| /* |
| * Cinepak encoder (c) 2011 Tomas Härdin |
| * http://titan.codemill.se/~tomhar/cinepakenc.patch |
| * |
| * Fixes and improvements, vintage decoders compatibility |
| * (c) 2013, 2014 Rl, Aetey Global Technologies AB |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /* |
| * TODO: |
| * - optimize: color space conversion (move conversion to libswscale), ... |
| * MAYBE: |
| * - "optimally" split the frame into several non-regular areas |
| * using a separate codebook pair for each area and approximating |
| * the area by several rectangular strips (generally not full width ones) |
| * (use quadtree splitting? a simple fixed-granularity grid?) |
| */ |
| |
| #include <string.h> |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/common.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/intreadwrite.h" |
| #include "libavutil/lfg.h" |
| #include "libavutil/opt.h" |
| |
| #include "avcodec.h" |
| #include "elbg.h" |
| #include "internal.h" |
| |
| #define CVID_HEADER_SIZE 10 |
| #define STRIP_HEADER_SIZE 12 |
| #define CHUNK_HEADER_SIZE 4 |
| |
| #define MB_SIZE 4 //4x4 MBs |
| #define MB_AREA (MB_SIZE * MB_SIZE) |
| |
| #define VECTOR_MAX 6 // six or four entries per vector depending on format |
| #define CODEBOOK_MAX 256 // size of a codebook |
| |
| #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously) |
| #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious) |
| // MAX_STRIPS limits the maximum quality you can reach |
| // when you want high quality on high resolutions, |
| // MIN_STRIPS limits the minimum efficiently encodable bit rate |
| // on low resolutions |
| // the numbers are only used for brute force optimization for the first frame, |
| // for the following frames they are adaptively readjusted |
| // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number |
| // of strips, currently 32 |
| |
| typedef enum CinepakMode { |
| MODE_V1_ONLY = 0, |
| MODE_V1_V4, |
| MODE_MC, |
| |
| MODE_COUNT, |
| } CinepakMode; |
| |
| typedef enum mb_encoding { |
| ENC_V1, |
| ENC_V4, |
| ENC_SKIP, |
| |
| ENC_UNCERTAIN |
| } mb_encoding; |
| |
| typedef struct mb_info { |
| int v1_vector; // index into v1 codebook |
| int v1_error; // error when using V1 encoding |
| int v4_vector[4]; // indices into v4 codebook |
| int v4_error; // error when using V4 encoding |
| int skip_error; // error when block is skipped (aka copied from last frame) |
| mb_encoding best_encoding; // last result from calculate_mode_score() |
| } mb_info; |
| |
| typedef struct strip_info { |
| int v1_codebook[CODEBOOK_MAX * VECTOR_MAX]; |
| int v4_codebook[CODEBOOK_MAX * VECTOR_MAX]; |
| int v1_size; |
| int v4_size; |
| CinepakMode mode; |
| } strip_info; |
| |
| typedef struct CinepakEncContext { |
| const AVClass *class; |
| AVCodecContext *avctx; |
| unsigned char *pict_bufs[4], *strip_buf, *frame_buf; |
| AVFrame *last_frame; |
| AVFrame *best_frame; |
| AVFrame *scratch_frame; |
| AVFrame *input_frame; |
| enum AVPixelFormat pix_fmt; |
| int w, h; |
| int frame_buf_size; |
| int curframe, keyint; |
| AVLFG randctx; |
| uint64_t lambda; |
| int *codebook_input; |
| int *codebook_closest; |
| mb_info *mb; // MB RD state |
| int min_strips; // the current limit |
| int max_strips; // the current limit |
| // options |
| int max_extra_cb_iterations; |
| int skip_empty_cb; |
| int min_min_strips; |
| int max_max_strips; |
| int strip_number_delta_range; |
| } CinepakEncContext; |
| |
| #define OFFSET(x) offsetof(CinepakEncContext, x) |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| static const AVOption options[] = { |
| { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower", |
| OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE }, |
| { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder", |
| OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
| { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better", |
| OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE }, |
| { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips", |
| OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE }, |
| { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower", |
| OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE }, |
| { NULL }, |
| }; |
| |
| static const AVClass cinepak_class = { |
| .class_name = "cinepak", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| static av_cold int cinepak_encode_init(AVCodecContext *avctx) |
| { |
| CinepakEncContext *s = avctx->priv_data; |
| int x, mb_count, strip_buf_size, frame_buf_size; |
| |
| if (avctx->width & 3 || avctx->height & 3) { |
| av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n", |
