| /* |
| * Copyright (c) 2018 Sergey Lavrushkin |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * DNN tensorflow backend implementation. |
| */ |
| |
| #include "dnn_backend_tf.h" |
| #include "dnn_backend_native.h" |
| #include "dnn_backend_native_layer_conv2d.h" |
| #include "dnn_backend_native_layer_depth2space.h" |
| #include "libavformat/avio.h" |
| #include "libavutil/avassert.h" |
| #include "../internal.h" |
| #include "dnn_backend_native_layer_pad.h" |
| #include "dnn_backend_native_layer_maximum.h" |
| #include "dnn_io_proc.h" |
| |
| #include <tensorflow/c/c_api.h> |
| |
| typedef struct TFOptions{ |
| char *sess_config; |
| } TFOptions; |
| |
| typedef struct TFContext { |
| const AVClass *class; |
| TFOptions options; |
| } TFContext; |
| |
| typedef struct TFModel{ |
| TFContext ctx; |
| DNNModel *model; |
| TF_Graph *graph; |
| TF_Session *session; |
| TF_Status *status; |
| } TFModel; |
| |
| #define OFFSET(x) offsetof(TFContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM |
| static const AVOption dnn_tensorflow_options[] = { |
| { "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(dnn_tensorflow); |
| |
| static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, |
| const char **output_names, uint32_t nb_output, AVFrame *out_frame, |
| int do_ioproc); |
| |
| static void free_buffer(void *data, size_t length) |
| { |
| av_freep(&data); |
| } |
| |
| static TF_Buffer *read_graph(const char *model_filename) |
| { |
| TF_Buffer *graph_buf; |
| unsigned char *graph_data = NULL; |
| AVIOContext *model_file_context; |
| long size, bytes_read; |
| |
| if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ |
| return NULL; |
| } |
| |
| size = avio_size(model_file_context); |
| |
| graph_data = av_malloc(size); |
| if (!graph_data){ |
| avio_closep(&model_file_context); |
| return NULL; |
| } |
| bytes_read = avio_read(model_file_context, graph_data, size); |
| avio_closep(&model_file_context); |
| if (bytes_read != size){ |
| av_freep(&graph_data); |
| return NULL; |
| } |
| |
| graph_buf = TF_NewBuffer(); |
| graph_buf->data = (void *)graph_data; |
| graph_buf->length = size; |
| graph_buf->data_deallocator = free_buffer; |
| |
| return graph_buf; |
| } |
| |
| static TF_Tensor *allocate_input_tensor(const DNNData *input) |
| { |
| TF_DataType dt; |
| size_t size; |
| int64_t input_dims[] = {1, input->height, input->width, input->channels}; |
| switch (input->dt) { |
| case DNN_FLOAT: |
| dt = TF_FLOAT; |
| size = sizeof(float); |
| break; |
| case DNN_UINT8: |
| dt = TF_UINT8; |
| size = 1; |
| break; |
| default: |
| av_assert0(!"should not reach here"); |
| } |
| |
| return TF_AllocateTensor(dt, input_dims, 4, |
| input_dims[1] * input_dims[2] * input_dims[3] * size); |
| } |
| |
| static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name) |
| { |
| TFModel *tf_model = (TFModel *)model; |
| TFContext *ctx = &tf_model->ctx; |
| TF_Status *status; |
| int64_t dims[4]; |
| |
| TF_Output tf_output; |
| tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name); |
| if (!tf_output.oper) { |
| av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); |
| return DNN_ERROR; |
| } |
| |
| tf_output.index = 0; |
| input->dt = TF_OperationOutputType(tf_output); |
| |
| status = TF_NewStatus(); |
| TF_GraphGetTensorShape(tf_model->graph, tf_output, dims, 4, status); |
| if (TF_GetCode(status) != TF_OK){ |
| TF_DeleteStatus(status); |
| av_log(ctx, AV_LOG_ERROR, "Failed to get input tensor shape: number of dimension incorrect\n"); |
| return DNN_ERROR; |
| } |
| TF_DeleteStatus(status); |
| |
| // currently only NHWC is supported |
| av_assert0(dims[0] == 1); |
| input->height = dims[1]; |
| input->width = dims[2]; |
| input->channels = dims[3]; |
| |
| return DNN_SUCCESS; |
| } |
| |
| static DNNReturnType get_output_tf(void *model, const char *input_name, int input_width, int input_height, |
