| /* |
| * MPEG-4 ALS decoder |
| * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * MPEG-4 ALS decoder |
| * @author Thilo Borgmann <thilo.borgmann _at_ mail.de> |
| */ |
| |
| #include <inttypes.h> |
| |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "unary.h" |
| #include "mpeg4audio.h" |
| #include "bgmc.h" |
| #include "bswapdsp.h" |
| #include "internal.h" |
| #include "mlz.h" |
| #include "libavutil/samplefmt.h" |
| #include "libavutil/crc.h" |
| #include "libavutil/softfloat_ieee754.h" |
| #include "libavutil/intfloat.h" |
| #include "libavutil/intreadwrite.h" |
| |
| #include <stdint.h> |
| |
| /** Rice parameters and corresponding index offsets for decoding the |
| * indices of scaled PARCOR values. The table chosen is set globally |
| * by the encoder and stored in ALSSpecificConfig. |
| */ |
| static const int8_t parcor_rice_table[3][20][2] = { |
| { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4}, |
| { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3}, |
| { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2}, |
| { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} }, |
| { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4}, |
| { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4}, |
| {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4}, |
| { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} }, |
| { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4}, |
| { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3}, |
| {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3}, |
| { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} } |
| }; |
| |
| |
| /** Scaled PARCOR values used for the first two PARCOR coefficients. |
| * To be indexed by the Rice coded indices. |
| * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20) |
| * Actual values are divided by 32 in order to be stored in 16 bits. |
| */ |
| static const int16_t parcor_scaled_values[] = { |
| -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32, |
| -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32, |
| -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32, |
| -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32, |
| -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32, |
| -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32, |
| -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32, |
| -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32, |
| -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32, |
| -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32, |
| -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32, |
| -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32, |
| -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32, |
| -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32, |
| -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32, |
| -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32, |
| -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32, |
| -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32, |
| -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32, |
| -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32, |
| -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32, |
| -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32, |
| -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32, |
| 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32, |
| 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32, |
| 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32, |
| 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32, |
| 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32, |
| 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32, |
| 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32, |
| 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32, |
| 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32 |
| }; |
| |
| |
| /** Gain values of p(0) for long-term prediction. |
| * To be indexed by the Rice coded indices. |
| */ |
| static const uint8_t ltp_gain_values [4][4] = { |
| { 0, 8, 16, 24}, |
| {32, 40, 48, 56}, |
| {64, 70, 76, 82}, |
| {88, 92, 96, 100} |
| }; |
| |
| |
| /** Inter-channel weighting factors for multi-channel correlation. |
| * To be indexed by the Rice coded indices. |
| */ |
| static const int16_t mcc_weightings[] = { |
| 204, 192, 179, 166, 153, 140, 128, 115, |
| 102, 89, 76, 64, 51, 38, 25, 12, |
| 0, -12, -25, -38, -51, -64, -76, -89, |
| -102, -115, -128, -140, -153, -166, -179, -192 |
| }; |
| |
| |
| /** Tail codes used in arithmetic coding using block Gilbert-Moore codes. |
| */ |
| static const uint8_t tail_code[16][6] = { |
| { 74, 44, 25, 13, 7, 3}, |
| { 68, 42, 24, 13, 7, 3}, |
| { 58, 39, 23, 13, 7, 3}, |
| {126, 70, 37, 19, 10, 5}, |
| {132, 70, 37, 20, 10, 5}, |
| {124, 70, 38, 20, 10, 5}, |
| {120, 69, 37, 20, 11, 5}, |
| {116, 67, 37, 20, 11, 5}, |
| {108, 66, 36, 20, 10, 5}, |
| {102, 62, 36, 20, 10, 5}, |
| { 88, 58, 34, 19, 10, 5}, |
| {162, 89, 49, 25, 13, 7}, |
| {156, 87, 49, 26, 14, 7}, |
| {150, 86, 47, 26, 14, 7}, |
| {142, 84, 47, 26, 14, 7}, |
| {131, 79, 46, 26, 14, 7} |
| }; |
| |
| |
| enum RA_Flag { |
| RA_FLAG_NONE, |
| RA_FLAG_FRAMES, |
| RA_FLAG_HEADER |
| }; |
| |
| |
| typedef struct ALSSpecificConfig { |
| uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown |
| int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit |
| int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer |
| int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian |
| int frame_length; ///< frame length for each frame (last frame may differ) |
| int ra_distance; ///< distance between RA frames (in frames, 0...255) |
| enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored |
| int adapt_order; ///< adaptive order: 1 = on, 0 = off |
| int coef_table; ///< table index of Rice code parameters |
| int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off |
| int max_order; ///< maximum prediction order (0..1023) |
| int block_switching; ///< number of block switching levels |
| int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only) |
| int sb_part; ///< sub-block partition |
| int joint_stereo; ///< joint stereo: 1 = on, 0 = off |
| int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off |
| int chan_config; ///< indicates that a chan_config_info field is present |
| int chan_sort; ///< channel rearrangement: 1 = on, 0 = off |
| int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off |
| int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented. |
| int *chan_pos; ///< original channel positions |
| int crc_enabled; ///< enable Cyclic Redundancy Checksum |
| } ALSSpecificConfig; |
| |
| |
| typedef struct ALSChannelData { |
| int stop_flag; |
| int master_channel; |
| int time_diff_flag; |
| int time_diff_sign; |
| int time_diff_index; |
| int weighting[6]; |
| } ALSChannelData; |
| |
| |
| typedef struct ALSDecContext { |
| AVCodecContext *avctx; |
| ALSSpecificConfig sconf; |
| GetBitContext gb; |
| BswapDSPContext bdsp; |
| const AVCRC *crc_table; |
| uint32_t crc_org; ///< CRC value of the original input data |
| uint32_t crc; ///< CRC value calculated from decoded data |
| unsigned int cur_frame_length; ///< length of the current frame to decode |
| unsigned int frame_id; ///< the frame ID / number of the current frame |
| unsigned int js_switch; ///< if true, joint-stereo decoding is enforced |
| unsigned int cs_switch; ///< if true, channel rearrangement is done |
| unsigned int num_blocks; ///< number of blocks used in the current frame |
| unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding |
| uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC |
| int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC |
| int ltp_lag_length; ///< number of bits used for ltp lag value |
| int *const_block; ///< contains const_block flags for all channels |
| unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels |
| unsigned int *opt_order; ///< contains opt_order flags for all channels |
| int *store_prev_samples; ///< contains store_prev_samples flags for all channels |
| int *use_ltp; ///< contains use_ltp flags for all channels |
