictor_present && |
| (ac->oc[1].m4ac.object_type != AOT_AAC_MAIN)) |
| if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1))) |
| decode_ltp(&cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb); |
| ms_present = get_bits(gb, 2); |
| if (ms_present == 3) { |
| av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n"); |
| return AVERROR_INVALIDDATA; |
| } else if (ms_present) |
| decode_mid_side_stereo(cpe, gb, ms_present); |
| } |
| if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
| return ret; |
| if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
| return ret; |
| |
| if (common_window) { |
| if (ms_present) |
| apply_mid_side_stereo(ac, cpe); |
| if (ac->oc[1].m4ac.object_type == AOT_AAC_MAIN) { |
| apply_prediction(ac, &cpe->ch[0]); |
| apply_prediction(ac, &cpe->ch[1]); |
| } |
| } |
| |
| apply_intensity_stereo(ac, cpe, ms_present); |
| return 0; |
| } |
| |
| static const float cce_scale[] = { |
| 1.09050773266525765921, //2^(1/8) |
| 1.18920711500272106672, //2^(1/4) |
| M_SQRT2, |
| 2, |
| }; |
| |
| /** |
| * Decode coupling_channel_element; reference: table 4.8. |
| * |
| * @return Returns error status. 0 - OK, !0 - error |
| */ |
| static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) |
| { |
| int num_gain = 0; |
| int c, g, sfb, ret; |
| int sign; |
| INTFLOAT scale; |
| SingleChannelElement *sce = &che->ch[0]; |
| ChannelCoupling *coup = &che->coup; |
| |
| coup->coupling_point = 2 * get_bits1(gb); |
| coup->num_coupled = get_bits(gb, 3); |
| for (c = 0; c <= coup->num_coupled; c++) { |
| num_gain++; |
| coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; |
| coup->id_select[c] = get_bits(gb, 4); |
| if (coup->type[c] == TYPE_CPE) { |
| coup->ch_select[c] = get_bits(gb, 2); |
| if (coup->ch_select[c] == 3) |
| num_gain++; |
| } else |
| coup->ch_select[c] = 2; |
| } |
| coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1); |
| |
| sign = get_bits(gb, 1); |
| #if USE_FIXED |
| scale = get_bits(gb, 2); |
| #else |
| scale = cce_scale[get_bits(gb, 2)]; |
| #endif |
| |
| if ((ret = decode_ics(ac, sce, gb, 0, 0))) |
| return ret; |
| |
| for (c = 0; c < num_gain; c++) { |
| int idx = 0; |
| int cge = 1; |
| int gain = 0; |
| INTFLOAT gain_cache = FIXR10(1.); |
| if (c) { |
| cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb); |
| gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; |
| gain_cache = GET_GAIN(scale, gain); |
| #if USE_FIXED |
| if ((abs(gain_cache)-1024) >> 3 > 30) |
| return AVERROR(ERANGE); |
| #endif |
| } |
| if (coup->coupling_point == AFTER_IMDCT) { |
| coup->gain[c][0] = gain_cache; |
| } else { |
| for (g = 0; g < sce->ics.num_window_groups; g++) { |
| for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { |
| if (sce->band_type[idx] != ZERO_BT) { |
| if (!cge) { |
| int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
| if (t) { |
| int s = 1; |
| t = gain += t; |
| if (sign) { |
| s -= 2 * (t & 0x1); |
| t >>= 1; |
| } |
| gain_cache = GET_GAIN(scale, t) * s; |
| #if USE_FIXED |
| if ((abs(gain_cache)-1024) >> 3 > 30) |
| return AVERROR(ERANGE); |
| #endif |
| } |
| } |
| coup->gain[c][idx] = gain_cache; |
| } |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53. |
| * |
| * @return Returns number of bytes consumed. |
| */ |