| const char *output_name, int *output_width, int *output_height) |
| { |
| DNNReturnType ret; |
| TFModel *tf_model = (TFModel *)model; |
| TFContext *ctx = &tf_model->ctx; |
| AVFrame *in_frame = av_frame_alloc(); |
| AVFrame *out_frame = NULL; |
| |
| if (!in_frame) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); |
| return DNN_ERROR; |
| } |
| |
| out_frame = av_frame_alloc(); |
| if (!out_frame) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n"); |
| av_frame_free(&in_frame); |
| return DNN_ERROR; |
| } |
| |
| in_frame->width = input_width; |
| in_frame->height = input_height; |
| |
| ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); |
| *output_width = out_frame->width; |
| *output_height = out_frame->height; |
| |
| av_frame_free(&out_frame); |
| av_frame_free(&in_frame); |
| return ret; |
| } |
| |
| static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| TF_Buffer *graph_def; |
| TF_ImportGraphDefOptions *graph_opts; |
| TF_SessionOptions *sess_opts; |
| const TF_Operation *init_op; |
| uint8_t *sess_config = NULL; |
| int sess_config_length = 0; |
| |
| // prepare the sess config data |
| if (tf_model->ctx.options.sess_config != NULL) { |
| /* |
| tf_model->ctx.options.sess_config is hex to present the serialized proto |
| required by TF_SetConfig below, so we need to first generate the serialized |
| proto in a python script, the following is a script example to generate |
| serialized proto which specifies one GPU, we can change the script to add |
| more options. |
| |
| import tensorflow as tf |
| gpu_options = tf.GPUOptions(visible_device_list='0') |
| config = tf.ConfigProto(gpu_options=gpu_options) |
| s = config.SerializeToString() |
| b = ''.join("%02x" % int(ord(b)) for b in s[::-1]) |
| print('0x%s' % b) |
| |
| the script output looks like: 0xab...cd, and then pass 0xab...cd to sess_config. |
| */ |
| char tmp[3]; |
| tmp[2] = '\0'; |
| |
| if (strncmp(tf_model->ctx.options.sess_config, "0x", 2) != 0) { |
| av_log(ctx, AV_LOG_ERROR, "sess_config should start with '0x'\n"); |
| return DNN_ERROR; |
| } |
| |
| sess_config_length = strlen(tf_model->ctx.options.sess_config); |
| if (sess_config_length % 2 != 0) { |
| av_log(ctx, AV_LOG_ERROR, "the length of sess_config is not even (%s), " |
| "please re-generate the config.\n", |
| tf_model->ctx.options.sess_config); |
| return DNN_ERROR; |
| } |
| |
| sess_config_length -= 2; //ignore the first '0x' |
| sess_config_length /= 2; //get the data length in byte |
| |
| sess_config = av_malloc(sess_config_length); |
| if (!sess_config) { |
| av_log(ctx, AV_LOG_ERROR, "failed to allocate memory\n"); |
| return DNN_ERROR; |
| } |
| |
| for (int i = 0; i < sess_config_length; i++) { |
| int index = 2 + (sess_config_length - 1 - i) * 2; |
| tmp[0] = tf_model->ctx.options.sess_config[index]; |
| tmp[1] = tf_model->ctx.options.sess_config[index + 1]; |
| sess_config[i] = strtol(tmp, NULL, 16); |
| } |
| } |
| |
| graph_def = read_graph(model_filename); |
| if (!graph_def){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to read model \"%s\" graph\n", model_filename); |
| av_freep(&sess_config); |
| return DNN_ERROR; |
| } |
| tf_model->graph = TF_NewGraph(); |
| tf_model->status = TF_NewStatus(); |
| graph_opts = TF_NewImportGraphDefOptions(); |
| TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); |
| TF_DeleteImportGraphDefOptions(graph_opts); |
| TF_DeleteBuffer(graph_def); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| TF_DeleteGraph(tf_model->graph); |
| TF_DeleteStatus(tf_model->status); |
| av_log(ctx, AV_LOG_ERROR, "Failed to import serialized graph to model graph\n"); |
| av_freep(&sess_config); |
| return DNN_ERROR; |
| } |
| |
| init_op = TF_GraphOperationByName(tf_model->graph, "init"); |
| sess_opts = TF_NewSessionOptions(); |
| |
| if (sess_config) { |
| TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->status); |
