| /* |
| * LPC utility code |
| * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/common.h" |
| #include "libavutil/lls.h" |
| |
| #define LPC_USE_DOUBLE |
| #include "lpc.h" |
| #include "libavutil/avassert.h" |
| |
| |
| /** |
| * Apply Welch window function to audio block |
| */ |
| static void lpc_apply_welch_window_c(const int32_t *data, int len, |
| double *w_data) |
| { |
| int i, n2; |
| double w; |
| double c; |
| |
| n2 = (len >> 1); |
| c = 2.0 / (len - 1.0); |
| |
| if (len & 1) { |
| for(i=0; i<n2; i++) { |
| w = c - i - 1.0; |
| w = 1.0 - (w * w); |
| w_data[i] = data[i] * w; |
| w_data[len-1-i] = data[len-1-i] * w; |
| } |
| return; |
| } |
| |
| w_data+=n2; |
| data+=n2; |
| for(i=0; i<n2; i++) { |
| w = c - n2 + i; |
| w = 1.0 - (w * w); |
| w_data[-i-1] = data[-i-1] * w; |
| w_data[+i ] = data[+i ] * w; |
| } |
| } |
| |
| /** |
| * Calculate autocorrelation data from audio samples |
| * A Welch window function is applied before calculation. |
| */ |
| static void lpc_compute_autocorr_c(const double *data, int len, int lag, |
| double *autoc) |
| { |
| int i, j; |
| |
| for(j=0; j<lag; j+=2){ |
| double sum0 = 1.0, sum1 = 1.0; |
| for(i=j; i<len; i++){ |
| sum0 += data[i] * data[i-j]; |
| sum1 += data[i] * data[i-j-1]; |
| } |
| autoc[j ] = sum0; |
| autoc[j+1] = sum1; |
| } |
| |
| if(j==lag){ |
| double sum = 1.0; |
| for(i=j-1; i<len; i+=2){ |
| sum += data[i ] * data[i-j ] |
| + data[i+1] * data[i-j+1]; |
| } |
| autoc[j] = sum; |
| } |
| } |
| |
| /** |
| * Quantize LPC coefficients |
| */ |
| static void quantize_lpc_coefs(double *lpc_in, int order, int precision, |
| int32_t *lpc_out, int *shift, int min_shift, |
| int max_shift, int zero_shift) |
| { |
| int i; |
| double cmax, error; |
| int32_t qmax; |
| int sh; |
| |
| /* define maximum levels */ |
| qmax = (1 << (precision - 1)) - 1; |
| |
| /* find maximum coefficient value */ |
| cmax = 0.0; |
| for(i=0; i<order; i++) { |
| cmax= FFMAX(cmax, fabs(lpc_in[i])); |
| } |
| |
| /* if maximum value quantizes to zero, return all zeros */ |
| if(cmax * (1 << max_shift) < 1.0) { |
| *shift = zero_shift; |
| memset(lpc_out, 0, sizeof(int32_t) * order); |
| return; |
| } |
| |
| /* calculate level shift which scales max coeff to available bits */ |
| sh = max_shift; |
| while((cmax * (1 << sh) > qmax) && (sh > min_shift)) { |
| sh--; |
| } |
| |
| /* since negative shift values are unsupported in decoder, scale down |
| coefficients instead */ |
| if(sh == 0 && cmax > qmax) { |
| double scale = ((double)qmax) / cmax; |
| for(i=0; i<order; i++) { |
| lpc_in[i] *= scale; |
| } |
| } |
| |
| /* output quantized coefficients and level shift */ |
| error=0; |
| for(i=0; i<order; i++) { |
| error -= lpc_in[i] * (1 << sh); |
| lpc_out[i] = av_clip(lrintf(error), -qmax, qmax); |
| error -= lpc_out[i]; |
| } |
| *shift = sh; |
| } |
| |
| static int estimate_best_order(double *ref, int min_order, int max_order) |
| { |
| int i, est; |
| |
| est = min_order; |
| for(i=max_order-1; i>=min_order-1; i--) { |
| if(ref[i] > 0.10) { |
| est = i+1; |
| break; |
| } |
| } |
| return est; |
| } |
| |
| int ff_lpc_calc_ref_coefs(LPCContext *s, |
| const int32_t *samples, int order, double *ref) |
| { |
| double autoc[MAX_LPC_ORDER + 1]; |
| |
| s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples); |
| s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc); |
| compute_ref_coefs(autoc, order, ref, NULL); |
| |
| return order; |
| } |
| |
| double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len, |
| int order, double *ref) |
| { |
| int i; |
| double signal = 0.0f, avg_err = 0.0f; |
| double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0}; |
| const double a = 0.5f, b = 1.0f - a; |
| |
| /* Apply windowing */ |
| for (i = 0; i <= len / 2; i++) { |
| double weight = a - b*cos((2*M_PI*i)/(len - 1)); |
| s->windowed_samples[i] = weight*samples[i]; |
| s->windowed_samples[len-1-i] = weight*samples[len-1-i]; |
| } |
| |