| int *ltp_lag; ///< contains ltp lag values for all channels |
| int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel |
| int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter |
| int32_t **quant_cof; ///< quantized parcor coefficients for a channel |
| int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients |
| int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel |
| int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter |
| int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer |
| ALSChannelData **chan_data; ///< channel data for multi-channel correlation |
| ALSChannelData *chan_data_buffer; ///< contains channel data for all channels |
| int *reverted_channels; ///< stores a flag for each reverted channel |
| int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block |
| int32_t **raw_samples; ///< decoded raw samples for each channel |
| int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples |
| uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check |
| MLZ* mlz; ///< masked lz decompression structure |
| SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels |
| int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels |
| int *shift_value; ///< value by which the binary point is to be shifted for all channels |
| int *last_shift_value; ///< contains last shift value for all channels |
| int **raw_mantissa; ///< decoded mantissa bits of the difference signal |
| unsigned char *larray; ///< buffer to store the output of masked lz decompression |
| int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples |
| int highest_decoded_channel; |
| } ALSDecContext; |
| |
| |
| typedef struct ALSBlockData { |
| unsigned int block_length; ///< number of samples within the block |
| unsigned int ra_block; ///< if true, this is a random access block |
| int *const_block; ///< if true, this is a constant value block |
| int js_blocks; ///< true if this block contains a difference signal |
| unsigned int *shift_lsbs; ///< shift of values for this block |
| unsigned int *opt_order; ///< prediction order of this block |
| int *store_prev_samples;///< if true, carryover samples have to be stored |
| int *use_ltp; ///< if true, long-term prediction is used |
| int *ltp_lag; ///< lag value for long-term prediction |
| int *ltp_gain; ///< gain values for ltp 5-tap filter |
| int32_t *quant_cof; ///< quantized parcor coefficients |
| int32_t *lpc_cof; ///< coefficients of the direct form prediction |
| int32_t *raw_samples; ///< decoded raw samples / residuals for this block |
| int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block |
| int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair |
| } ALSBlockData; |
| |
| |
| static av_cold void dprint_specific_config(ALSDecContext *ctx) |
| { |
| #ifdef DEBUG |
| AVCodecContext *avctx = ctx->avctx; |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| |
| ff_dlog(avctx, "resolution = %i\n", sconf->resolution); |
| ff_dlog(avctx, "floating = %i\n", sconf->floating); |
| ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length); |
| ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance); |
| ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag); |
| ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order); |
| ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table); |
| ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction); |
| ff_dlog(avctx, "max_order = %i\n", sconf->max_order); |
| ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching); |
| ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc); |
| ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part); |
| ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo); |
| ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding); |
| ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config); |
| ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort); |
| ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms); |
| ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info); |
| #endif |
| } |
| |
| |
| /** Read an ALSSpecificConfig from a buffer into the output struct. |
| */ |
| static av_cold int read_specific_config(ALSDecContext *ctx) |
| { |
| GetBitContext gb; |
| uint64_t ht_size; |
| int i, config_offset; |
| MPEG4AudioConfig m4ac = {0}; |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| AVCodecContext *avctx = ctx->avctx; |
| uint32_t als_id, header_size, trailer_size; |
| int ret; |
| |
| if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0) |
| return ret; |
| |
| config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata, |
| avctx->extradata_size, 1, avctx); |
| |
| if (config_offset < 0) |
| return AVERROR_INVALIDDATA; |
| |
| skip_bits_long(&gb, config_offset); |
| |
| if (get_bits_left(&gb) < (30 << 3)) |
| return AVERROR_INVALIDDATA; |
| |
| // read the fixed items |
| als_id = get_bits_long(&gb, 32); |
| avctx->sample_rate = m4ac.sample_rate; |
| skip_bits_long(&gb, 32); // sample rate already known |
| sconf->samples = get_bits_long(&gb, 32); |
| avctx->channels = m4ac.channels; |
| skip_bits(&gb, 16); // number of channels already known |
| skip_bits(&gb, 3); // skip file_type |
| sconf->resolution = get_bits(&gb, 3); |
| sconf->floating = get_bits1(&gb); |
| sconf->msb_first = get_bits1(&gb); |
| sconf->frame_length = get_bits(&gb, 16) + 1; |
| sconf->ra_distance = get_bits(&gb, 8); |
| sconf->ra_flag = get_bits(&gb, 2); |
| sconf->adapt_order = get_bits1(&gb); |
| sconf->coef_table = get_bits(&gb, 2); |
| sconf->long_term_prediction = get_bits1(&gb); |
| sconf->max_order = get_bits(&gb, 10); |
| sconf->block_switching = get_bits(&gb, 2); |
| sconf->bgmc = get_bits1(&gb); |
| sconf->sb_part = get_bits1(&gb); |
| sconf->joint_stereo = get_bits1(&gb); |
| sconf->mc_coding = get_bits1(&gb); |
| sconf->chan_config = get_bits1(&gb); |
| sconf->chan_sort = get_bits1(&gb); |
| sconf->crc_enabled = get_bits1(&gb); |
| sconf->rlslms = get_bits1(&gb); |
| skip_bits(&gb, 5); // skip 5 reserved bits |
| skip_bits1(&gb); // skip aux_data_enabled |
| |
| |
| // check for ALSSpecificConfig struct |
| if (als_id != MKBETAG('A','L','S','\0')) |
| return AVERROR_INVALIDDATA; |
| |
| if (avctx->channels > FF_SANE_NB_CHANNELS) { |
| avpriv_request_sample(avctx, "Huge number of channels"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| ctx->cur_frame_length = sconf->frame_length; |
| |
| // read channel config |
| if (sconf->chan_config) |
| sconf->chan_config_info = get_bits(&gb, 16); |
| // TODO: use this to set avctx->channel_layout |
| |
| |
| // read channel sorting |
| if (sconf->chan_sort && avctx->channels > 1) { |
| int chan_pos_bits = av_ceil_log2(avctx->channels); |
| int bits_needed = avctx->channels * chan_pos_bits + 7; |
| if (get_bits_left(&gb) < bits_needed) |
| return AVERROR_INVALIDDATA; |
| |
| if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos)))) |
| return AVERROR(ENOMEM); |
| |
| ctx->cs_switch = 1; |
| |
| for (i = 0; i < avctx->channels; i++) { |
| sconf->chan_pos[i] = -1; |
| } |
| |
| for (i = 0; i < avctx->channels; i++) { |
| int idx; |
| |
| idx = get_bits(&gb, chan_pos_bits); |
| if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) { |
| av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n"); |
| ctx->cs_switch = 0; |
| break; |
| } |
| sconf->chan_pos[idx] = i; |
| } |
| |
| align_get_bits(&gb); |
| } |
| |
| |
| // read fixed header and trailer sizes, |
| // if size = 0xFFFFFFFF then there is no data field! |
| if (get_bits_left(&gb) < 64) |
| return AVERROR_INVALIDDATA; |
| |
| header_size = get_bits_long(&gb, 32); |
| trailer_size = get_bits_long(&gb, 32); |
| if (header_size == 0xFFFFFFFF) |
| header_size = 0; |
| if (trailer_size == 0xFFFFFFFF) |
| trailer_size = 0; |
| |
| ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3; |
| |
| |
| // skip the header and trailer data |
| if (get_bits_left(&gb) < ht_size) |
| return AVERROR_INVALIDDATA; |
| |
| if (ht_size > INT32_MAX) |
| return AVERROR_PATCHWELCOME; |
| |
| skip_bits_long(&gb, ht_size); |
| |
| |
| // initialize CRC calculation |
| if (sconf->crc_enabled) { |
| if (get_bits_left(&gb) < 32) |
| return AVERROR_INVALIDDATA; |
| |
| if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) { |
| ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE); |
| ctx->crc = 0xFFFFFFFF; |
| ctx->crc_org = ~get_bits_long(&gb, 32); |
| } else |
| skip_bits_long(&gb, 32); |
| } |
| |
| |
| // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data) |
| |
| dprint_specific_config(ctx); |
| |
| return 0; |
| } |
| |
| |
| /** Check the ALSSpecificConfig for unsupported features. |
| */ |
| static int check_specific_config(ALSDecContext *ctx) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| int error = 0; |
| |
| // report unsupported feature and set error value |
| #define MISSING_ERR(cond, str, errval) \ |
| { \ |
| if (cond) { \ |
| avpriv_report_missing_feature(ctx->avctx, \ |
| str); \ |
| error = errval; \ |
| } \ |
| } |
| |
| MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME); |
| |
| return error; |
| } |
| |
| |
| /** Parse the bs_info field to extract the block partitioning used in |
| * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2. |
| */ |
| static void parse_bs_info(const uint32_t bs_info, unsigned int n, |
| unsigned int div, unsigned int **div_blocks, |
| unsigned int *num_blocks) |
| { |
| if (n < 31 && ((bs_info << n) & 0x40000000)) { |
| // if the level is valid and the investigated bit n is set |
| // then recursively check both children at bits (2n+1) and (2n+2) |
| n *= 2; |
| div += 1; |
| parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks); |
| parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks); |
| } else { |
| // else the bit is not set or the last level has been reached |
| // (bit implicitly not set) |
| **div_blocks = div; |
| (*div_blocks)++; |
| (*num_blocks)++; |
| } |
| } |
| |
| |
| /** Read and decode a Rice codeword. |
| */ |
| static int32_t decode_rice(GetBitContext *gb, unsigned int k) |
| { |
| int max = get_bits_left(gb) - k; |
| unsigned q = get_unary(gb, 0, max); |
| int r = k ? get_bits1(gb) : !(q & 1); |
| |
| if (k > 1) { |
| q <<= (k - 1); |
| q += get_bits_long(gb, k - 1); |
| } else if (!k) { |
| q >>= 1; |
| } |
| return r ? q : ~q; |
| } |
| |
| |
| /** Convert PARCOR coefficient k to direct filter coefficient. |
| */ |
| static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof) |
| { |
| int i, j; |
| |
| for (i = 0, j = k - 1; i < j; i++, j--) { |
| unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20); |
| cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20); |
| cof[i] += tmp1; |
| } |
| if (i == j) |
| cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20); |
| |
| cof[k] = par[k]; |
| } |
| |
| |
| /** Read block switching field if necessary and set actual block sizes. |
| * Also assure that the block sizes of the last frame correspond to the |
| * actual number of samples. |
| */ |
| static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, |
| uint32_t *bs_info) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| GetBitContext *gb = &ctx->gb; |
| unsigned int *ptr_div_blocks = div_blocks; |
| unsigned int b; |
| |
| if (sconf->block_switching) { |
| unsigned int bs_info_len = 1 << (sconf->block_switching + 2); |
| *bs_info = get_bits_long(gb, bs_info_len); |
| *bs_info <<= (32 - bs_info_len); |
| } |
| |
| ctx->num_blocks = 0; |
| parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks); |
| |
| // The last frame may have an overdetermined block structure given in |
| // the bitstream. In that case the defined block structure would need |
| // more samples than available to be consistent. |
| // The block structure is actually used but the block sizes are adapted |
| // to fit the actual number of available samples. |
| // Example: 5 samples, 2nd level block sizes: 2 2 2 2. |
| // This results in the actual block sizes: 2 2 1 0. |
| // This is not specified in 14496-3 but actually done by the reference |
| // codec RM22 revision 2. |
| // This appears to happen in case of an odd number of samples in the last |
| // frame which is actually not allowed by the block length switching part |
| // of 14496-3. |
| // The ALS conformance files feature an odd number of samples in the last |
| // frame. |
| |
| for (b = 0; b < ctx->num_blocks; b++) |
| div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b]; |
| |
| if (ctx->cur_frame_length != ctx->sconf.frame_length) { |
| unsigned int remaining = ctx->cur_frame_length; |
| |
| for (b = 0; b < ctx->num_blocks; b++) { |
| if (remaining <= div_blocks[b]) { |
| div_blocks[b] = remaining; |
| ctx->num_blocks = b + 1; |
| break; |
| } |
| |
| remaining -= div_blocks[b]; |
| } |
| } |
| } |
| |
| |
| /** Read the block data for a constant block |
| */ |
| static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| AVCodecContext *avctx = ctx->avctx; |
| GetBitContext *gb = &ctx->gb; |
| |
| if (bd->block_length <= 0) |
| return AVERROR_INVALIDDATA; |
| |
| *bd->raw_samples = 0; |
| *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence) |
| bd->js_blocks = get_bits1(gb); |
| |
| // skip 5 reserved bits |
| skip_bits(gb, 5); |
| |
| if (*bd->const_block) { |
| unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample; |
| *bd->raw_samples = get_sbits_long(gb, const_val_bits); |
| } |
| |
| // ensure constant block decoding by reusing this field |
| *bd->const_block = 1; |
| |
| return 0; |
| } |
| |
| |
| /** Decode the block data for a constant block |
| */ |
| static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| int smp = bd->block_length - 1; |
| int32_t val = *bd->raw_samples; |
| int32_t *dst = bd->raw_samples + 1; |
| |
| // write raw samples into buffer |
| for (; smp; smp--) |
| *dst++ = val; |
| } |
| |
| |
| /** Read the block data for a non-constant block |
| */ |
| static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| AVCodecContext *avctx = ctx->avctx; |
| GetBitContext *gb = &ctx->gb; |
| unsigned int k; |
| unsigned int s[8]; |
| unsigned int sx[8]; |
| unsigned int sub_blocks, log2_sub_blocks, sb_length; |
| unsigned int start = 0; |
| unsigned int opt_order; |
| int sb; |
| int32_t *quant_cof = bd->quant_cof; |
| int32_t *current_res; |
| |
| |
| // ensure variable block decoding by reusing this field |
| *bd->const_block = 0; |
| |
| *bd->opt_order = 1; |
| bd->js_blocks = get_bits1(gb); |
| |
| opt_order = *bd->opt_order; |
| |
| // determine the number of subblocks for entropy decoding |
| if (!sconf->bgmc && !sconf->sb_part) { |
| log2_sub_blocks = 0; |
| } else { |
| if (sconf->bgmc && sconf->sb_part) |
| log2_sub_blocks = get_bits(gb, 2); |
| else |
| log2_sub_blocks = 2 * get_bits1(gb); |
| } |
| |
| sub_blocks = 1 << log2_sub_blocks; |
| |
| // do not continue in case of a damaged stream since |
| // block_length must be evenly divisible by sub_blocks |
| if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) { |
| av_log(avctx, AV_LOG_WARNING, |
| "Block length is not evenly divisible by the number of subblocks.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| sb_length = bd->block_length >> log2_sub_blocks; |
| |
| if (sconf->bgmc) { |
| s[0] = get_bits(gb, 8 + (sconf->resolution > 1)); |
| for (k = 1; k < sub_blocks; k++) |
| s[k] = s[k - 1] + decode_rice(gb, 2); |
| |
| for (k = 0; k < sub_blocks; k++) { |
| sx[k] = s[k] & 0x0F; |
| s [k] >>= 4; |
| } |
| } else { |
| s[0] = get_bits(gb, 4 + (sconf->resolution > 1)); |
| for (k = 1; k < sub_blocks; k++) |
| s[k] = s[k - 1] + decode_rice(gb, 0); |
| } |
| for (k = 1; k < sub_blocks; k++) |
| if (s[k] > 32) { |
| av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (get_bits1(gb)) |
| *bd->shift_lsbs = get_bits(gb, 4) + 1; |
| |
| *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs; |
| |
| |
| if (!sconf->rlslms) { |
| if (sconf->adapt_order && sconf->max_order) { |
| int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1, |
| 2, sconf->max_order + 1)); |
| *bd->opt_order = get_bits(gb, opt_order_length); |
| if (*bd->opt_order > sconf->max_order) { |
| *bd->opt_order = sconf->max_order; |
| av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } else { |
| *bd->opt_order = sconf->max_order; |
| } |
| opt_order = *bd->opt_order; |
| |
| if (opt_order) { |
| int add_base; |
| |
| if (sconf->coef_table == 3) { |
| add_base = 0x7F; |
| |
| // read coefficient 0 |
| quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)]; |