| av_freep(&sess_config); |
| if (TF_GetCode(tf_model->status) != TF_OK) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to set config for sess options with %s\n", |
| tf_model->ctx.options.sess_config); |
| return DNN_ERROR; |
| } |
| } |
| |
| tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); |
| TF_DeleteSessionOptions(sess_opts); |
| if (TF_GetCode(tf_model->status) != TF_OK) |
| { |
| av_log(ctx, AV_LOG_ERROR, "Failed to create new session with model graph\n"); |
| return DNN_ERROR; |
| } |
| |
| // Run initialization operation with name "init" if it is present in graph |
| if (init_op){ |
| TF_SessionRun(tf_model->session, NULL, |
| NULL, NULL, 0, |
| NULL, NULL, 0, |
| &init_op, 1, NULL, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK) |
| { |
| av_log(ctx, AV_LOG_ERROR, "Failed to run session when initializing\n"); |
| return DNN_ERROR; |
| } |
| } |
| |
| return DNN_SUCCESS; |
| } |
| |
| #define NAME_BUFFER_SIZE 256 |
| |
| static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, |
| ConvolutionalParams* params, const int layer) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| TF_Operation *op; |
| TF_OperationDescription *op_desc; |
| TF_Output input; |
| int64_t strides[] = {1, 1, 1, 1}; |
| TF_Tensor *tensor; |
| int64_t dims[4]; |
| int dims_len; |
| char name_buffer[NAME_BUFFER_SIZE]; |
| int32_t size; |
| |
| size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; |
| input.index = 0; |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
| TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
| dims[0] = params->output_num; |
| dims[1] = params->kernel_size; |
| dims[2] = params->kernel_size; |
| dims[3] = params->input_num; |
| dims_len = 4; |
| tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); |
| memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); |
| TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to set value for kernel of conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add kernel to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); |
| input.oper = op; |
| TF_AddInput(op_desc, input); |
| input.oper = transpose_op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| TF_SetAttrType(op_desc, "Tperm", TF_INT32); |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add transpose to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); |
| input.oper = *cur_op; |
| TF_AddInput(op_desc, input); |
| input.oper = op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| TF_SetAttrIntList(op_desc, "strides", strides, 4); |
| TF_SetAttrString(op_desc, "padding", "VALID", 5); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add conv2d to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
| TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
| dims[0] = params->output_num; |
| dims_len = 1; |
| tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); |
| memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float)); |
| TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to set value for conv_biases of conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add conv_biases to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); |
| input.oper = *cur_op; |
| TF_AddInput(op_desc, input); |
| input.oper = op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add bias_add to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); |
| switch (params->activation){ |
| case RELU: |
| op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); |
| break; |
| case TANH: |
| op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); |
| break; |
| case SIGMOID: |
| op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); |
| break; |
| default: |
| av_log(ctx, AV_LOG_ERROR, "Unsupported convolutional activation function\n"); |
| return DNN_ERROR; |
| } |
| input.oper = *cur_op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add activation function to conv layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| return DNN_SUCCESS; |
