blob: 76cc037b940b7a43f606954389227835e42cad19 [file] [log] [blame]
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN tensorflow backend implementation.
*/
#include "dnn_backend_tf.h"
#include "dnn_backend_native.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layer_depth2space.h"
#include "libavformat/avio.h"
#include "libavutil/avassert.h"
#include "../internal.h"
#include "dnn_backend_native_layer_pad.h"
#include "dnn_backend_native_layer_maximum.h"
#include "dnn_io_proc.h"
#include <tensorflow/c/c_api.h>
typedef struct TFOptions{
char *sess_config;
} TFOptions;
typedef struct TFContext {
const AVClass *class;
TFOptions options;
} TFContext;
typedef struct TFModel{
TFContext ctx;
DNNModel *model;
TF_Graph *graph;
TF_Session *session;
TF_Status *status;
} TFModel;
#define OFFSET(x) offsetof(TFContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_tensorflow_options[] = {
{ "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(dnn_tensorflow);
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc);
static void free_buffer(void *data, size_t length)
{
av_freep(&data);
}
static TF_Buffer *read_graph(const char *model_filename)
{
TF_Buffer *graph_buf;
unsigned char *graph_data = NULL;
AVIOContext *model_file_context;
long size, bytes_read;
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
return NULL;
}
size = avio_size(model_file_context);
graph_data = av_malloc(size);
if (!graph_data){
avio_closep(&model_file_context);
return NULL;
}
bytes_read = avio_read(model_file_context, graph_data, size);
avio_closep(&model_file_context);
if (bytes_read != size){
av_freep(&graph_data);
return NULL;
}
graph_buf = TF_NewBuffer();
graph_buf->data = (void *)graph_data;
graph_buf->length = size;
graph_buf->data_deallocator = free_buffer;
return graph_buf;
}
static TF_Tensor *allocate_input_tensor(const DNNData *input)
{
TF_DataType dt;
size_t size;
int64_t input_dims[] = {1, input->height, input->width, input->channels};
switch (input->dt) {
case DNN_FLOAT:
dt = TF_FLOAT;
size = sizeof(float);
break;
case DNN_UINT8:
dt = TF_UINT8;
size = 1;
break;
default:
av_assert0(!"should not reach here");
}
return TF_AllocateTensor(dt, input_dims, 4,
input_dims[1] * input_dims[2] * input_dims[3] * size);
}
static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name)
{
TFModel *tf_model = (TFModel *)model;
TFContext *ctx = &tf_model->ctx;
TF_Status *status;
int64_t dims[4];
TF_Output tf_output;
tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name);
if (!tf_output.oper) {
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
return DNN_ERROR;
}
tf_output.index = 0;
input->dt = TF_OperationOutputType(tf_output);
status = TF_NewStatus();
TF_GraphGetTensorShape(tf_model->graph, tf_output, dims, 4, status);
if (TF_GetCode(status) != TF_OK){
TF_DeleteStatus(status);
av_log(ctx, AV_LOG_ERROR, "Failed to get input tensor shape: number of dimension incorrect\n");
return DNN_ERROR;
}
TF_DeleteStatus(status);
// currently only NHWC is supported
av_assert0(dims[0] == 1);
input->height = dims[1];
input->width = dims[2];
input->channels = dims[3];
return DNN_SUCCESS;
}
static DNNReturnType get_output_tf(void *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height)
{
DNNReturnType ret;
TFModel *tf_model = (TFModel *)model;
TFContext *ctx = &tf_model->ctx;
AVFrame *in_frame = av_frame_alloc();
AVFrame *out_frame = NULL;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n");
return DNN_ERROR;
}
out_frame = av_frame_alloc();
if (!out_frame) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n");
av_frame_free(&in_frame);
return DNN_ERROR;
}
in_frame->width = input_width;
in_frame->height = input_height;
ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
*output_width = out_frame->width;
*output_height = out_frame->height;
av_frame_free(&out_frame);
av_frame_free(&in_frame);
return ret;
}
static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename)
{
TFContext *ctx = &tf_model->ctx;
TF_Buffer *graph_def;
TF_ImportGraphDefOptions *graph_opts;
TF_SessionOptions *sess_opts;
const TF_Operation *init_op;
uint8_t *sess_config = NULL;
int sess_config_length = 0;
// prepare the sess config data
if (tf_model->ctx.options.sess_config != NULL) {
/*
tf_model->ctx.options.sess_config is hex to present the serialized proto
required by TF_SetConfig below, so we need to first generate the serialized
proto in a python script, the following is a script example to generate
serialized proto which specifies one GPU, we can change the script to add
more options.