| avctx->width, avctx->height); |
| return AVERROR(EINVAL); |
| } |
| |
| if (s->min_min_strips > s->max_max_strips) { |
| av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n", |
| s->min_min_strips, s->max_max_strips); |
| return AVERROR(EINVAL); |
| } |
| |
| if (!(s->last_frame = av_frame_alloc())) |
| return AVERROR(ENOMEM); |
| if (!(s->best_frame = av_frame_alloc())) |
| return AVERROR(ENOMEM); |
| if (!(s->scratch_frame = av_frame_alloc())) |
| return AVERROR(ENOMEM); |
| if (avctx->pix_fmt == AV_PIX_FMT_RGB24) |
| if (!(s->input_frame = av_frame_alloc())) |
| return AVERROR(ENOMEM); |
| |
| if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input)))) |
| return AVERROR(ENOMEM); |
| |
| if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest)))) |
| return AVERROR(ENOMEM);; |
| |
| for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) |
| if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2))) |
| return AVERROR(ENOMEM); |
| |
| mb_count = avctx->width * avctx->height / MB_AREA; |
| |
| // the largest possible chunk is 0x31 with all MBs encoded in V4 mode |
| // and full codebooks being replaced in INTER mode, |
| // which is 34 bits per MB |
| // and 2*256 extra flag bits per strip |
| strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8; |
| |
| frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size; |
| |
| if (!(s->strip_buf = av_malloc(strip_buf_size))) |
| return AVERROR(ENOMEM); |
| |
| if (!(s->frame_buf = av_malloc(frame_buf_size))) |
| return AVERROR(ENOMEM); |
| |
| if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info)))) |
| return AVERROR(ENOMEM); |
| |
| av_lfg_init(&s->randctx, 1); |
| s->avctx = avctx; |
| s->w = avctx->width; |
| s->h = avctx->height; |
| s->frame_buf_size = frame_buf_size; |
| s->curframe = 0; |
| s->keyint = avctx->keyint_min; |
| s->pix_fmt = avctx->pix_fmt; |
| |
| // set up AVFrames |
| s->last_frame->data[0] = s->pict_bufs[0]; |
| s->last_frame->linesize[0] = s->w; |
| s->best_frame->data[0] = s->pict_bufs[1]; |
| s->best_frame->linesize[0] = s->w; |
| s->scratch_frame->data[0] = s->pict_bufs[2]; |
| s->scratch_frame->linesize[0] = s->w; |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h; |
| s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2); |
| s->last_frame->linesize[1] = |
| s->last_frame->linesize[2] = s->w >> 1; |
| |
| s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h; |
| s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2); |
| s->best_frame->linesize[1] = |
| s->best_frame->linesize[2] = s->w >> 1; |
| |
| s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h; |
| s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2); |
| s->scratch_frame->linesize[1] = |
| s->scratch_frame->linesize[2] = s->w >> 1; |
| |
| s->input_frame->data[0] = s->pict_bufs[3]; |
| s->input_frame->linesize[0] = s->w; |
| s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h; |
| s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2); |
| s->input_frame->linesize[1] = |
| s->input_frame->linesize[2] = s->w >> 1; |
| } |
| |
| s->min_strips = s->min_min_strips; |
| s->max_strips = s->max_max_strips; |
| |
| return 0; |
| } |
| |
| static int64_t calculate_mode_score(CinepakEncContext *s, int h, |
| strip_info *info, int report, |
| int *training_set_v1_shrunk, |
| int *training_set_v4_shrunk) |
| { |
| // score = FF_LAMBDA_SCALE * error + lambda * bits |
| int x; |
| int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
| int mb_count = s->w * h / MB_AREA; |
| mb_info *mb; |
| int64_t score1, score2, score3; |
| int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) + |
| (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) + |
| CHUNK_HEADER_SIZE) << 3; |
| |
| switch (info->mode) { |
| case MODE_V1_ONLY: |
| // one byte per MB |
| ret += s->lambda * 8 * mb_count; |
| |
| // while calculating we assume all blocks are ENC_V1 |
| for (x = 0; x < mb_count; x++) { |
| mb = &s->mb[x]; |
| ret += FF_LAMBDA_SCALE * mb->v1_error; |
| // this function is never called for report in MODE_V1_ONLY |
| // if (!report) |
| mb->best_encoding = ENC_V1; |
| } |
| |
| break; |
| case MODE_V1_V4: |
| // 9 or 33 bits per MB |
| if (report) { |
| // no moves between the corresponding training sets are allowed |
| *training_set_v1_shrunk = *training_set_v4_shrunk = 0; |
| for (x = 0; x < mb_count; x++) { |
| int mberr; |
| mb = &s->mb[x]; |
| if (mb->best_encoding == ENC_V1) |
| score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error); |
| else |
| score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error); |
| ret += score1; |