| static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, |
| GetBitContext *gb) |
| { |
| int i; |
| int num_excl_chan = 0; |
| |
| do { |
| for (i = 0; i < 7; i++) |
| che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
| } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
| |
| return num_excl_chan / 7; |
| } |
| |
| /** |
| * Decode dynamic range information; reference: table 4.52. |
| * |
| * @return Returns number of bytes consumed. |
| */ |
| static int decode_dynamic_range(DynamicRangeControl *che_drc, |
| GetBitContext *gb) |
| { |
| int n = 1; |
| int drc_num_bands = 1; |
| int i; |
| |
| /* pce_tag_present? */ |
| if (get_bits1(gb)) { |
| che_drc->pce_instance_tag = get_bits(gb, 4); |
| skip_bits(gb, 4); // tag_reserved_bits |
| n++; |
| } |
| |
| /* excluded_chns_present? */ |
| if (get_bits1(gb)) { |
| n += decode_drc_channel_exclusions(che_drc, gb); |
| } |
| |
| /* drc_bands_present? */ |
| if (get_bits1(gb)) { |
| che_drc->band_incr = get_bits(gb, 4); |
| che_drc->interpolation_scheme = get_bits(gb, 4); |
| n++; |
| drc_num_bands += che_drc->band_incr; |
| for (i = 0; i < drc_num_bands; i++) { |
| che_drc->band_top[i] = get_bits(gb, 8); |
| n++; |
| } |
| } |
| |
| /* prog_ref_level_present? */ |
| if (get_bits1(gb)) { |
| che_drc->prog_ref_level = get_bits(gb, 7); |
| skip_bits1(gb); // prog_ref_level_reserved_bits |
| n++; |
| } |
| |
| for (i = 0; i < drc_num_bands; i++) { |
| che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
| che_drc->dyn_rng_ctl[i] = get_bits(gb, 7); |
| n++; |
| } |
| |
| return n; |
| } |
| |
| static int decode_fill(AACContext *ac, GetBitContext *gb, int len) { |
| uint8_t buf[256]; |
| int i, major, minor; |
| |
| if (len < 13+7*8) |
| goto unknown; |
| |
| get_bits(gb, 13); len -= 13; |
| |
| for(i=0; i+1<sizeof(buf) && len>=8; i++, len-=8) |
| buf[i] = get_bits(gb, 8); |
| |
| buf[i] = 0; |
| if (ac->avctx->debug & FF_DEBUG_PICT_INFO) |
| av_log(ac->avctx, AV_LOG_DEBUG, "FILL:%s\n", buf); |
| |
| if (sscanf(buf, "libfaac %d.%d", &major, &minor) == 2){ |
| ac->avctx->internal->skip_samples = 1024; |
| } |
| |
| unknown: |
| skip_bits_long(gb, len); |
| |
| return 0; |
| } |
| |
| /** |
| * Decode extension data (incomplete); reference: table 4.51. |
| * |
| * @param cnt length of TYPE_FIL syntactic element in bytes |
| * |
| * @return Returns number of bytes consumed |
| */ |
| static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, |
| ChannelElement *che, enum RawDataBlockType elem_type) |
| { |
| int crc_flag = 0; |
| int res = cnt; |
| int type = get_bits(gb, 4); |
| |
| if (ac->avctx->debug & FF_DEBUG_STARTCODE) |
| av_log(ac->avctx, AV_LOG_DEBUG, "extension type: %d len:%d\n", type, cnt); |
| |
| switch (type) { // extension type |
| case EXT_SBR_DATA_CRC: |
| crc_flag++; |
| case EXT_SBR_DATA: |
| if (!che) { |
| av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n"); |
| return res; |
| } else if (ac->oc[1].m4ac.frame_length_short) { |
| if (!ac->warned_960_sbr) |
| avpriv_report_missing_feature(ac->avctx, |
| "SBR with 960 frame length"); |
| ac->warned_960_sbr = 1; |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (!ac->oc[1].m4ac.sbr) { |
| av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n"); |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (ac->oc[1].m4ac.sbr == -1 && ac->oc[1].status == OC_LOCKED) { |