| |
| // read coefficient 1 |
| if (opt_order > 1) |
| quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)]; |
| |
| // read coefficients 2 to opt_order |
| for (k = 2; k < opt_order; k++) |
| quant_cof[k] = get_bits(gb, 7); |
| } else { |
| int k_max; |
| add_base = 1; |
| |
| // read coefficient 0 to 19 |
| k_max = FFMIN(opt_order, 20); |
| for (k = 0; k < k_max; k++) { |
| int rice_param = parcor_rice_table[sconf->coef_table][k][1]; |
| int offset = parcor_rice_table[sconf->coef_table][k][0]; |
| quant_cof[k] = decode_rice(gb, rice_param) + offset; |
| if (quant_cof[k] < -64 || quant_cof[k] > 63) { |
| av_log(avctx, AV_LOG_ERROR, |
| "quant_cof %"PRId32" is out of range.\n", |
| quant_cof[k]); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| // read coefficients 20 to 126 |
| k_max = FFMIN(opt_order, 127); |
| for (; k < k_max; k++) |
| quant_cof[k] = decode_rice(gb, 2) + (k & 1); |
| |
| // read coefficients 127 to opt_order |
| for (; k < opt_order; k++) |
| quant_cof[k] = decode_rice(gb, 1); |
| |
| quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64]; |
| |
| if (opt_order > 1) |
| quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64]; |
| } |
| |
| for (k = 2; k < opt_order; k++) |
| quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13); |
| } |
| } |
| |
| // read LTP gain and lag values |
| if (sconf->long_term_prediction) { |
| *bd->use_ltp = get_bits1(gb); |
| |
| if (*bd->use_ltp) { |
| int r, c; |
| |
| bd->ltp_gain[0] = decode_rice(gb, 1) * 8; |
| bd->ltp_gain[1] = decode_rice(gb, 2) * 8; |
| |
| r = get_unary(gb, 0, 4); |
| c = get_bits(gb, 2); |
| if (r >= 4) { |
| av_log(avctx, AV_LOG_ERROR, "r overflow\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| bd->ltp_gain[2] = ltp_gain_values[r][c]; |
| |
| bd->ltp_gain[3] = decode_rice(gb, 2) * 8; |
| bd->ltp_gain[4] = decode_rice(gb, 1) * 8; |
| |
| *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length); |
| *bd->ltp_lag += FFMAX(4, opt_order + 1); |
| } |
| } |
| |
| // read first value and residuals in case of a random access block |
| if (bd->ra_block) { |
| start = FFMIN(opt_order, 3); |
| av_assert0(sb_length <= sconf->frame_length); |
| if (sb_length <= start) { |
| // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification |
| av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (opt_order) |
| bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4); |
| if (opt_order > 1) |
| bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max)); |
| if (opt_order > 2) |
| bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max)); |
| } |
| |
| // read all residuals |
| if (sconf->bgmc) { |
| int delta[8]; |
| unsigned int k [8]; |
| unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5); |
| |
| // read most significant bits |
| unsigned int high; |
| unsigned int low; |
| unsigned int value; |
| |
| int ret = ff_bgmc_decode_init(gb, &high, &low, &value); |
| if (ret < 0) |
| return ret; |
| |
| current_res = bd->raw_samples + start; |
| |
| for (sb = 0; sb < sub_blocks; sb++) { |
| unsigned int sb_len = sb_length - (sb ? 0 : start); |
| |
| k [sb] = s[sb] > b ? s[sb] - b : 0; |
| delta[sb] = 5 - s[sb] + k[sb]; |
| |
| if (k[sb] >= 32) |
| return AVERROR_INVALIDDATA; |
| |
| ff_bgmc_decode(gb, sb_len, current_res, |
| delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status); |
| |
| current_res += sb_len; |
| } |
| |
| ff_bgmc_decode_end(gb); |
| |
| |
| // read least significant bits and tails |
| current_res = bd->raw_samples + start; |
| |
| for (sb = 0; sb < sub_blocks; sb++, start = 0) { |
| unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]]; |
| unsigned int cur_k = k[sb]; |
| unsigned int cur_s = s[sb]; |
| |
| for (; start < sb_length; start++) { |
| int32_t res = *current_res; |
| |
| if (res == cur_tail_code) { |
| unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10)) |
| << (5 - delta[sb]); |
| |
| res = decode_rice(gb, cur_s); |
| |
| if (res >= 0) { |
| res += (max_msb ) << cur_k; |
| } else { |
| res -= (max_msb - 1) << cur_k; |
| } |
| } else { |
| if (res > cur_tail_code) |
| res--; |
| |
| if (res & 1) |
| res = -res; |
| |
| res >>= 1; |
| |
| if (cur_k) { |
| res *= 1U << cur_k; |
| res |= get_bits_long(gb, cur_k); |
| } |
| } |
| |
| *current_res++ = res; |
| } |
| } |
| } else { |
| current_res = bd->raw_samples + start; |
| |
| for (sb = 0; sb < sub_blocks; sb++, start = 0) |
| for (; start < sb_length; start++) |
| *current_res++ = decode_rice(gb, s[sb]); |
| } |
| |
| return 0; |
| } |
| |
| |
| /** Decode the block data for a non-constant block |
| */ |
| static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| unsigned int block_length = bd->block_length; |
| unsigned int smp = 0; |
| unsigned int k; |
| int opt_order = *bd->opt_order; |
| int sb; |
| int64_t y; |
| int32_t *quant_cof = bd->quant_cof; |
| int32_t *lpc_cof = bd->lpc_cof; |
| int32_t *raw_samples = bd->raw_samples; |
| int32_t *raw_samples_end = bd->raw_samples + bd->block_length; |
| int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer; |
| |
| // reverse long-term prediction |
| if (*bd->use_ltp) { |
| int ltp_smp; |
| |
| for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) { |
| int center = ltp_smp - *bd->ltp_lag; |
| int begin = FFMAX(0, center - 2); |
| int end = center + 3; |
| int tab = 5 - (end - begin); |
| int base; |
| |
| y = 1 << 6; |
| |
| for (base = begin; base < end; base++, tab++) |
| y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]); |
| |
| raw_samples[ltp_smp] += y >> 7; |
| } |
| } |
| |
| // reconstruct all samples from residuals |
| if (bd->ra_block) { |
| for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) { |
| y = 1 << 19; |
| |
| for (sb = 0; sb < smp; sb++) |
| y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]); |
| |
| *raw_samples++ -= y >> 20; |
| parcor_to_lpc(smp, quant_cof, lpc_cof); |
| } |
| } else { |
| for (k = 0; k < opt_order; k++) |
| parcor_to_lpc(k, quant_cof, lpc_cof); |
| |
| // store previous samples in case that they have to be altered |
| if (*bd->store_prev_samples) |
| memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order, |
| sizeof(*bd->prev_raw_samples) * sconf->max_order); |
| |
| // reconstruct difference signal for prediction (joint-stereo) |
| if (bd->js_blocks && bd->raw_other) { |
| uint32_t *left, *right; |
| |
| if (bd->raw_other > raw_samples) { // D = R - L |
| left = raw_samples; |
| right = bd->raw_other; |
| } else { // D = R - L |
| left = bd->raw_other; |
| right = raw_samples; |
| } |
| |
| for (sb = -1; sb >= -sconf->max_order; sb--) |
| raw_samples[sb] = right[sb] - left[sb]; |
| } |
| |
| // reconstruct shifted signal |
| if (*bd->shift_lsbs) |
| for (sb = -1; sb >= -sconf->max_order; sb--) |
| raw_samples[sb] >>= *bd->shift_lsbs; |
| } |
| |
| // reverse linear prediction coefficients for efficiency |
| lpc_cof = lpc_cof + opt_order; |
| |
| for (sb = 0; sb < opt_order; sb++) |
| lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)]; |
| |
| // reconstruct raw samples |
| raw_samples = bd->raw_samples + smp; |
| lpc_cof = lpc_cof_reversed + opt_order; |
| |
| for (; raw_samples < raw_samples_end; raw_samples++) { |
| y = 1 << 19; |
| |
| for (sb = -opt_order; sb < 0; sb++) |
| y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]); |
| |
| *raw_samples -= y >> 20; |
| } |
| |
| raw_samples = bd->raw_samples; |
| |
| // restore previous samples in case that they have been altered |
| if (*bd->store_prev_samples) |
| memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples, |
| sizeof(*raw_samples) * sconf->max_order); |
| |
| return 0; |
| } |
| |
| |
| /** Read the block data. |
| */ |
| static int read_block(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| int ret; |
| GetBitContext *gb = &ctx->gb; |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| |
| *bd->shift_lsbs = 0; |
| // read block type flag and read the samples accordingly |
| if (get_bits1(gb)) { |
| ret = read_var_block_data(ctx, bd); |
| } else { |
| ret = read_const_block_data(ctx, bd); |
| } |
| |
| if (!sconf->mc_coding || ctx->js_switch) |
| align_get_bits(gb); |
| |
| return ret; |
| } |
| |
| |
| /** Decode the block data. |