| } |
| } else { // find best mode per block |
| for (x = 0; x < mb_count; x++) { |
| mb = &s->mb[x]; |
| score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error; |
| score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error; |
| |
| if (score1 <= score2) { |
| ret += score1; |
| mb->best_encoding = ENC_V1; |
| } else { |
| ret += score2; |
| mb->best_encoding = ENC_V4; |
| } |
| } |
| } |
| |
| break; |
| case MODE_MC: |
| // 1, 10 or 34 bits per MB |
| if (report) { |
| int v1_shrunk = 0, v4_shrunk = 0; |
| for (x = 0; x < mb_count; x++) { |
| mb = &s->mb[x]; |
| // it is OK to move blocks to ENC_SKIP here |
| // but not to any codebook encoding! |
| score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; |
| if (mb->best_encoding == ENC_SKIP) { |
| ret += score1; |
| } else if (mb->best_encoding == ENC_V1) { |
| if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) { |
| mb->best_encoding = ENC_SKIP; |
| ++v1_shrunk; |
| ret += score1; |
| } else { |
| ret += score2; |
| } |
| } else { |
| if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) { |
| mb->best_encoding = ENC_SKIP; |
| ++v4_shrunk; |
| ret += score1; |
| } else { |
| ret += score3; |
| } |
| } |
| } |
| *training_set_v1_shrunk = v1_shrunk; |
| *training_set_v4_shrunk = v4_shrunk; |
| } else { // find best mode per block |
| for (x = 0; x < mb_count; x++) { |
| mb = &s->mb[x]; |
| score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; |
| score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error; |
| score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error; |
| |
| if (score1 <= score2 && score1 <= score3) { |
| ret += score1; |
| mb->best_encoding = ENC_SKIP; |
| } else if (score2 <= score3) { |
| ret += score2; |
| mb->best_encoding = ENC_V1; |
| } else { |
| ret += score3; |
| mb->best_encoding = ENC_V4; |
| } |
| } |
| } |
| |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size) |
| { |
| buf[0] = chunk_type; |
| AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE); |
| return CHUNK_HEADER_SIZE; |
| } |
| |
| static int encode_codebook(CinepakEncContext *s, int *codebook, int size, |
| int chunk_type_yuv, int chunk_type_gray, |
| unsigned char *buf) |
| { |
| int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
| int incremental_codebook_replacement_mode = 0; // hardcoded here, |
| // the compiler should notice that this is a constant -- rl |
| |
| ret = write_chunk_header(buf, |
| s->pix_fmt == AV_PIX_FMT_RGB24 ? |
| chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) : |
| chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0), |
| entry_size * size + |
| (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0)); |
| |
| // we do codebook encoding according to the "intra" mode |
| // but we keep the "dead" code for reference in case we will want |
| // to use incremental codebook updates (which actually would give us |
| // "kind of" motion compensation, especially in 1 strip/frame case) -- rl |
| // (of course, the code will be not useful as-is) |
| if (incremental_codebook_replacement_mode) { |
| int flags = 0; |
| int flagsind; |
| for (x = 0; x < size; x++) { |
| if (flags == 0) { |
| flagsind = ret; |
| ret += 4; |
| flags = 0x80000000; |
| } else |
| flags = ((flags >> 1) | 0x80000000); |
| for (y = 0; y < entry_size; y++) |
| buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); |
| if ((flags & 0xffffffff) == 0xffffffff) { |
| AV_WB32(&buf[flagsind], flags); |
| flags = 0; |
| } |
| } |
| if (flags) |
| AV_WB32(&buf[flagsind], flags); |
| } else |
| for (x = 0; x < size; x++) |
| for (y = 0; y < entry_size; y++) |
| buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); |
| |
| return ret; |
| } |
| |
| // sets out to the sub picture starting at (x,y) in in |
| static void get_sub_picture(CinepakEncContext *s, int x, int y, |
| uint8_t * in_data[4], int in_linesize[4], |
| uint8_t *out_data[4], int out_linesize[4]) |
| { |
| out_data[0] = in_data[0] + x + y * in_linesize[0]; |
| out_linesize[0] = in_linesize[0]; |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1]; |
| out_linesize[1] = in_linesize[1]; |
| |
| out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2]; |
| out_linesize[2] = in_linesize[2]; |
| } |
| } |
| |
| // decodes the V1 vector in mb into the 4x4 MB pointed to by data |
| static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], |
| int linesize[4], int v1_vector, strip_info *info) |
| { |
| int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
| |
| data[0][0] = |
| data[0][1] = |
| data[0][ linesize[0]] = |
| data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size]; |