import tensorflow as tf
gpu_options = tf.GPUOptions(visible_device_list='0')
config = tf.ConfigProto(gpu_options=gpu_options)
s = config.SerializeToString()
b = ''.join("%02x" % int(ord(b)) for b in s[::-1])
print('0x%s' % b)
the script output looks like: 0xab...cd, and then pass 0xab...cd to sess_config.
*/
char tmp[3];
tmp[2] = '\0';
if (strncmp(tf_model->ctx.options.sess_config, "0x", 2) != 0) {
av_log(ctx, AV_LOG_ERROR, "sess_config should start with '0x'\n");
return DNN_ERROR;
}
sess_config_length = strlen(tf_model->ctx.options.sess_config);
if (sess_config_length % 2 != 0) {
av_log(ctx, AV_LOG_ERROR, "the length of sess_config is not even (%s), "
"please re-generate the config.\n",
tf_model->ctx.options.sess_config);
return DNN_ERROR;
}
sess_config_length -= 2; //ignore the first '0x'
sess_config_length /= 2; //get the data length in byte
sess_config = av_malloc(sess_config_length);
if (!sess_config) {
av_log(ctx, AV_LOG_ERROR, "failed to allocate memory\n");
return DNN_ERROR;
}
for (int i = 0; i < sess_config_length; i++) {
int index = 2 + (sess_config_length - 1 - i) * 2;
tmp[0] = tf_model->ctx.options.sess_config[index];
tmp[1] = tf_model->ctx.options.sess_config[index + 1];
sess_config[i] = strtol(tmp, NULL, 16);
}
}
graph_def = read_graph(model_filename);
if (!graph_def){
av_log(ctx, AV_LOG_ERROR, "Failed to read model \"%s\" graph\n", model_filename);
av_freep(&sess_config);
return DNN_ERROR;
}
tf_model->graph = TF_NewGraph();
tf_model->status = TF_NewStatus();
graph_opts = TF_NewImportGraphDefOptions();
TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status);
TF_DeleteImportGraphDefOptions(graph_opts);
TF_DeleteBuffer(graph_def);
if (TF_GetCode(tf_model->status) != TF_OK){
TF_DeleteGraph(tf_model->graph);
TF_DeleteStatus(tf_model->status);
av_log(ctx, AV_LOG_ERROR, "Failed to import serialized graph to model graph\n");
av_freep(&sess_config);
return DNN_ERROR;
}
init_op = TF_GraphOperationByName(tf_model->graph, "init");
sess_opts = TF_NewSessionOptions();
if (sess_config) {
TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->status);
av_freep(&sess_config);
if (TF_GetCode(tf_model->status) != TF_OK) {
av_log(ctx, AV_LOG_ERROR, "Failed to set config for sess options with %s\n",
tf_model->ctx.options.sess_config);
return DNN_ERROR;
}
}
tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status);
TF_DeleteSessionOptions(sess_opts);
if (TF_GetCode(tf_model->status) != TF_OK)
{
av_log(ctx, AV_LOG_ERROR, "Failed to create new session with model graph\n");
return DNN_ERROR;
}
// Run initialization operation with name "init" if it is present in graph
if (init_op){
TF_SessionRun(tf_model->session, NULL,
NULL, NULL, 0,
NULL, NULL, 0,
&init_op, 1, NULL, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK)
{
av_log(ctx, AV_LOG_ERROR, "Failed to run session when initializing\n");
return DNN_ERROR;
}
}
return DNN_SUCCESS;
}
#define NAME_BUFFER_SIZE 256
static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op,
ConvolutionalParams* params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_OperationDescription *op_desc;
TF_Output input;
int64_t strides[] = {1, 1, 1, 1};
TF_Tensor *tensor;
int64_t dims[4];
int dims_len;
char name_buffer[NAME_BUFFER_SIZE];
int32_t size;
size = params->input_num * params->output_num * params->kernel_size * params->kernel_size;
input.index = 0;
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
dims[0] = params->output_num;
dims[1] = params->kernel_size;
dims[2] = params->kernel_size;
dims[3] = params->input_num;
dims_len = 4;
tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float));
memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float));
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to set value for kernel of conv layer %d\n", layer);
return DNN_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add kernel to conv layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer);
input.oper = op;
TF_AddInput(op_desc, input);
input.oper = transpose_op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrType(op_desc, "Tperm", TF_INT32);
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add transpose to conv layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer);
input.oper = *cur_op;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrIntList(op_desc, "strides", strides, 4);
