| /* |
| * ATRAC1 compatible decoder |
| * Copyright (c) 2009 Maxim Poliakovski |
| * Copyright (c) 2009 Benjamin Larsson |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * ATRAC1 compatible decoder. |
| * This decoder handles raw ATRAC1 data and probably SDDS data. |
| */ |
| |
| /* Many thanks to Tim Craig for all the help! */ |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| |
| #include "libavutil/float_dsp.h" |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "fft.h" |
| #include "internal.h" |
| #include "sinewin.h" |
| |
| #include "atrac.h" |
| #include "atrac1data.h" |
| |
| #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit |
| #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit |
| #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit |
| #define AT1_FRAME_SIZE AT1_SU_SIZE * 2 |
| #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8 |
| #define AT1_MAX_CHANNELS 2 |
| |
| #define AT1_QMF_BANDS 3 |
| #define IDX_LOW_BAND 0 |
| #define IDX_MID_BAND 1 |
| #define IDX_HIGH_BAND 2 |
| |
| /** |
| * Sound unit struct, one unit is used per channel |
| */ |
| typedef struct AT1SUCtx { |
| int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band |
| int num_bfus; ///< number of Block Floating Units |
| float* spectrum[2]; |
| DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer |
| DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer |
| DECLARE_ALIGNED(32, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter |
| DECLARE_ALIGNED(32, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter |
| DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39]; ///< delay line for the last stacked QMF filter |
| } AT1SUCtx; |
| |
| /** |
| * The atrac1 context, holds all needed parameters for decoding |
| */ |
| typedef struct AT1Ctx { |
| AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit |
| DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer |
| |
| DECLARE_ALIGNED(32, float, low)[256]; |
| DECLARE_ALIGNED(32, float, mid)[256]; |
| DECLARE_ALIGNED(32, float, high)[512]; |
| float* bands[3]; |
| FFTContext mdct_ctx[3]; |
| void (*vector_fmul_window)(float *dst, const float *src0, |
| const float *src1, const float *win, int len); |
| } AT1Ctx; |
| |
| /** size of the transform in samples in the long mode for each QMF band */ |
| static const uint16_t samples_per_band[3] = {128, 128, 256}; |
| static const uint8_t mdct_long_nbits[3] = {7, 7, 8}; |
| |
| |
| static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits, |
| int rev_spec) |
| { |
| FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)]; |
| int transf_size = 1 << nbits; |
| |
| if (rev_spec) { |
| int i; |
| for (i = 0; i < transf_size / 2; i++) |
| FFSWAP(float, spec[i], spec[transf_size - 1 - i]); |
| } |
| mdct_context->imdct_half(mdct_context, out, spec); |
| } |
| |
| |
| static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q) |
| { |
| int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size; |
| unsigned int start_pos, ref_pos = 0, pos = 0; |
| |
| for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { |
| float *prev_buf; |
| int j; |
| |
| band_samples = samples_per_band[band_num]; |
| log2_block_count = su->log2_block_count[band_num]; |
| |
| /* number of mdct blocks in the current QMF band: 1 - for long mode */ |
| /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/ |
| num_blocks = 1 << log2_block_count; |
| |
| if (num_blocks == 1) { |
| /* mdct block size in samples: 128 (long mode, low & mid bands), */ |
| /* 256 (long mode, high band) and 32 (short mode, all bands) */ |
| block_size = band_samples >> log2_block_count; |
| |
| /* calc transform size in bits according to the block_size_mode */ |
| nbits = mdct_long_nbits[band_num] - log2_block_count; |
| |
| if (nbits != 5 && nbits != 7 && nbits != 8) |
| return AVERROR_INVALIDDATA; |
| } else { |
| block_size = 32; |
| nbits = 5; |
| } |
| |
| start_pos = 0; |
| prev_buf = &su->spectrum[1][ref_pos + band_samples - 16]; |
| for (j=0; j < num_blocks; j++) { |
| at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num); |
| |
| /* overlap and window */ |
| q->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf, |
| &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16); |
| |
| prev_buf = &su->spectrum[0][ref_pos+start_pos + 16]; |
| start_pos += block_size; |
| pos += block_size; |
| } |
| |
| if (num_blocks == 1) |
| memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float)); |
| |
| ref_pos += band_samples; |
| } |
| |
| /* Swap buffers so the mdct overlap works */ |
| FFSWAP(float*, su->spectrum[0], su->spectrum[1]); |
| |
| return 0; |
| } |
| |
| /** |
| * Parse the block size mode byte |
| */ |
| |
| static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS]) |
| { |
| int log2_block_count_tmp, i; |
| |
| for (i = 0; i < 2; i++) { |
| /* low and mid band */ |
| log2_block_count_tmp = get_bits(gb, 2); |
| if (log2_block_count_tmp & 1) |
| return AVERROR_INVALIDDATA; |
| log2_block_cnt[i] = 2 - log2_block_count_tmp; |
| } |
| |
| /* high band */ |
| log2_block_count_tmp = get_bits(gb, 2); |
| if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3) |
| return AVERROR_INVALIDDATA; |
| log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp; |
| |
| skip_bits(gb, 2); |
| return 0; |
| } |
| |
| |
| static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su, |
| float spec[AT1_SU_SAMPLES]) |
| { |
| int bits_used, band_num, bfu_num, i; |
| uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU |
| uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU |
| |
| /* parse the info byte (2nd byte) telling how much BFUs were coded */ |
| su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)]; |
| |
| /* calc number of consumed bits: |
| num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits) |
| + info_byte_copy(8bits) + log2_block_count_copy(8bits) */ |
| bits_used = su->num_bfus * 10 + 32 + |
| bfu_amount_tab2[get_bits(gb, 2)] + |
| (bfu_amount_tab3[get_bits(gb, 3)] << 1); |
| |
| /* get word length index (idwl) for each BFU */ |
| for (i = 0; i < su->num_bfus; i++) |
| idwls[i] = get_bits(gb, 4); |
| |
| /* get scalefactor index (idsf) for each BFU */ |
| for (i = 0; i < su->num_bfus; i++) |
| idsfs[i] = get_bits(gb, 6); |
| |
| /* zero idwl/idsf for empty BFUs */ |
| for (i = su->num_bfus; i < AT1_MAX_BFU; i++) |
| idwls[i] = idsfs[i] = 0; |
| |
| /* read in the spectral data and reconstruct MDCT spectrum of this channel */ |
| for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { |
| for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) { |
| int pos; |
| |
| int num_specs = specs_per_bfu[bfu_num]; |
| int word_len = !!idwls[bfu_num] + idwls[bfu_num]; |
| float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]]; |
| bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */ |
| |
| /* check for bitstream overflow */ |
| if (bits_used > AT1_SU_MAX_BITS) |
| return AVERROR_INVALIDDATA; |
| |
| /* get the position of the 1st spec according to the block size mode */ |
| pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num]; |
| |
| if (word_len) { |
| float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1); |
| |
| for (i = 0; i < num_specs; i++) { |
| /* read in a quantized spec and convert it to |
| * signed int and then inverse quantization |
| */ |
| spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant; |
| } |
| } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */ |
| memset(&spec[pos], 0, num_specs * sizeof(float)); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut) |
| { |
| float temp[256]; |
| float iqmf_temp[512 + 46]; |
| |
| /* combine low and middle bands */ |
| ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp); |
| |
| /* delay the signal of the high band by 39 samples */ |
| memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 39); |
| memcpy(&su->last_qmf_delay[39], q->bands[2], sizeof(float) * 256); |
| |
| /* combine (low + middle) and high bands */ |
| ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp); |
| } |
| |
| |
| static int atrac1_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| AVFrame *frame = data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| AT1Ctx *q = avctx->priv_data; |
| int ch, ret; |
| GetBitContext gb; |
| |
| |
| if (buf_size < 212 * avctx->channels) { |
| av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* get output buffer */ |
| frame->nb_samples = AT1_SU_SAMPLES; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| for (ch = 0; ch < avctx->channels; ch++) { |
| AT1SUCtx* su = &q->SUs[ch]; |
| |
| init_get_bits(&gb, &buf[212 * ch], 212 * 8); |
| |
| /* parse block_size_mode, 1st byte */ |
| ret = at1_parse_bsm(&gb, su->log2_block_count); |
| if (ret < 0) |
| return ret; |
| |
| ret = at1_unpack_dequant(&gb, su, q->spec); |
| if (ret < 0) |
| return ret; |
| |
| ret = at1_imdct_block(su, q); |
| if (ret < 0) |
| return ret; |
| at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]); |
| } |
| |
| *got_frame_ptr = 1; |
| |
| return avctx->block_align; |
| } |
| |
| |
| static av_cold int atrac1_decode_end(AVCodecContext * avctx) |
| { |
| AT1Ctx *q = avctx->priv_data; |
| |
| ff_mdct_end(&q->mdct_ctx[0]); |
| ff_mdct_end(&q->mdct_ctx[1]); |
| ff_mdct_end(&q->mdct_ctx[2]); |
| |
| return 0; |
| } |
| |
| |
| static av_cold int atrac1_decode_init(AVCodecContext *avctx) |
| { |
| AT1Ctx *q = avctx->priv_data; |
| AVFloatDSPContext *fdsp; |
| int ret; |
| |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| |
| if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) { |
| av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", |
| avctx->channels); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->block_align <= 0) { |
| av_log(avctx, AV_LOG_ERROR, "Unsupported block align."); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /* Init the mdct transforms */ |
| if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) || |
| (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) || |
| (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) { |
| av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); |
| return ret; |
| } |
| |
| ff_init_ff_sine_windows(5); |
| |
| ff_atrac_generate_tables(); |
| |
| fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
| if (!fdsp) |
| return AVERROR(ENOMEM); |
| q->vector_fmul_window = fdsp->vector_fmul_window; |
| av_free(fdsp); |
| |
| q->bands[0] = q->low; |
| q->bands[1] = q->mid; |
| q->bands[2] = q->high; |
| |
| /* Prepare the mdct overlap buffers */ |
| q->SUs[0].spectrum[0] = q->SUs[0].spec1; |
| q->SUs[0].spectrum[1] = q->SUs[0].spec2; |
| q->SUs[1].spectrum[0] = q->SUs[1].spec1; |
| q->SUs[1].spectrum[1] = q->SUs[1].spec2; |
| |
| return 0; |
| } |
| |
| |
| AVCodec ff_atrac1_decoder = { |
| .name = "atrac1", |
| .long_name = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_ATRAC1, |
| .priv_data_size = sizeof(AT1Ctx), |
| .init = atrac1_decode_init, |
| .close = atrac1_decode_end, |
| .decode = atrac1_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, |
| }; |