| |
| data[0][2] = |
| data[0][3] = |
| data[0][2 + linesize[0]] = |
| data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1]; |
| |
| data[0][ 2 * linesize[0]] = |
| data[0][1 + 2 * linesize[0]] = |
| data[0][ 3 * linesize[0]] = |
| data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2]; |
| |
| data[0][2 + 2 * linesize[0]] = |
| data[0][3 + 2 * linesize[0]] = |
| data[0][2 + 3 * linesize[0]] = |
| data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3]; |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| data[1][0] = |
| data[1][1] = |
| data[1][ linesize[1]] = |
| data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4]; |
| |
| data[2][0] = |
| data[2][1] = |
| data[2][ linesize[2]] = |
| data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5]; |
| } |
| } |
| |
| // decodes the V4 vectors in mb into the 4x4 MB pointed to by data |
| static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], |
| int linesize[4], int *v4_vector, strip_info *info) |
| { |
| int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
| |
| for (i = y = 0; y < 4; y += 2) { |
| for (x = 0; x < 4; x += 2, i++) { |
| data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size]; |
| data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1]; |
| data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2]; |
| data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3]; |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4]; |
| data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5]; |
| } |
| } |
| } |
| } |
| |
| static void copy_mb(CinepakEncContext *s, |
| uint8_t *a_data[4], int a_linesize[4], |
| uint8_t *b_data[4], int b_linesize[4]) |
| { |
| int y, p; |
| |
| for (y = 0; y < MB_SIZE; y++) |
| memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0], |
| MB_SIZE); |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| for (p = 1; p <= 2; p++) |
| for (y = 0; y < MB_SIZE / 2; y++) |
| memcpy(a_data[p] + y * a_linesize[p], |
| b_data[p] + y * b_linesize[p], |
| MB_SIZE / 2); |
| } |
| } |
| |
| static int encode_mode(CinepakEncContext *s, int h, |
| uint8_t *scratch_data[4], int scratch_linesize[4], |
| uint8_t *last_data[4], int last_linesize[4], |
| strip_info *info, unsigned char *buf) |
| { |
| int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA; |
| int needs_extra_bit, should_write_temp; |
| uint32_t flags; |
| unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B |
| mb_info *mb; |
| uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 }; |
| int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 }; |
| |
| // encode codebooks |
| ////// MacOS vintage decoder compatibility dictates the presence of |
| ////// the codebook chunk even when the codebook is empty - pretty dumb... |
| ////// and also the certain order of the codebook chunks -- rl |
| if (info->v4_size || !s->skip_empty_cb) |
| ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret); |
| |
| if (info->v1_size || !s->skip_empty_cb) |
| ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret); |
| |
| // update scratch picture |
| for (z = y = 0; y < h; y += MB_SIZE) |
| for (x = 0; x < s->w; x += MB_SIZE, z++) { |
| mb = &s->mb[z]; |
| |
| get_sub_picture(s, x, y, scratch_data, scratch_linesize, |
| sub_scratch_data, sub_scratch_linesize); |
| |
| if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) { |
| get_sub_picture(s, x, y, last_data, last_linesize, |
| sub_last_data, sub_last_linesize); |
| copy_mb(s, sub_scratch_data, sub_scratch_linesize, |
| sub_last_data, sub_last_linesize); |
| } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1) |
| decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize, |
| mb->v1_vector, info); |
| else |
| decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize, |
| mb->v4_vector, info); |
| } |
| |
| switch (info->mode) { |
| case MODE_V1_ONLY: |
| ret += write_chunk_header(buf + ret, 0x32, mb_count); |
| |
| for (x = 0; x < mb_count; x++) |
| buf[ret++] = s->mb[x].v1_vector; |
| |
| break; |
| case MODE_V1_V4: |
| // remember header position |
| header_ofs = ret; |
| ret += CHUNK_HEADER_SIZE; |
| |
| for (x = 0; x < mb_count; x += 32) { |
| flags = 0; |
| for (y = x; y < FFMIN(x + 32, mb_count); y++) |
| if (s->mb[y].best_encoding == ENC_V4) |
| flags |= 1U << (31 - y + x); |
| |
| AV_WB32(&buf[ret], flags); |
| ret += 4; |
| |
| for (y = x; y < FFMIN(x + 32, mb_count); y++) { |
| mb = &s->mb[y]; |
| |
| if (mb->best_encoding == ENC_V1) |
| buf[ret++] = mb->v1_vector; |
| else |
| for (z = 0; z < 4; z++) |
| buf[ret++] = mb->v4_vector[z]; |
| } |
| } |
| |
| write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE); |