| } |
| |
| static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, |
| DepthToSpaceParams *params, const int layer) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| TF_OperationDescription *op_desc; |
| TF_Output input; |
| char name_buffer[NAME_BUFFER_SIZE]; |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); |
| input.oper = *cur_op; |
| input.index = 0; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| TF_SetAttrInt(op_desc, "block_size", params->block_size); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| return DNN_SUCCESS; |
| } |
| |
| static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, |
| LayerPadParams *params, const int layer) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| TF_Operation *op; |
| TF_Tensor *tensor; |
| TF_OperationDescription *op_desc; |
| TF_Output input; |
| int32_t *pads; |
| int64_t pads_shape[] = {4, 2}; |
| |
| char name_buffer[NAME_BUFFER_SIZE]; |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer); |
| |
| op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
| TF_SetAttrType(op_desc, "dtype", TF_INT32); |
| tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); |
| pads = (int32_t *)TF_TensorData(tensor); |
| pads[0] = params->paddings[0][0]; |
| pads[1] = params->paddings[0][1]; |
| pads[2] = params->paddings[1][0]; |
| pads[3] = params->paddings[1][1]; |
| pads[4] = params->paddings[2][0]; |
| pads[5] = params->paddings[2][1]; |
| pads[6] = params->paddings[3][0]; |
| pads[7] = params->paddings[3][1]; |
| TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); |
| input.oper = *cur_op; |
| input.index = 0; |
| TF_AddInput(op_desc, input); |
| input.oper = op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); |
| TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| return DNN_SUCCESS; |
| } |
| |
| static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, |
| DnnLayerMaximumParams *params, const int layer) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| TF_Operation *op; |
| TF_Tensor *tensor; |
| TF_OperationDescription *op_desc; |
| TF_Output input; |
| float *y; |
| |
| char name_buffer[NAME_BUFFER_SIZE]; |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); |
| |
| op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); |
| TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
| tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); |
| y = (float *)TF_TensorData(tensor); |
| *y = params->val.y; |
| TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer); |
| return DNN_ERROR; |
| } |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); |
| op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); |
| input.oper = *cur_op; |
| input.index = 0; |
| TF_AddInput(op_desc, input); |
| input.oper = op; |
| TF_AddInput(op_desc, input); |
| TF_SetAttrType(op_desc, "T", TF_FLOAT); |
| *cur_op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer); |
| return DNN_ERROR; |
| } |
| |
| return DNN_SUCCESS; |
| } |
| |
| static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename) |
| { |
| TFContext *ctx = &tf_model->ctx; |
| int32_t layer; |
| TF_OperationDescription *op_desc; |
| TF_Operation *op; |
| TF_Operation *transpose_op; |
| TF_Tensor *tensor; |
| TF_Output input; |
| int32_t *transpose_perm; |
| int64_t transpose_perm_shape[] = {4}; |
| int64_t input_shape[] = {1, -1, -1, -1}; |
| DNNReturnType layer_add_res; |
| DNNModel *model = NULL; |
| NativeModel *native_model; |
| |
| model = ff_dnn_load_model_native(model_filename, NULL, NULL); |
| if (!model){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n"); |
| return DNN_ERROR; |
| } |
| |
| native_model = (NativeModel *)model->model; |
| tf_model->graph = TF_NewGraph(); |
| tf_model->status = TF_NewStatus(); |
| |
| #define CLEANUP_ON_ERROR(tf_model) \ |
| { \ |
| TF_DeleteGraph(tf_model->graph); \ |