| */ |
| static int decode_block(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| unsigned int smp; |
| int ret = 0; |
| |
| // read block type flag and read the samples accordingly |
| if (*bd->const_block) |
| decode_const_block_data(ctx, bd); |
| else |
| ret = decode_var_block_data(ctx, bd); // always return 0 |
| |
| if (ret < 0) |
| return ret; |
| |
| // TODO: read RLSLMS extension data |
| |
| if (*bd->shift_lsbs) |
| for (smp = 0; smp < bd->block_length; smp++) |
| bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs; |
| |
| return 0; |
| } |
| |
| |
| /** Read and decode block data successively. |
| */ |
| static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd) |
| { |
| int ret; |
| |
| if ((ret = read_block(ctx, bd)) < 0) |
| return ret; |
| |
| return decode_block(ctx, bd); |
| } |
| |
| |
| /** Compute the number of samples left to decode for the current frame and |
| * sets these samples to zero. |
| */ |
| static void zero_remaining(unsigned int b, unsigned int b_max, |
| const unsigned int *div_blocks, int32_t *buf) |
| { |
| unsigned int count = 0; |
| |
| while (b < b_max) |
| count += div_blocks[b++]; |
| |
| if (count) |
| memset(buf, 0, sizeof(*buf) * count); |
| } |
| |
| |
| /** Decode blocks independently. |
| */ |
| static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, |
| unsigned int c, const unsigned int *div_blocks, |
| unsigned int *js_blocks) |
| { |
| int ret; |
| unsigned int b; |
| ALSBlockData bd = { 0 }; |
| |
| bd.ra_block = ra_frame; |
| bd.const_block = ctx->const_block; |
| bd.shift_lsbs = ctx->shift_lsbs; |
| bd.opt_order = ctx->opt_order; |
| bd.store_prev_samples = ctx->store_prev_samples; |
| bd.use_ltp = ctx->use_ltp; |
| bd.ltp_lag = ctx->ltp_lag; |
| bd.ltp_gain = ctx->ltp_gain[0]; |
| bd.quant_cof = ctx->quant_cof[0]; |
| bd.lpc_cof = ctx->lpc_cof[0]; |
| bd.prev_raw_samples = ctx->prev_raw_samples; |
| bd.raw_samples = ctx->raw_samples[c]; |
| |
| |
| for (b = 0; b < ctx->num_blocks; b++) { |
| bd.block_length = div_blocks[b]; |
| |
| if ((ret = read_decode_block(ctx, &bd)) < 0) { |
| // damaged block, write zero for the rest of the frame |
| zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples); |
| return ret; |
| } |
| bd.raw_samples += div_blocks[b]; |
| bd.ra_block = 0; |
| } |
| |
| return 0; |
| } |
| |
| |
| /** Decode blocks dependently. |
| */ |
| static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, |
| unsigned int c, const unsigned int *div_blocks, |
| unsigned int *js_blocks) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| unsigned int offset = 0; |
| unsigned int b; |
| int ret; |
| ALSBlockData bd[2] = { { 0 } }; |
| |
| bd[0].ra_block = ra_frame; |
| bd[0].const_block = ctx->const_block; |
| bd[0].shift_lsbs = ctx->shift_lsbs; |
| bd[0].opt_order = ctx->opt_order; |
| bd[0].store_prev_samples = ctx->store_prev_samples; |
| bd[0].use_ltp = ctx->use_ltp; |
| bd[0].ltp_lag = ctx->ltp_lag; |
| bd[0].ltp_gain = ctx->ltp_gain[0]; |
| bd[0].quant_cof = ctx->quant_cof[0]; |
| bd[0].lpc_cof = ctx->lpc_cof[0]; |
| bd[0].prev_raw_samples = ctx->prev_raw_samples; |
| bd[0].js_blocks = *js_blocks; |
| |
| bd[1].ra_block = ra_frame; |
| bd[1].const_block = ctx->const_block; |
| bd[1].shift_lsbs = ctx->shift_lsbs; |
| bd[1].opt_order = ctx->opt_order; |
| bd[1].store_prev_samples = ctx->store_prev_samples; |
| bd[1].use_ltp = ctx->use_ltp; |
| bd[1].ltp_lag = ctx->ltp_lag; |
| bd[1].ltp_gain = ctx->ltp_gain[0]; |
| bd[1].quant_cof = ctx->quant_cof[0]; |
| bd[1].lpc_cof = ctx->lpc_cof[0]; |
| bd[1].prev_raw_samples = ctx->prev_raw_samples; |
| bd[1].js_blocks = *(js_blocks + 1); |
| |
| // decode all blocks |
| for (b = 0; b < ctx->num_blocks; b++) { |
| unsigned int s; |
| |
| bd[0].block_length = div_blocks[b]; |
| bd[1].block_length = div_blocks[b]; |
| |
| bd[0].raw_samples = ctx->raw_samples[c ] + offset; |
| bd[1].raw_samples = ctx->raw_samples[c + 1] + offset; |
| |
| bd[0].raw_other = bd[1].raw_samples; |
| bd[1].raw_other = bd[0].raw_samples; |
| |
| if ((ret = read_decode_block(ctx, &bd[0])) < 0 || |
| (ret = read_decode_block(ctx, &bd[1])) < 0) |
| goto fail; |
| |
| // reconstruct joint-stereo blocks |
| if (bd[0].js_blocks) { |
| if (bd[1].js_blocks) |
| av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n"); |
| |
| for (s = 0; s < div_blocks[b]; s++) |
| bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s]; |
| } else if (bd[1].js_blocks) { |
| for (s = 0; s < div_blocks[b]; s++) |
| bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s]; |
| } |
| |
| offset += div_blocks[b]; |
| bd[0].ra_block = 0; |
| bd[1].ra_block = 0; |
| } |
| |
| // store carryover raw samples, |
| // the others channel raw samples are stored by the calling function. |
| memmove(ctx->raw_samples[c] - sconf->max_order, |
| ctx->raw_samples[c] - sconf->max_order + sconf->frame_length, |
| sizeof(*ctx->raw_samples[c]) * sconf->max_order); |
| |
| return 0; |
| fail: |
| // damaged block, write zero for the rest of the frame |
| zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples); |
| zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples); |
| return ret; |
| } |
| |
| static inline int als_weighting(GetBitContext *gb, int k, int off) |
| { |
| int idx = av_clip(decode_rice(gb, k) + off, |
| 0, FF_ARRAY_ELEMS(mcc_weightings) - 1); |
| return mcc_weightings[idx]; |
| } |
| |
| /** Read the channel data. |
| */ |
| static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c) |
| { |
| GetBitContext *gb = &ctx->gb; |
| ALSChannelData *current = cd; |
| unsigned int channels = ctx->avctx->channels; |
| int entries = 0; |
| |
| while (entries < channels && !(current->stop_flag = get_bits1(gb))) { |
| current->master_channel = get_bits_long(gb, av_ceil_log2(channels)); |
| |
| if (current->master_channel >= channels) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (current->master_channel != c) { |
| current->time_diff_flag = get_bits1(gb); |
| current->weighting[0] = als_weighting(gb, 1, 16); |
| current->weighting[1] = als_weighting(gb, 2, 14); |
| current->weighting[2] = als_weighting(gb, 1, 16); |
| |
| if (current->time_diff_flag) { |
| current->weighting[3] = als_weighting(gb, 1, 16); |
| current->weighting[4] = als_weighting(gb, 1, 16); |
| current->weighting[5] = als_weighting(gb, 1, 16); |
| |
| current->time_diff_sign = get_bits1(gb); |
| current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3; |
| } |
| } |
| |
| current++; |
| entries++; |
| } |
| |
| if (entries == channels) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| align_get_bits(gb); |
| return 0; |
| } |
| |
| |
| /** Recursively reverts the inter-channel correlation for a block. |
| */ |
| static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, |
| ALSChannelData **cd, int *reverted, |
| unsigned int offset, int c) |
| { |
| ALSChannelData *ch = cd[c]; |
| unsigned int dep = 0; |
| unsigned int channels = ctx->avctx->channels; |
| unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order; |
| |
| if (reverted[c]) |
| return 0; |
| |
| reverted[c] = 1; |
| |
| while (dep < channels && !ch[dep].stop_flag) { |
| revert_channel_correlation(ctx, bd, cd, reverted, offset, |
| ch[dep].master_channel); |
| |
| dep++; |
| } |
| |
| if (dep == channels) { |
| av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| bd->const_block = ctx->const_block + c; |
| bd->shift_lsbs = ctx->shift_lsbs + c; |
| bd->opt_order = ctx->opt_order + c; |
| bd->store_prev_samples = ctx->store_prev_samples + c; |
| bd->use_ltp = ctx->use_ltp + c; |
| bd->ltp_lag = ctx->ltp_lag + c; |
| bd->ltp_gain = ctx->ltp_gain[c]; |
| bd->lpc_cof = ctx->lpc_cof[c]; |
| bd->quant_cof = ctx->quant_cof[c]; |
| bd->raw_samples = ctx->raw_samples[c] + offset; |
| |
| for (dep = 0; !ch[dep].stop_flag; dep++) { |
| ptrdiff_t smp; |
| ptrdiff_t begin = 1; |
| ptrdiff_t end = bd->block_length - 1; |
| int64_t y; |
| int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset; |
| |
| if (ch[dep].master_channel == c) |
| continue; |
| |
| if (ch[dep].time_diff_flag) { |
| int t = ch[dep].time_diff_index; |
| |
| if (ch[dep].time_diff_sign) { |
| t = -t; |
| if (begin < t) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t); |