| |
| break; |
| case MODE_MC: |
| // remember header position |
| header_ofs = ret; |
| ret += CHUNK_HEADER_SIZE; |
| flags = bits = temp_size = 0; |
| |
| for (x = 0; x < mb_count; x++) { |
| mb = &s->mb[x]; |
| flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++); |
| needs_extra_bit = 0; |
| should_write_temp = 0; |
| |
| if (mb->best_encoding != ENC_SKIP) { |
| if (bits < 32) |
| flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++); |
| else |
| needs_extra_bit = 1; |
| } |
| |
| if (bits == 32) { |
| AV_WB32(&buf[ret], flags); |
| ret += 4; |
| flags = bits = 0; |
| |
| if (mb->best_encoding == ENC_SKIP || needs_extra_bit) { |
| memcpy(&buf[ret], temp, temp_size); |
| ret += temp_size; |
| temp_size = 0; |
| } else |
| should_write_temp = 1; |
| } |
| |
| if (needs_extra_bit) { |
| flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31; |
| bits = 1; |
| } |
| |
| if (mb->best_encoding == ENC_V1) |
| temp[temp_size++] = mb->v1_vector; |
| else if (mb->best_encoding == ENC_V4) |
| for (z = 0; z < 4; z++) |
| temp[temp_size++] = mb->v4_vector[z]; |
| |
| if (should_write_temp) { |
| memcpy(&buf[ret], temp, temp_size); |
| ret += temp_size; |
| temp_size = 0; |
| } |
| } |
| |
| if (bits > 0) { |
| AV_WB32(&buf[ret], flags); |
| ret += 4; |
| memcpy(&buf[ret], temp, temp_size); |
| ret += temp_size; |
| } |
| |
| write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE); |
| |
| break; |
| } |
| |
| return ret; |
| } |
| |
| // computes distortion of 4x4 MB in b compared to a |
| static int compute_mb_distortion(CinepakEncContext *s, |
| uint8_t *a_data[4], int a_linesize[4], |
| uint8_t *b_data[4], int b_linesize[4]) |
| { |
| int x, y, p, d, ret = 0; |
| |
| for (y = 0; y < MB_SIZE; y++) |
| for (x = 0; x < MB_SIZE; x++) { |
| d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]]; |
| ret += d * d; |
| } |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| for (p = 1; p <= 2; p++) { |
| for (y = 0; y < MB_SIZE / 2; y++) |
| for (x = 0; x < MB_SIZE / 2; x++) { |
| d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]]; |
| ret += d * d; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| // return the possibly adjusted size of the codebook |
| #define CERTAIN(x) ((x) != ENC_UNCERTAIN) |
| static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], |
| int linesize[4], int v1mode, strip_info *info, |
| mb_encoding encoding) |
| { |
| int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn; |
| int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; |
| int *codebook = v1mode ? info->v1_codebook : info->v4_codebook; |
| int size = v1mode ? info->v1_size : info->v4_size; |
| int64_t total_error = 0; |
| uint8_t vq_pict_buf[(MB_AREA * 3) / 2]; |
| uint8_t *sub_data[4], *vq_data[4]; |
| int sub_linesize[4], vq_linesize[4]; |
| |
| for (mbn = i = y = 0; y < h; y += MB_SIZE) { |
| for (x = 0; x < s->w; x += MB_SIZE, ++mbn) { |
| int *base; |
| |
| if (CERTAIN(encoding)) { |
| // use for the training only the blocks known to be to be encoded [sic:-] |
| if (s->mb[mbn].best_encoding != encoding) |
| continue; |
| } |
| |
| base = s->codebook_input + i * entry_size; |
| if (v1mode) { |
| // subsample |
| for (j = y2 = 0; y2 < entry_size; y2 += 2) |
| for (x2 = 0; x2 < 4; x2 += 2, j++) { |
| plane = y2 < 4 ? 0 : 1 + (x2 >> 1); |
| shift = y2 < 4 ? 0 : 1; |
| x3 = shift ? 0 : x2; |
| y3 = shift ? 0 : y2; |
| base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] + |
| data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] + |
| data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] + |
| data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2; |
| } |
| } else { |
| // copy |
| for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) { |
| for (x2 = 0; x2 < MB_SIZE; x2 += 2) |
| for (k = 0; k < entry_size; k++, j++) { |
| plane = k >= 4 ? k - 3 : 0; |
| |
| if (k >= 4) { |
| x3 = (x + x2) >> 1; |
| y3 = (y + y2) >> 1; |
| } else { |
| x3 = x + x2 + (k & 1); |
| y3 = y + y2 + (k >> 1); |
| } |
| |
| base[j] = data[plane][x3 + y3 * linesize[plane]]; |
| } |
| } |
| } |
| i += v1mode ? 1 : 4; |
| } |
| } |
| |
| if (i == 0) // empty training set, nothing to do |
| return 0; |
| if (i < size) |
| size = i; |
| |
| avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx); |
| avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx); |
| |
| // set up vq_data, which contains a single MB |
| vq_data[0] = vq_pict_buf; |
| vq_linesize[0] = MB_SIZE; |
| vq_data[1] = &vq_pict_buf[MB_AREA]; |
| vq_data[2] = vq_data[1] + (MB_AREA >> 2); |
| vq_linesize[1] = |
| vq_linesize[2] = MB_SIZE >> 1; |