| s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc); |
| signal = autoc[0]; |
| compute_ref_coefs(autoc, order, ref, error); |
| for (i = 0; i < order; i++) |
| avg_err = (avg_err + error[i])/2.0f; |
| return signal/avg_err; |
| } |
| |
| /** |
| * Calculate LPC coefficients for multiple orders |
| * |
| * @param lpc_type LPC method for determining coefficients, |
| * see #FFLPCType for details |
| */ |
| int ff_lpc_calc_coefs(LPCContext *s, |
| const int32_t *samples, int blocksize, int min_order, |
| int max_order, int precision, |
| int32_t coefs[][MAX_LPC_ORDER], int *shift, |
| enum FFLPCType lpc_type, int lpc_passes, |
| int omethod, int min_shift, int max_shift, int zero_shift) |
| { |
| double autoc[MAX_LPC_ORDER+1]; |
| double ref[MAX_LPC_ORDER] = { 0 }; |
| double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; |
| int i, j, pass = 0; |
| int opt_order; |
| |
| av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && |
| lpc_type > FF_LPC_TYPE_FIXED); |
| av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON); |
| |
| /* reinit LPC context if parameters have changed */ |
| if (blocksize != s->blocksize || max_order != s->max_order || |
| lpc_type != s->lpc_type) { |
| ff_lpc_end(s); |
| ff_lpc_init(s, blocksize, max_order, lpc_type); |
| } |
| |
| if(lpc_passes <= 0) |
| lpc_passes = 2; |
| |
| if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) { |
| s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples); |
| |
| s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc); |
| |
| compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); |
| |
| for(i=0; i<max_order; i++) |
| ref[i] = fabs(lpc[i][i]); |
| |
| pass++; |
| } |
| |
| if (lpc_type == FF_LPC_TYPE_CHOLESKY) { |
| LLSModel *m = s->lls_models; |
| LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]); |
| double av_uninit(weight); |
| memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var)); |
| |
| for(j=0; j<max_order; j++) |
| m[0].coeff[max_order-1][j] = -lpc[max_order-1][j]; |
| |
| for(; pass<lpc_passes; pass++){ |
| avpriv_init_lls(&m[pass&1], max_order); |
| |
| weight=0; |
| for(i=max_order; i<blocksize; i++){ |
| for(j=0; j<=max_order; j++) |
| var[j]= samples[i-j]; |
| |
| if(pass){ |
| double eval, inv, rinv; |
| eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); |
| eval= (512>>pass) + fabs(eval - var[0]); |
| inv = 1/eval; |
| rinv = sqrt(inv); |
| for(j=0; j<=max_order; j++) |
| var[j] *= rinv; |
| weight += inv; |
| }else |
| weight++; |
| |
| m[pass&1].update_lls(&m[pass&1], var); |
| } |
| avpriv_solve_lls(&m[pass&1], 0.001, 0); |
| } |
| |
| for(i=0; i<max_order; i++){ |
| for(j=0; j<max_order; j++) |
| lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; |
| ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; |
| } |
| for(i=max_order-1; i>0; i--) |
| ref[i] = ref[i-1] - ref[i]; |
| } |
| |
| opt_order = max_order; |
| |
| if(omethod == ORDER_METHOD_EST) { |
| opt_order = estimate_best_order(ref, min_order, max_order); |
| i = opt_order-1; |
| quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], |
| min_shift, max_shift, zero_shift); |
| } else { |
| for(i=min_order-1; i<max_order; i++) { |
| quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], |
| min_shift, max_shift, zero_shift); |
| } |
| } |
| |
| return opt_order; |
| } |
| |
| av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order, |
| enum FFLPCType lpc_type) |
| { |
| s->blocksize = blocksize; |
| s->max_order = max_order; |
| s->lpc_type = lpc_type; |
| |
| s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) * |
| sizeof(*s->windowed_samples)); |
| if (!s->windowed_buffer) |
| return AVERROR(ENOMEM); |
| s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4); |
| |
| s->lpc_apply_welch_window = lpc_apply_welch_window_c; |
| s->lpc_compute_autocorr = lpc_compute_autocorr_c; |
| |
| if (ARCH_X86) |
| ff_lpc_init_x86(s); |
| |
| return 0; |
| } |
| |
| av_cold void ff_lpc_end(LPCContext *s) |
| { |
| av_freep(&s->windowed_buffer); |
| } |