| return AVERROR_INVALIDDATA; |
| } |
| begin -= t; |
| } else { |
| if (end < t) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t); |
| return AVERROR_INVALIDDATA; |
| } |
| end -= t; |
| } |
| |
| if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master || |
| FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) { |
| av_log(ctx->avctx, AV_LOG_ERROR, |
| "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n", |
| master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t), |
| ctx->raw_buffer, ctx->raw_buffer + channels * channel_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| for (smp = begin; smp < end; smp++) { |
| y = (1 << 6) + |
| MUL64(ch[dep].weighting[0], master[smp - 1 ]) + |
| MUL64(ch[dep].weighting[1], master[smp ]) + |
| MUL64(ch[dep].weighting[2], master[smp + 1 ]) + |
| MUL64(ch[dep].weighting[3], master[smp - 1 + t]) + |
| MUL64(ch[dep].weighting[4], master[smp + t]) + |
| MUL64(ch[dep].weighting[5], master[smp + 1 + t]); |
| |
| bd->raw_samples[smp] += y >> 7; |
| } |
| } else { |
| |
| if (begin - 1 < ctx->raw_buffer - master || |
| end + 1 > ctx->raw_buffer + channels * channel_size - master) { |
| av_log(ctx->avctx, AV_LOG_ERROR, |
| "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n", |
| master + begin - 1, master + end + 1, |
| ctx->raw_buffer, ctx->raw_buffer + channels * channel_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| for (smp = begin; smp < end; smp++) { |
| y = (1 << 6) + |
| MUL64(ch[dep].weighting[0], master[smp - 1]) + |
| MUL64(ch[dep].weighting[1], master[smp ]) + |
| MUL64(ch[dep].weighting[2], master[smp + 1]); |
| |
| bd->raw_samples[smp] += y >> 7; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /** multiply two softfloats and handle the rounding off |
| */ |
| static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) { |
| uint64_t mantissa_temp; |
| uint64_t mask_64; |
| int cutoff_bit_count; |
| unsigned char last_2_bits; |
| unsigned int mantissa; |
| int32_t sign; |
| uint32_t return_val = 0; |
| int bit_count = 48; |
| |
| sign = a.sign ^ b.sign; |
| |
| // Multiply mantissa bits in a 64-bit register |
| mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant; |
| mask_64 = (uint64_t)0x1 << 47; |
| |
| if (!mantissa_temp) |
| return FLOAT_0; |
| |
| // Count the valid bit count |
| while (!(mantissa_temp & mask_64) && mask_64) { |
| bit_count--; |
| mask_64 >>= 1; |
| } |
| |
| // Round off |
| cutoff_bit_count = bit_count - 24; |
| if (cutoff_bit_count > 0) { |
| last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 ); |
| if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) { |
| // Need to round up |
| mantissa_temp += (uint64_t)0x1 << cutoff_bit_count; |
| } |
| } |
| |
| if (cutoff_bit_count >= 0) { |
| mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count); |
| } else { |
| mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count); |
| } |
| |
| // Need one more shift? |
| if (mantissa & 0x01000000ul) { |
| bit_count++; |
| mantissa >>= 1; |
| } |
| |
| if (!sign) { |
| return_val = 0x80000000U; |
| } |
| |
| return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000; |
| return_val |= mantissa; |
| return av_bits2sf_ieee754(return_val); |
| } |
| |
| |
| /** Read and decode the floating point sample data |
| */ |
| static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) { |
| AVCodecContext *avctx = ctx->avctx; |
| GetBitContext *gb = &ctx->gb; |
| SoftFloat_IEEE754 *acf = ctx->acf; |
| int *shift_value = ctx->shift_value; |
| int *last_shift_value = ctx->last_shift_value; |
| int *last_acf_mantissa = ctx->last_acf_mantissa; |
| int **raw_mantissa = ctx->raw_mantissa; |
| int *nbits = ctx->nbits; |
| unsigned char *larray = ctx->larray; |
| int frame_length = ctx->cur_frame_length; |
| SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23); |
| unsigned int partA_flag; |
| unsigned int highest_byte; |
| unsigned int shift_amp; |
| uint32_t tmp_32; |
| int use_acf; |
| int nchars; |
| int i; |
| int c; |
| long k; |
| long nbits_aligned; |
| unsigned long acc; |
| unsigned long j; |
| uint32_t sign; |
| uint32_t e; |
| uint32_t mantissa; |
| |
| skip_bits_long(gb, 32); //num_bytes_diff_float |
| use_acf = get_bits1(gb); |
| |
| if (ra_frame) { |
| memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa)); |
| memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) ); |
| ff_mlz_flush_dict(ctx->mlz); |
| } |
| |
| if (avctx->channels * 8 > get_bits_left(gb)) |
| return AVERROR_INVALIDDATA; |
| |
| for (c = 0; c < avctx->channels; ++c) { |
| if (use_acf) { |
| //acf_flag |
| if (get_bits1(gb)) { |
| tmp_32 = get_bits(gb, 23); |
| last_acf_mantissa[c] = tmp_32; |
| } else { |
| tmp_32 = last_acf_mantissa[c]; |
| } |
| acf[c] = av_bits2sf_ieee754(tmp_32); |
| } else { |
| acf[c] = FLOAT_1; |
| } |
| |
| highest_byte = get_bits(gb, 2); |
| partA_flag = get_bits1(gb); |
| shift_amp = get_bits1(gb); |
| |
| if (shift_amp) { |
| shift_value[c] = get_bits(gb, 8); |
| last_shift_value[c] = shift_value[c]; |
| } else { |
| shift_value[c] = last_shift_value[c]; |
| } |
| |
| if (partA_flag) { |
| if (!get_bits1(gb)) { //uncompressed |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i] == 0) { |
| ctx->raw_mantissa[c][i] = get_bits_long(gb, 32); |
| } |
| } |
| } else { //compressed |
| nchars = 0; |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i] == 0) { |
| nchars += 4; |
| } |
| } |
| |
| tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray); |
| if(tmp_32 != nchars) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| for (i = 0; i < frame_length; ++i) { |
| ctx->raw_mantissa[c][i] = AV_RB32(larray); |
| } |
| } |
| } |
| |
| //decode part B |
| if (highest_byte) { |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i] != 0) { |
| //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec |
| if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) { |
| nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i])); |
| } else { |
| nbits[i] = 23; |
| } |
| nbits[i] = FFMIN(nbits[i], highest_byte*8); |
| } |
| } |
| |
| if (!get_bits1(gb)) { //uncompressed |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i] != 0) { |
| raw_mantissa[c][i] = get_bitsz(gb, nbits[i]); |
| } |
| } |
| } else { //compressed |
| nchars = 0; |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i]) { |
| nchars += (int) nbits[i] / 8; |
| if (nbits[i] & 7) { |
| ++nchars; |
| } |
| } |
| } |
| |
| tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray); |
| if(tmp_32 != nchars) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| j = 0; |
| for (i = 0; i < frame_length; ++i) { |
| if (ctx->raw_samples[c][i]) { |
| if (nbits[i] & 7) { |
| nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1); |
| } else { |
| nbits_aligned = nbits[i]; |
| } |
| acc = 0; |
| for (k = 0; k < nbits_aligned/8; ++k) { |
| acc = (acc << 8) + larray[j++]; |
| } |
| acc >>= (nbits_aligned - nbits[i]); |
| raw_mantissa[c][i] = acc; |
| } |
| } |
| } |
| } |
| |
| for (i = 0; i < frame_length; ++i) { |
| SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0); |
| pcm_sf = av_div_sf_ieee754(pcm_sf, scale); |
| |
| if (ctx->raw_samples[c][i] != 0) { |
| if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) { |
| pcm_sf = multiply(acf[c], pcm_sf); |
| } |
| |
| sign = pcm_sf.sign; |
| e = pcm_sf.exp; |
| mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i]; |
| |
| while(mantissa >= 0x1000000) { |
| e++; |
| mantissa >>= 1; |
| } |
| |
| if (mantissa) e += (shift_value[c] - 127); |
| mantissa &= 0x007fffffUL; |
| |
| tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa); |
| ctx->raw_samples[c][i] = tmp_32; |
| } else { |
| ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL; |
| } |
| } |
| align_get_bits(gb); |
| } |
| return 0; |
| } |
| |
| |
| /** Read the frame data. |
| */ |
| static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame) |
| { |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| AVCodecContext *avctx = ctx->avctx; |
| GetBitContext *gb = &ctx->gb; |
| unsigned int div_blocks[32]; ///< block sizes. |
| unsigned int c; |
| unsigned int js_blocks[2]; |
| uint32_t bs_info = 0; |
| int ret; |
| |
| // skip the size of the ra unit if present in the frame |