| |
| // copy indices |
| for (i = j = y = 0; y < h; y += MB_SIZE) |
| for (x = 0; x < s->w; x += MB_SIZE, j++) { |
| mb_info *mb = &s->mb[j]; |
| // skip uninteresting blocks if we know their preferred encoding |
| if (CERTAIN(encoding) && mb->best_encoding != encoding) |
| continue; |
| |
| // point sub_data to current MB |
| get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize); |
| |
| if (v1mode) { |
| mb->v1_vector = s->codebook_closest[i]; |
| |
| // fill in vq_data with V1 data |
| decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info); |
| |
| mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize, |
| vq_data, vq_linesize); |
| total_error += mb->v1_error; |
| } else { |
| for (k = 0; k < 4; k++) |
| mb->v4_vector[k] = s->codebook_closest[i + k]; |
| |
| // fill in vq_data with V4 data |
| decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info); |
| |
| mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize, |
| vq_data, vq_linesize); |
| total_error += mb->v4_error; |
| } |
| i += v1mode ? 1 : 4; |
| } |
| // check that we did it right in the beginning of the function |
| av_assert0(i >= size); // training set is no smaller than the codebook |
| |
| return size; |
| } |
| |
| static void calculate_skip_errors(CinepakEncContext *s, int h, |
| uint8_t *last_data[4], int last_linesize[4], |
| uint8_t *data[4], int linesize[4], |
| strip_info *info) |
| { |
| int x, y, i; |
| uint8_t *sub_last_data [4], *sub_pict_data [4]; |
| int sub_last_linesize[4], sub_pict_linesize[4]; |
| |
| for (i = y = 0; y < h; y += MB_SIZE) |
| for (x = 0; x < s->w; x += MB_SIZE, i++) { |
| get_sub_picture(s, x, y, last_data, last_linesize, |
| sub_last_data, sub_last_linesize); |
| get_sub_picture(s, x, y, data, linesize, |
| sub_pict_data, sub_pict_linesize); |
| |
| s->mb[i].skip_error = |
| compute_mb_distortion(s, |
| sub_last_data, sub_last_linesize, |
| sub_pict_data, sub_pict_linesize); |
| } |
| } |
| |
| static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, |
| unsigned char *buf, int strip_size) |
| { |
| // actually we are exclusively using intra strip coding (how much can we win |
| // otherwise? how to choose which part of a codebook to update?), |
| // keyframes are different only because we disallow ENC_SKIP on them -- rl |
| // (besides, the logic here used to be inverted: ) |
| // buf[0] = keyframe ? 0x11: 0x10; |
| buf[0] = keyframe ? 0x10 : 0x11; |
| AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE); |
| // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */ |
| AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */ |
| AV_WB16(&buf[6], 0); |
| // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */ |
| AV_WB16(&buf[8], h); /* using relative values works as well -- rl */ |
| AV_WB16(&buf[10], s->w); |
| } |
| |
| static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, |
| uint8_t *last_data[4], int last_linesize[4], |
| uint8_t *data[4], int linesize[4], |
| uint8_t *scratch_data[4], int scratch_linesize[4], |
| unsigned char *buf, int64_t *best_score) |
| { |
| int64_t score = 0; |
| int best_size = 0; |
| strip_info info; |
| // for codebook optimization: |
| int v1enough, v1_size, v4enough, v4_size; |
| int new_v1_size, new_v4_size; |
| int v1shrunk, v4shrunk; |
| |
| if (!keyframe) |
| calculate_skip_errors(s, h, last_data, last_linesize, data, linesize, |
| &info); |
| |
| // try some powers of 4 for the size of the codebooks |
| // constraint the v4 codebook to be no bigger than v1 one, |
| // (and no less than v1_size/4) |
| // thus making v1 preferable and possibly losing small details? should be ok |
| #define SMALLEST_CODEBOOK 1 |
| for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) { |
| for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) { |
| CinepakMode mode; |
| // try all modes |
| for (mode = 0; mode < MODE_COUNT; mode++) { |
| // don't allow MODE_MC in intra frames |
| if (keyframe && mode == MODE_MC) |
| continue; |
| |
| if (mode == MODE_V1_ONLY) { |
| info.v1_size = v1_size; |
| // the size may shrink even before optimizations if the input is short: |
| info.v1_size = quantize(s, h, data, linesize, 1, |
| &info, ENC_UNCERTAIN); |
| if (info.v1_size < v1_size) |
| // too few eligible blocks, no sense in trying bigger sizes |
| v1enough = 1; |
| |
| info.v4_size = 0; |
| } else { // mode != MODE_V1_ONLY |
| // if v4 codebook is empty then only allow V1-only mode |
| if (!v4_size) |
| continue; |
| |
| if (mode == MODE_V1_V4) { |
| info.v4_size = v4_size; |
| info.v4_size = quantize(s, h, data, linesize, 0, |
| &info, ENC_UNCERTAIN); |
| if (info.v4_size < v4_size) |