| av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n"); |
| skip_bits_long(gb, 8 * cnt - 4); |
| return res; |
| } else if (ac->oc[1].m4ac.ps == -1 && ac->oc[1].status < OC_LOCKED && ac->avctx->channels == 1) { |
| ac->oc[1].m4ac.sbr = 1; |
| ac->oc[1].m4ac.ps = 1; |
| ac->avctx->profile = FF_PROFILE_AAC_HE_V2; |
| output_configure(ac, ac->oc[1].layout_map, ac->oc[1].layout_map_tags, |
| ac->oc[1].status, 1); |
| } else { |
| ac->oc[1].m4ac.sbr = 1; |
| ac->avctx->profile = FF_PROFILE_AAC_HE; |
| } |
| res = AAC_RENAME(ff_decode_sbr_extension)(ac, &che->sbr, gb, crc_flag, cnt, elem_type); |
| break; |
| case EXT_DYNAMIC_RANGE: |
| res = decode_dynamic_range(&ac->che_drc, gb); |
| break; |
| case EXT_FILL: |
| decode_fill(ac, gb, 8 * cnt - 4); |
| break; |
| case EXT_FILL_DATA: |
| case EXT_DATA_ELEMENT: |
| default: |
| skip_bits_long(gb, 8 * cnt - 4); |
| break; |
| }; |
| return res; |
| } |
| |
| /** |
| * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3. |
| * |
| * @param decode 1 if tool is used normally, 0 if tool is used in LTP. |
| * @param coef spectral coefficients |
| */ |
| static void apply_tns(INTFLOAT coef_param[1024], TemporalNoiseShaping *tns, |
| IndividualChannelStream *ics, int decode) |
| { |
| const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); |
| int w, filt, m, i; |
| int bottom, top, order, start, end, size, inc; |
| INTFLOAT lpc[TNS_MAX_ORDER]; |
| INTFLOAT tmp[TNS_MAX_ORDER+1]; |
| UINTFLOAT *coef = coef_param; |
| |
| if(!mmm) |
| return; |
| |
| for (w = 0; w < ics->num_windows; w++) { |
| bottom = ics->num_swb; |
| for (filt = 0; filt < tns->n_filt[w]; filt++) { |
| top = bottom; |
| bottom = FFMAX(0, top - tns->length[w][filt]); |
| order = tns->order[w][filt]; |
| if (order == 0) |
| continue; |
| |
| // tns_decode_coef |
| AAC_RENAME(compute_lpc_coefs)(tns->coef[w][filt], order, lpc, 0, 0, 0); |
| |
| start = ics->swb_offset[FFMIN(bottom, mmm)]; |
| end = ics->swb_offset[FFMIN( top, mmm)]; |
| if ((size = end - start) <= 0) |
| continue; |
| if (tns->direction[w][filt]) { |
| inc = -1; |
| start = end - 1; |
| } else { |
| inc = 1; |
| } |
| start += w * 128; |
| |
| if (decode) { |
| // ar filter |
| for (m = 0; m < size; m++, start += inc) |
| for (i = 1; i <= FFMIN(m, order); i++) |
| coef[start] -= AAC_MUL26((INTFLOAT)coef[start - i * inc], lpc[i - 1]); |
| } else { |
| // ma filter |
| for (m = 0; m < size; m++, start += inc) { |
| tmp[0] = coef[start]; |
| for (i = 1; i <= FFMIN(m, order); i++) |
| coef[start] += AAC_MUL26(tmp[i], lpc[i - 1]); |
| for (i = order; i > 0; i--) |
| tmp[i] = tmp[i - 1]; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Apply windowing and MDCT to obtain the spectral |
| * coefficient from the predicted sample by LTP. |
| */ |
| static void windowing_and_mdct_ltp(AACContext *ac, INTFLOAT *out, |
| INTFLOAT *in, IndividualChannelStream *ics) |
| { |
| const INTFLOAT *lwindow = ics->use_kb_window[0] ? AAC_KBD_RENAME(kbd_long_1024) : AAC_RENAME(ff_sine_1024); |
| const INTFLOAT *swindow = ics->use_kb_window[0] ? AAC_KBD_RENAME(kbd_short_128) : AAC_RENAME(ff_sine_128); |
| const INTFLOAT *lwindow_prev = ics->use_kb_window[1] ? AAC_KBD_RENAME(kbd_long_1024)
|