| if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame) |
| skip_bits_long(gb, 32); |
| |
| if (sconf->mc_coding && sconf->joint_stereo) { |
| ctx->js_switch = get_bits1(gb); |
| align_get_bits(gb); |
| } |
| |
| if (!sconf->mc_coding || ctx->js_switch) { |
| int independent_bs = !sconf->joint_stereo; |
| |
| for (c = 0; c < avctx->channels; c++) { |
| js_blocks[0] = 0; |
| js_blocks[1] = 0; |
| |
| get_block_sizes(ctx, div_blocks, &bs_info); |
| |
| // if joint_stereo and block_switching is set, independent decoding |
| // is signaled via the first bit of bs_info |
| if (sconf->joint_stereo && sconf->block_switching) |
| if (bs_info >> 31) |
| independent_bs = 2; |
| |
| // if this is the last channel, it has to be decoded independently |
| if (c == avctx->channels - 1 || (c & 1)) |
| independent_bs = 1; |
| |
| if (independent_bs) { |
| ret = decode_blocks_ind(ctx, ra_frame, c, |
| div_blocks, js_blocks); |
| if (ret < 0) |
| return ret; |
| independent_bs--; |
| } else { |
| ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks); |
| if (ret < 0) |
| return ret; |
| |
| c++; |
| } |
| |
| // store carryover raw samples |
| memmove(ctx->raw_samples[c] - sconf->max_order, |
| ctx->raw_samples[c] - sconf->max_order + sconf->frame_length, |
| sizeof(*ctx->raw_samples[c]) * sconf->max_order); |
| ctx->highest_decoded_channel = c; |
| } |
| } else { // multi-channel coding |
| ALSBlockData bd = { 0 }; |
| int b, ret; |
| int *reverted_channels = ctx->reverted_channels; |
| unsigned int offset = 0; |
| |
| for (c = 0; c < avctx->channels; c++) |
| if (ctx->chan_data[c] < ctx->chan_data_buffer) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels); |
| |
| bd.ra_block = ra_frame; |
| bd.prev_raw_samples = ctx->prev_raw_samples; |
| |
| get_block_sizes(ctx, div_blocks, &bs_info); |
| |
| for (b = 0; b < ctx->num_blocks; b++) { |
| bd.block_length = div_blocks[b]; |
| if (bd.block_length <= 0) { |
| av_log(ctx->avctx, AV_LOG_WARNING, |
| "Invalid block length %u in channel data!\n", |
| bd.block_length); |
| continue; |
| } |
| |
| for (c = 0; c < avctx->channels; c++) { |
| bd.const_block = ctx->const_block + c; |
| bd.shift_lsbs = ctx->shift_lsbs + c; |
| bd.opt_order = ctx->opt_order + c; |
| bd.store_prev_samples = ctx->store_prev_samples + c; |
| bd.use_ltp = ctx->use_ltp + c; |
| bd.ltp_lag = ctx->ltp_lag + c; |
| bd.ltp_gain = ctx->ltp_gain[c]; |
| bd.lpc_cof = ctx->lpc_cof[c]; |
| bd.quant_cof = ctx->quant_cof[c]; |
| bd.raw_samples = ctx->raw_samples[c] + offset; |
| bd.raw_other = NULL; |
| |
| if ((ret = read_block(ctx, &bd)) < 0) |
| return ret; |
| if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0) |
| return ret; |
| } |
| |
| for (c = 0; c < avctx->channels; c++) { |
| ret = revert_channel_correlation(ctx, &bd, ctx->chan_data, |
| reverted_channels, offset, c); |
| if (ret < 0) |
| return ret; |
| } |
| for (c = 0; c < avctx->channels; c++) { |
| bd.const_block = ctx->const_block + c; |
| bd.shift_lsbs = ctx->shift_lsbs + c; |
| bd.opt_order = ctx->opt_order + c; |
| bd.store_prev_samples = ctx->store_prev_samples + c; |
| bd.use_ltp = ctx->use_ltp + c; |
| bd.ltp_lag = ctx->ltp_lag + c; |
| bd.ltp_gain = ctx->ltp_gain[c]; |
| bd.lpc_cof = ctx->lpc_cof[c]; |
| bd.quant_cof = ctx->quant_cof[c]; |
| bd.raw_samples = ctx->raw_samples[c] + offset; |
| |
| if ((ret = decode_block(ctx, &bd)) < 0) |
| return ret; |
| |
| ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c); |
| } |
| |
| memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels)); |
| offset += div_blocks[b]; |
| bd.ra_block = 0; |
| } |
| |
| // store carryover raw samples |
| for (c = 0; c < avctx->channels; c++) |
| memmove(ctx->raw_samples[c] - sconf->max_order, |
| ctx->raw_samples[c] - sconf->max_order + sconf->frame_length, |
| sizeof(*ctx->raw_samples[c]) * sconf->max_order); |
| } |
| |
| if (sconf->floating) { |
| read_diff_float_data(ctx, ra_frame); |
| } |
| |
| if (get_bits_left(gb) < 0) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb)); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| |
| /** Decode an ALS frame. |
| */ |
| static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, |
| AVPacket *avpkt) |
| { |
| ALSDecContext *ctx = avctx->priv_data; |
| AVFrame *frame = data; |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| const uint8_t *buffer = avpkt->data; |
| int buffer_size = avpkt->size; |
| int invalid_frame, ret; |
| unsigned int c, sample, ra_frame, bytes_read, shift; |
| |
| if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0) |
| return ret; |
| |
| // In the case that the distance between random access frames is set to zero |
| // (sconf->ra_distance == 0) no frame is treated as a random access frame. |
| // For the first frame, if prediction is used, all samples used from the |
| // previous frame are assumed to be zero. |
| ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance); |
| |
| // the last frame to decode might have a different length |
| if (sconf->samples != 0xFFFFFFFF) |
| ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length, |
| sconf->frame_length); |
| else |
| ctx->cur_frame_length = sconf->frame_length; |
| |
| ctx->highest_decoded_channel = 0; |
| // decode the frame data |
| if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0) |
| av_log(ctx->avctx, AV_LOG_WARNING, |
| "Reading frame data failed. Skipping RA unit.\n"); |
| |
| if (ctx->highest_decoded_channel == 0) |
| return AVERROR_INVALIDDATA; |
| |
| ctx->frame_id++; |
| |
| /* get output buffer */ |
| frame->nb_samples = ctx->cur_frame_length; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| // transform decoded frame into output format |
| #define INTERLEAVE_OUTPUT(bps) \ |
| { \ |
| int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \ |
| int channels = avctx->channels; \ |
| int32_t *raw_samples = ctx->raw_samples[0]; \ |
| int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1; \ |
| shift = bps - ctx->avctx->bits_per_raw_sample; \ |
| if (!ctx->cs_switch) { \ |
| for (sample = 0; sample < ctx->cur_frame_length; sample++) \ |
| for (c = 0; c < channels; c++) \ |
| *dest++ = raw_samples[c*raw_step + sample] * (1U << shift); \ |
| } else { \ |
| for (sample = 0; sample < ctx->cur_frame_length; sample++) \ |
| for (c = 0; c < channels; c++) \ |
| *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\ |
| } \ |
| } |
| |
| if (ctx->avctx->bits_per_raw_sample <= 16) { |
| INTERLEAVE_OUTPUT(16) |
| } else { |
| INTERLEAVE_OUTPUT(32) |
| } |
| |
| // update CRC |
| if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) { |
| int swap = HAVE_BIGENDIAN != sconf->msb_first; |
| |
| if (ctx->avctx->bits_per_raw_sample == 24) { |
| int32_t *src = (int32_t *)frame->data[0]; |
| |
| for (sample = 0; |
| sample < ctx->cur_frame_length * avctx->channels; |
| sample++) { |
| int32_t v; |
| |
| if (swap) |
| v = av_bswap32(src[sample]); |
| else |
| v = src[sample]; |
| if (!HAVE_BIGENDIAN) |
| v >>= 8; |
| |
| ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3); |
| } |
| } else { |
| uint8_t *crc_source; |
| |
| if (swap) { |
| if (ctx->avctx->bits_per_raw_sample <= 16) { |
| int16_t *src = (int16_t*) frame->data[0]; |
| int16_t *dest = (int16_t*) ctx->crc_buffer; |
| for (sample = 0; |
| sample < ctx->cur_frame_length * avctx->channels; |
| sample++) |
| *dest++ = av_bswap16(src[sample]); |
| } else { |
| ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer, |
| (uint32_t *) frame->data[0], |
| ctx->cur_frame_length * avctx->channels); |
| } |
| crc_source = ctx->crc_buffer; |
| } else { |
| crc_source = frame->data[0]; |
| } |
| |
| ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source, |
| ctx->cur_frame_length * avctx->channels * |
| av_get_bytes_per_sample(avctx->sample_fmt)); |
| } |
| |
| |
| // check CRC sums if this is the last frame |
| if (ctx->cur_frame_length != sconf->frame_length && |
| ctx->crc_org != ctx->crc) { |
| av_log(avctx, AV_LOG_ERROR, "CRC error.\n"); |
| if (avctx->err_recognition & AV_EF_EXPLODE) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| *got_frame_ptr = 1; |
| |
| bytes_read = invalid_frame ? buffer_size : |
| (get_bits_count(&ctx->gb) + 7) >> 3; |
| |
| return bytes_read; |
| } |
| |