| // too few eligible blocks, no sense in trying bigger sizes |
| v4enough = 1; |
| } |
| } |
| |
| info.mode = mode; |
| // choose the best encoding per block, based on current experience |
| score = calculate_mode_score(s, h, &info, 0, |
| &v1shrunk, &v4shrunk); |
| |
| if (mode != MODE_V1_ONLY) { |
| int extra_iterations_limit = s->max_extra_cb_iterations; |
| // recompute the codebooks, omitting the extra blocks |
| // we assume we _may_ come here with more blocks to encode than before |
| info.v1_size = v1_size; |
| new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); |
| if (new_v1_size < info.v1_size) |
| info.v1_size = new_v1_size; |
| // we assume we _may_ come here with more blocks to encode than before |
| info.v4_size = v4_size; |
| new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); |
| if (new_v4_size < info.v4_size) |
| info.v4_size = new_v4_size; |
| // calculate the resulting score |
| // (do not move blocks to codebook encodings now, as some blocks may have |
| // got bigger errors despite a smaller training set - but we do not |
| // ever grow the training sets back) |
| for (;;) { |
| score = calculate_mode_score(s, h, &info, 1, |
| &v1shrunk, &v4shrunk); |
| // do we have a reason to reiterate? if so, have we reached the limit? |
| if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--) |
| break; |
| // recompute the codebooks, omitting the extra blocks |
| if (v1shrunk) { |
| info.v1_size = v1_size; |
| new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); |
| if (new_v1_size < info.v1_size) |
| info.v1_size = new_v1_size; |
| } |
| if (v4shrunk) { |
| info.v4_size = v4_size; |
| new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); |
| if (new_v4_size < info.v4_size) |
| info.v4_size = new_v4_size; |
| } |
| } |
| } |
| |
| if (best_size == 0 || score < *best_score) { |
| *best_score = score; |
| best_size = encode_mode(s, h, |
| scratch_data, scratch_linesize, |
| last_data, last_linesize, &info, |
| s->strip_buf + STRIP_HEADER_SIZE); |
| |
| write_strip_header(s, y, h, keyframe, s->strip_buf, best_size); |
| } |
| } |
| } |
| } |
| |
| best_size += STRIP_HEADER_SIZE; |
| memcpy(buf, s->strip_buf, best_size); |
| |
| return best_size; |
| } |
| |
| static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, |
| int num_strips, int data_size, int isakeyframe) |
| { |
| buf[0] = isakeyframe ? 0 : 1; |
| AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE); |
| AV_WB16(&buf[4], s->w); |
| AV_WB16(&buf[6], s->h); |
| AV_WB16(&buf[8], num_strips); |
| |
| return CVID_HEADER_SIZE; |
| } |
| |
| static int rd_frame(CinepakEncContext *s, const AVFrame *frame, |
| int isakeyframe, unsigned char *buf, int buf_size) |
| { |
| int num_strips, strip, i, y, nexty, size, temp_size, best_size; |
| uint8_t *last_data [4], *data [4], *scratch_data [4]; |
| int last_linesize[4], linesize[4], scratch_linesize[4]; |
| int64_t best_score = 0, score, score_temp; |
| int best_nstrips; |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) { |
| int x; |
| // build a copy of the given frame in the correct colorspace |
| for (y = 0; y < s->h; y += 2) |
| for (x = 0; x < s->w; x += 2) { |
| uint8_t *ir[2]; |
| int32_t r, g, b, rr, gg, bb; |
| ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0]; |
| ir[1] = ir[0] + frame->linesize[0]; |
| get_sub_picture(s, x, y, |
| s->input_frame->data, s->input_frame->linesize, |
| scratch_data, scratch_linesize); |
| r = g = b = 0; |
| for (i = 0; i < 4; ++i) { |
| int i1, i2; |
| i1 = (i & 1); |
| i2 = (i >= 2); |
| rr = ir[i2][i1 * 3 + 0]; |
| gg = ir[i2][i1 * 3 + 1]; |
| bb = ir[i2][i1 * 3 + 2]; |
| r += rr; |
| g += gg; |
| b += bb; |
| // using fixed point arithmetic for portable repeatability, scaling by 2^23 |
| // "Y" |
| // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb; |
| rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23; |
| if (rr < 0) |
| rr = 0; |
| else if (rr > 255) |
| rr = 255; |
| scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr; |
| } |
| // let us scale down as late as possible |
| // r /= 4; g /= 4; b /= 4; |
| // "U" |
| // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b; |
| rr = (-299683 * r - 599156 * g + 898839 * b) >> 23; |
| if (rr < -128) |
| rr = -128; |
| else if (rr > 127) |
| rr = 127; |
| scratch_data[1][0] = rr + 128; // quantize needs unsigned |
| // "V" |
| // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b; |
| rr = (748893 * r - 599156 * g - 149737 * b) >> 23; |
| if (rr < -128) |
| rr = -128; |
| else if (rr > 127) |
| rr = 127; |
| scratch_data[2][0] = rr + 128; // quantize needs unsigned |
| } |