| TF_DeleteStatus(tf_model->status); \ |
| av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \ |
| return DNN_ERROR; \ |
| } |
| |
| op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); |
| TF_SetAttrType(op_desc, "dtype", TF_FLOAT); |
| TF_SetAttrShape(op_desc, "shape", input_shape, 4); |
| op = TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| CLEANUP_ON_ERROR(tf_model); |
| } |
| |
| op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); |
| TF_SetAttrType(op_desc, "dtype", TF_INT32); |
| tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); |
| transpose_perm = (int32_t *)TF_TensorData(tensor); |
| transpose_perm[0] = 1; |
| transpose_perm[1] = 2; |
| transpose_perm[2] = 3; |
| transpose_perm[3] = 0; |
| TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| CLEANUP_ON_ERROR(tf_model); |
| } |
| transpose_op = TF_FinishOperation(op_desc, tf_model->status); |
| |
| for (layer = 0; layer < native_model->layers_num; ++layer){ |
| switch (native_model->layers[layer].type){ |
| case DLT_INPUT: |
| layer_add_res = DNN_SUCCESS; |
| break; |
| case DLT_CONV2D: |
| layer_add_res = add_conv_layer(tf_model, transpose_op, &op, |
| (ConvolutionalParams *)native_model->layers[layer].params, layer); |
| break; |
| case DLT_DEPTH_TO_SPACE: |
| layer_add_res = add_depth_to_space_layer(tf_model, &op, |
| (DepthToSpaceParams *)native_model->layers[layer].params, layer); |
| break; |
| case DLT_MIRROR_PAD: |
| layer_add_res = add_pad_layer(tf_model, &op, |
| (LayerPadParams *)native_model->layers[layer].params, layer); |
| break; |
| case DLT_MAXIMUM: |
| layer_add_res = add_maximum_layer(tf_model, &op, |
| (DnnLayerMaximumParams *)native_model->layers[layer].params, layer); |
| break; |
| default: |
| CLEANUP_ON_ERROR(tf_model); |
| } |
| |
| if (layer_add_res != DNN_SUCCESS){ |
| CLEANUP_ON_ERROR(tf_model); |
| } |
| } |
| |
| op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); |
| input.oper = op; |
| input.index = 0; |
| TF_AddInput(op_desc, input); |
| TF_FinishOperation(op_desc, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK){ |
| CLEANUP_ON_ERROR(tf_model); |
| } |
| |
| ff_dnn_free_model_native(&model); |
| |
| return DNN_SUCCESS; |
| } |
| |
| DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options, void *userdata) |
| { |
| DNNModel *model = NULL; |
| TFModel *tf_model = NULL; |
| |
| model = av_mallocz(sizeof(DNNModel)); |
| if (!model){ |
| return NULL; |
| } |
| |
| tf_model = av_mallocz(sizeof(TFModel)); |
| if (!tf_model){ |
| av_freep(&model); |
| return NULL; |
| } |
| tf_model->ctx.class = &dnn_tensorflow_class; |
| tf_model->model = model; |
| |
| //parse options |
| av_opt_set_defaults(&tf_model->ctx); |
| if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0) { |
| av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); |
| av_freep(&tf_model); |
| av_freep(&model); |
| return NULL; |
| } |
| |
| if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ |
| if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ |
| av_freep(&tf_model); |
| av_freep(&model); |
| |
| return NULL; |
| } |
| } |
| |
| model->model = (void *)tf_model; |
| model->get_input = &get_input_tf; |
| model->get_output = &get_output_tf; |
| model->options = options; |
| model->userdata = userdata; |
| |
| return model; |
| } |
| |
| static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, |
| const char **output_names, uint32_t nb_output, AVFrame *out_frame, |
| int do_ioproc) |
| { |
| TF_Output *tf_outputs; |
| TFModel *tf_model = (TFModel *)model->model; |
| TFContext *ctx = &tf_model->ctx; |
| DNNData input, output; |
| TF_Tensor **output_tensors; |
| TF_Output tf_input; |
| TF_Tensor *input_tensor; |
| |
| if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS) |
| return DNN_ERROR; |
| input.height = in_frame->height; |
| input.width = in_frame->width; |
| |
| tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name); |
| if (!tf_input.oper){ |
| av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); |
| return DNN_ERROR; |
| } |
| tf_input.index = 0; |
| input_tensor = allocate_input_tensor(&input); |
| if (!input_tensor){ |
| av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); |
| return DNN_ERROR; |
| } |
| input.data = (float *)TF_TensorData(input_tensor); |
| |
| if (do_ioproc) { |
| if (tf_model->model->pre_proc != NULL) { |
| tf_model->model->pre_proc(in_frame, &input, tf_model->model->userdata); |
| } else { |
| proc_from_frame_to_dnn(in_frame, &input, ctx); |
| } |
| } |
| |
| if (nb_output != 1) { |
| // currently, the filter does not need multiple outputs, |
| // so we just pending the support until we really need it. |
| av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n"); |
| return DNN_ERROR; |
| } |
| |
| tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs)); |
| if (tf_outputs == NULL) { |
| av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \ |
| return DNN_ERROR; |
| } |
| |
| output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors)); |
| if (!output_tensors) { |
| av_freep(&tf_outputs); |
| av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \ |
| return DNN_ERROR; |
| } |
| |
| for (int i = 0; i < nb_output; ++i) { |
| tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]); |
| if (!tf_outputs[i].oper) { |
| av_freep(&tf_outputs); |
| av_freep(&output_tensors); |
| av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \ |
| return DNN_ERROR; |
| } |
| tf_outputs[i].index = 0; |
| } |
| |
| TF_SessionRun(tf_model->session, NULL, |
| &tf_input, &input_tensor, 1, |
| tf_outputs, output_tensors, nb_output, |
| NULL, 0, NULL, tf_model->status); |
| if (TF_GetCode(tf_model->status) != TF_OK) { |
| av_freep(&tf_outputs); |
| av_freep(&output_tensors); |
| av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); |
| return DNN_ERROR; |
| } |
| |
| for (uint32_t i = 0; i < nb_output; ++i) { |
| output.height = TF_Dim(output_tensors[i], 1); |
| output.width = TF_Dim(output_tensors[i], 2); |
| output.channels = TF_Dim(output_tensors[i], 3); |
| output.data = TF_TensorData(output_tensors[i]); |
| output.dt = TF_TensorType(output_tensors[i]); |
| |
| if (do_ioproc) { |
| if (tf_model->model->post_proc != NULL) { |
| tf_model->model->post_proc(out_frame, &output, tf_model->model->userdata); |
| } else { |
| proc_from_dnn_to_frame(out_frame, &output, ctx); |
| } |
| } else { |
| out_frame->width = output.width; |
| out_frame->height = output.height; |
| } |
| } |
| |
| for (uint32_t i = 0; i < nb_output; ++i) { |
| if (output_tensors[i]) { |
| TF_DeleteTensor(output_tensors[i]); |
| } |
| } |
| TF_DeleteTensor(input_tensor); |
| av_freep(&output_tensors); |
| av_freep(&tf_outputs); |
| return DNN_SUCCESS; |
| } |
| |
| DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, |
| const char **output_names, uint32_t nb_output, AVFrame *out_frame) |
| { |
| TFModel *tf_model = (TFModel *)model->model; |
| TFContext *ctx = &tf_model->ctx; |
| |
| if (!in_frame) { |
| av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n"); |
| return DNN_ERROR; |
| } |
| |
| if (!out_frame) { |
| av_log(ctx, AV_LOG_ERROR, "out frame is NULL when execute model.\n"); |
| return DNN_ERROR; |
| } |
| |
| return execute_model_tf(model, input_name, in_frame, output_names, nb_output, out_frame, 1); |
| } |
| |
| void ff_dnn_free_model_tf(DNNModel **model) |
| { |
| TFModel *tf_model; |
| |
| if (*model){ |
| tf_model = (TFModel *)(*model)->model; |
| if (tf_model->graph){ |
| TF_DeleteGraph(tf_model->graph); |
| } |
| if (tf_model->session){ |
| TF_CloseSession(tf_model->session, tf_model->status); |
| TF_DeleteSession(tf_model->session, tf_model->status); |
| } |
| if (tf_model->status){ |
| TF_DeleteStatus(tf_model->status); |
| } |
| av_freep(&tf_model); |
| av_freep(model); |
| } |
| } |