| |
| /** Uninitialize the ALS decoder. |
| */ |
| static av_cold int decode_end(AVCodecContext *avctx) |
| { |
| ALSDecContext *ctx = avctx->priv_data; |
| int i; |
| |
| av_freep(&ctx->sconf.chan_pos); |
| |
| ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status); |
| |
| av_freep(&ctx->const_block); |
| av_freep(&ctx->shift_lsbs); |
| av_freep(&ctx->opt_order); |
| av_freep(&ctx->store_prev_samples); |
| av_freep(&ctx->use_ltp); |
| av_freep(&ctx->ltp_lag); |
| av_freep(&ctx->ltp_gain); |
| av_freep(&ctx->ltp_gain_buffer); |
| av_freep(&ctx->quant_cof); |
| av_freep(&ctx->lpc_cof); |
| av_freep(&ctx->quant_cof_buffer); |
| av_freep(&ctx->lpc_cof_buffer); |
| av_freep(&ctx->lpc_cof_reversed_buffer); |
| av_freep(&ctx->prev_raw_samples); |
| av_freep(&ctx->raw_samples); |
| av_freep(&ctx->raw_buffer); |
| av_freep(&ctx->chan_data); |
| av_freep(&ctx->chan_data_buffer); |
| av_freep(&ctx->reverted_channels); |
| av_freep(&ctx->crc_buffer); |
| if (ctx->mlz) { |
| av_freep(&ctx->mlz->dict); |
| av_freep(&ctx->mlz); |
| } |
| av_freep(&ctx->acf); |
| av_freep(&ctx->last_acf_mantissa); |
| av_freep(&ctx->shift_value); |
| av_freep(&ctx->last_shift_value); |
| if (ctx->raw_mantissa) { |
| for (i = 0; i < avctx->channels; i++) { |
| av_freep(&ctx->raw_mantissa[i]); |
| } |
| av_freep(&ctx->raw_mantissa); |
| } |
| av_freep(&ctx->larray); |
| av_freep(&ctx->nbits); |
| |
| return 0; |
| } |
| |
| |
| /** Initialize the ALS decoder. |
| */ |
| static av_cold int decode_init(AVCodecContext *avctx) |
| { |
| unsigned int c; |
| unsigned int channel_size; |
| int num_buffers, ret; |
| ALSDecContext *ctx = avctx->priv_data; |
| ALSSpecificConfig *sconf = &ctx->sconf; |
| ctx->avctx = avctx; |
| |
| if (!avctx->extradata) { |
| av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if ((ret = read_specific_config(ctx)) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n"); |
| goto fail; |
| } |
| |
| if ((ret = check_specific_config(ctx)) < 0) { |
| goto fail; |
| } |
| |
| if (sconf->bgmc) { |
| ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status); |
| if (ret < 0) |
| goto fail; |
| } |
| if (sconf->floating) { |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
| avctx->bits_per_raw_sample = 32; |
| } else { |
| avctx->sample_fmt = sconf->resolution > 1 |
| ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16; |
| avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8; |
| if (avctx->bits_per_raw_sample > 32) { |
| av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n", |
| avctx->bits_per_raw_sample); |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| } |
| |
| // set maximum Rice parameter for progressive decoding based on resolution |
| // This is not specified in 14496-3 but actually done by the reference |
| // codec RM22 revision 2. |
| ctx->s_max = sconf->resolution > 1 ? 31 : 15; |
| |
| // set lag value for long-term prediction |
| ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) + |
| (avctx->sample_rate >= 192000); |
| |
| // allocate quantized parcor coefficient buffer |
| num_buffers = sconf->mc_coding ? avctx->channels : 1; |
| if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation |
| return AVERROR_INVALIDDATA; |
| |
| ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof)); |
| ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof)); |
| ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order, |
| sizeof(*ctx->quant_cof_buffer)); |
| ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order, |
| sizeof(*ctx->lpc_cof_buffer)); |
| ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order, |
| sizeof(*ctx->lpc_cof_buffer)); |
| |
| if (!ctx->quant_cof || !ctx->lpc_cof || |
| !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer || |
| !ctx->lpc_cof_reversed_buffer) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| // assign quantized parcor coefficient buffers |
| for (c = 0; c < num_buffers; c++) { |
| ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order; |
| ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order; |
| } |
| |
| // allocate and assign lag and gain data buffer for ltp mode |
| ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block)); |
| ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs)); |
| ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order)); |
| ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples)); |
| ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp)); |
| ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag)); |
| ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain)); |
| ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer)); |
| |
| if (!ctx->const_block || !ctx->shift_lsbs || |
| !ctx->opt_order || !ctx->store_prev_samples || |
| !ctx->use_ltp || !ctx->ltp_lag || |
| !ctx->ltp_gain || !ctx->ltp_gain_buffer) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| for (c = 0; c < num_buffers; c++) |
| ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5; |
| |
| // allocate and assign channel data buffer for mcc mode |
| if (sconf->mc_coding) { |
| ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers, |
| sizeof(*ctx->chan_data_buffer)); |
| ctx->chan_data = av_mallocz_array(num_buffers, |
| sizeof(*ctx->chan_data)); |
| ctx->reverted_channels = av_malloc_array(num_buffers, |
| sizeof(*ctx->reverted_channels)); |
| |
| if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| for (c = 0; c < num_buffers; c++) |
| ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers; |
| } else { |
| ctx->chan_data = NULL; |
| ctx->chan_data_buffer = NULL; |
| ctx->reverted_channels = NULL; |
| } |
| |
| channel_size = sconf->frame_length + sconf->max_order; |
| |
| ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples)); |
| ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer)); |
| ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples)); |
| |
| if (sconf->floating) { |
| ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf)); |
| ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value)); |
| ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value)); |
| ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa)); |
| ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa)); |
| |
| ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray)); |
| ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits)); |
| ctx->mlz = av_mallocz(sizeof(*ctx->mlz)); |
| |
| if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value |
| || !ctx->last_acf_mantissa || !ctx->raw_mantissa) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| ff_mlz_init_dict(avctx, ctx->mlz); |
| ff_mlz_flush_dict(ctx->mlz); |
| |
| for (c = 0; c < avctx->channels; ++c) { |
| ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa)); |
| } |
| } |
| |
| // allocate previous raw sample buffer |
| if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| // assign raw samples buffers |
| ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order; |
| for (c = 1; c < avctx->channels; c++) |
| ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size; |
| |
| // allocate crc buffer |
| if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled && |
| (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) { |
| ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length * |
| avctx->channels * |
| av_get_bytes_per_sample(avctx->sample_fmt), |
| sizeof(*ctx->crc_buffer)); |
| if (!ctx->crc_buffer) { |
| av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n"); |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| ff_bswapdsp_init(&ctx->bdsp); |
| |
| return 0; |
| |
| fail: |
| return ret; |
| } |
| |
| |
| /** Flush (reset) the frame ID after seeking. |
| */ |
| static av_cold void flush(AVCodecContext *avctx) |
| { |
| ALSDecContext *ctx = avctx->priv_data; |
| |
| ctx->frame_id = 0; |
| } |
| |
| |
| AVCodec ff_als_decoder = { |
| .name = "als", |
| .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_MP4ALS, |
| .priv_data_size = sizeof(ALSDecContext), |
| .init = decode_init, |
| .close = decode_end, |
| .decode = decode_frame, |
| .flush = flush, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
| .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
| }; |