| } |
| |
| // would be nice but quite certainly incompatible with vintage players: |
| // support encoding zero strips (meaning skip the whole frame) |
| for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) { |
| score = 0; |
| size = 0; |
| |
| for (y = 0, strip = 1; y < s->h; strip++, y = nexty) { |
| int strip_height; |
| |
| nexty = strip * s->h / num_strips; // <= s->h |
| // make nexty the next multiple of 4 if not already there |
| if (nexty & 3) |
| nexty += 4 - (nexty & 3); |
| |
| strip_height = nexty - y; |
| if (strip_height <= 0) { // can this ever happen? |
| av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips); |
| continue; |
| } |
| |
| if (s->pix_fmt == AV_PIX_FMT_RGB24) |
| get_sub_picture(s, 0, y, |
| s->input_frame->data, s->input_frame->linesize, |
| data, linesize); |
| else |
| get_sub_picture(s, 0, y, |
| (uint8_t **)frame->data, (int *)frame->linesize, |
| data, linesize); |
| get_sub_picture(s, 0, y, |
| s->last_frame->data, s->last_frame->linesize, |
| last_data, last_linesize); |
| get_sub_picture(s, 0, y, |
| s->scratch_frame->data, s->scratch_frame->linesize, |
| scratch_data, scratch_linesize); |
| |
| if ((temp_size = rd_strip(s, y, strip_height, isakeyframe, |
| last_data, last_linesize, data, linesize, |
| scratch_data, scratch_linesize, |
| s->frame_buf + size + CVID_HEADER_SIZE, |
| &score_temp)) < 0) |
| return temp_size; |
| |
| score += score_temp; |
| size += temp_size; |
| } |
| |
| if (best_score == 0 || score < best_score) { |
| best_score = score; |
| best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe); |
| |
| FFSWAP(AVFrame *, s->best_frame, s->scratch_frame); |
| memcpy(buf, s->frame_buf, best_size); |
| best_nstrips = num_strips; |
| } |
| // avoid trying too many strip numbers without a real reason |
| // (this makes the processing of the very first frame faster) |
| if (num_strips - best_nstrips > 4) |
| break; |
| } |
| |
| // let the number of strips slowly adapt to the changes in the contents, |
| // compared to full bruteforcing every time this will occasionally lead |
| // to some r/d performance loss but makes encoding up to several times faster |
| if (!s->strip_number_delta_range) { |
| if (best_nstrips == s->max_strips) { // let us try to step up |
| s->max_strips = best_nstrips + 1; |
| if (s->max_strips >= s->max_max_strips) |
| s->max_strips = s->max_max_strips; |
| } else { // try to step down |
| s->max_strips = best_nstrips; |
| } |
| s->min_strips = s->max_strips - 1; |
| if (s->min_strips < s->min_min_strips) |
| s->min_strips = s->min_min_strips; |
| } else { |
| s->max_strips = best_nstrips + s->strip_number_delta_range; |
| if (s->max_strips >= s->max_max_strips) |
| s->max_strips = s->max_max_strips; |
| s->min_strips = best_nstrips - s->strip_number_delta_range; |
| if (s->min_strips < s->min_min_strips) |
| s->min_strips = s->min_min_strips; |
| } |
| |
| return best_size; |
| } |
| |
| static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
| const AVFrame *frame, int *got_packet) |
| { |
| CinepakEncContext *s = avctx->priv_data; |
| int ret; |
| |
| s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE; |
| |
| if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0) |
| return ret; |
| ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size); |
| pkt->size = ret; |
| if (s->curframe == 0) |
| pkt->flags |= AV_PKT_FLAG_KEY; |
| *got_packet = 1; |
| |
| FFSWAP(AVFrame *, s->last_frame, s->best_frame); |
| |
| if (++s->curframe >= s->keyint) |
| s->curframe = 0; |
| |
| return 0; |
| } |
| |
| static av_cold int cinepak_encode_end(AVCodecContext *avctx) |
| { |
| CinepakEncContext *s = avctx->priv_data; |
| int x; |
| |
| av_frame_free(&s->last_frame); |
| av_frame_free(&s->best_frame); |
| av_frame_free(&s->scratch_frame); |
| if (avctx->pix_fmt == AV_PIX_FMT_RGB24) |
| av_frame_free(&s->input_frame); |
| av_freep(&s->codebook_input); |
| av_freep(&s->codebook_closest); |
| av_freep(&s->strip_buf); |
| av_freep(&s->frame_buf); |
| av_freep(&s->mb); |
| |
| for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) |
| av_freep(&s->pict_bufs[x]); |
| |
| return 0; |
| } |
| |
| AVCodec ff_cinepak_encoder = { |
| .name = "cinepak", |
| .long_name = NULL_IF_CONFIG_SMALL("Cinepak"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_CINEPAK, |
| .priv_data_size = sizeof(CinepakEncContext), |
| .init = cinepak_encode_init, |
| .encode2 = cinepak_encode_frame, |
| .close = cinepak_encode_end, |
| .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, |
| .priv_class = &cinepak_class, |
| .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, |
| }; |