TF_SetAttrString(op_desc, "padding", "VALID", 5);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add conv2d to conv layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
dims[0] = params->output_num;
dims_len = 1;
tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float));
memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float));
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to set value for conv_biases of conv layer %d\n", layer);
return DNN_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add conv_biases to conv layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer);
input.oper = *cur_op;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add bias_add to conv layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer);
switch (params->activation){
case RELU:
op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer);
break;
case TANH:
op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer);
break;
case SIGMOID:
op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer);
break;
default:
av_log(ctx, AV_LOG_ERROR, "Unsupported convolutional activation function\n");
return DNN_ERROR;
}
input.oper = *cur_op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add activation function to conv layer %d\n", layer);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op,
DepthToSpaceParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_OperationDescription *op_desc;
TF_Output input;
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer);
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrInt(op_desc, "block_size", params->block_size);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op,
LayerPadParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_Tensor *tensor;
TF_OperationDescription *op_desc;
TF_Output input;
int32_t *pads;
int64_t pads_shape[] = {4, 2};
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t));
pads = (int32_t *)TF_TensorData(tensor);
pads[0] = params->paddings[0][0];
pads[1] = params->paddings[0][1];
pads[2] = params->paddings[1][0];
pads[3] = params->paddings[1][1];
pads[4] = params->paddings[2][0];
pads[5] = params->paddings[2][1];
pads[6] = params->paddings[3][0];
pads[7] = params->paddings[3][1];
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer);
return DNN_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer);
return DNN_ERROR;
}
op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad");
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
TF_SetAttrType(op_desc, "Tpaddings", TF_INT32);
TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op,
DnnLayerMaximumParams *params, const int layer)
{
TFContext *ctx = &tf_model->ctx;
TF_Operation *op;
TF_Tensor *tensor;
TF_OperationDescription *op_desc;
TF_Output input;
float *y;
char name_buffer[NAME_BUFFER_SIZE];
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer);
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT));
y = (float *)TF_TensorData(tensor);
*y = params->val.y;
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer);
return DNN_ERROR;
}
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer);
return DNN_ERROR;
}
snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer);
op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer);
input.oper = *cur_op;
input.index = 0;
TF_AddInput(op_desc, input);
input.oper = op;
TF_AddInput(op_desc, input);
TF_SetAttrType(op_desc, "T", TF_FLOAT);
*cur_op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer);
return DNN_ERROR;
}
return DNN_SUCCESS;
}
static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename)
{
TFContext *ctx = &tf_model->ctx;
int32_t layer;
TF_OperationDescription *op_desc;
TF_Operation *op;
TF_Operation *transpose_op;
TF_Tensor *tensor;
TF_Output input;
int32_t *transpose_perm;
int64_t transpose_perm_shape[] = {4};
int64_t input_shape[] = {1, -1, -1, -1};
DNNReturnType layer_add_res;
DNNModel *model = NULL;
NativeModel *native_model;
model = ff_dnn_load_model_native(model_filename, NULL, NULL);
if (!model){
av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n");
return DNN_ERROR;
}
native_model = (NativeModel *)model->model;
tf_model->graph = TF_NewGraph();
tf_model->status = TF_NewStatus();
#define CLEANUP_ON_ERROR(tf_model) \
{ \
TF_DeleteGraph(tf_model->graph); \
TF_DeleteStatus(tf_model->status); \
av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \
return DNN_ERROR; \
}
op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x");
TF_SetAttrType(op_desc, "dtype", TF_FLOAT);
TF_SetAttrShape(op_desc, "shape", input_shape, 4);
op = TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm");
TF_SetAttrType(op_desc, "dtype", TF_INT32);
tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t));
transpose_perm = (int32_t *)TF_TensorData(tensor);
transpose_perm[0] = 1;
transpose_perm[1] = 2;
transpose_perm[2] = 3;
transpose_perm[3] = 0;
TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
transpose_op = TF_FinishOperation(op_desc, tf_model->status);
for (layer = 0; layer < native_model->layers_num; ++layer){
switch (native_model->layers[layer].type){
case DLT_INPUT:
layer_add_res = DNN_SUCCESS;
break;
case DLT_CONV2D:
layer_add_res = add_conv_layer(tf_model, transpose_op, &op,
(ConvolutionalParams *)native_model->layers[layer].params, layer);
break;
case DLT_DEPTH_TO_SPACE:
layer_add_res = add_depth_to_space_layer(tf_model, &op,
(DepthToSpaceParams *)native_model->layers[layer].params, layer);
break;
case DLT_MIRROR_PAD:
layer_add_res = add_pad_layer(tf_model, &op,
(LayerPadParams *)native_model->layers[layer].params, layer);
break;
case DLT_MAXIMUM:
layer_add_res = add_maximum_layer(tf_model, &op,
(DnnLayerMaximumParams *)native_model->layers[layer].params, layer);
break;
default:
CLEANUP_ON_ERROR(tf_model);
}
if (layer_add_res != DNN_SUCCESS){
CLEANUP_ON_ERROR(tf_model);
}
}
op_desc = TF_NewOperation(tf_model->graph, "Identity", "y");
input.oper = op;
input.index = 0;
TF_AddInput(op_desc, input);
TF_FinishOperation(op_desc, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK){
CLEANUP_ON_ERROR(tf_model);
}
ff_dnn_free_model_native(&model);
return DNN_SUCCESS;
}
DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options, void *userdata)
{
DNNModel *model = NULL;
TFModel *tf_model = NULL;
model = av_mallocz(sizeof(DNNModel));
if (!model){
return NULL;
}
tf_model = av_mallocz(sizeof(TFModel));
if (!tf_model){
av_freep(&model);
return NULL;
}
tf_model->ctx.class = &dnn_tensorflow_class;
tf_model->model = model;
//parse options
av_opt_set_defaults(&tf_model->ctx);
if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0) {
av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
av_freep(&tf_model);
av_freep(&model);
return NULL;
}
if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){
if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){
av_freep(&tf_model);
av_freep(&model);
return NULL;
}
}
model->model = (void *)tf_model;
model->get_input = &get_input_tf;
model->get_output = &get_output_tf;
model->options = options;
model->userdata = userdata;
return model;
}
static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc)
{
TF_Output *tf_outputs;
TFModel *tf_model = (TFModel *)model->model;
TFContext *ctx = &tf_model->ctx;
DNNData input, output;
TF_Tensor **output_tensors;
TF_Output tf_input;
TF_Tensor *input_tensor;
if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS)
return DNN_ERROR;
input.height = in_frame->height;
input.width = in_frame->width;
tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name);
if (!tf_input.oper){
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
return DNN_ERROR;
}
tf_input.index = 0;
input_tensor = allocate_input_tensor(&input);
if (!input_tensor){
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n");
return DNN_ERROR;
}
input.data = (float *)TF_TensorData(input_tensor);
if (do_ioproc) {
if (tf_model->model->pre_proc != NULL) {
tf_model->model->pre_proc(in_frame, &input, tf_model->model->userdata);
} else {
proc_from_frame_to_dnn(in_frame, &input, ctx);
}
}
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs));
if (tf_outputs == NULL) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \
return DNN_ERROR;
}
output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors));
if (!output_tensors) {
av_freep(&tf_outputs);
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \
return DNN_ERROR;
}
for (int i = 0; i < nb_output; ++i) {
tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]);
if (!tf_outputs[i].oper) {
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \
return DNN_ERROR;
}
tf_outputs[i].index = 0;
}
TF_SessionRun(tf_model->session, NULL,
&tf_input, &input_tensor, 1,
tf_outputs, output_tensors, nb_output,
NULL, 0, NULL, tf_model->status);
if (TF_GetCode(tf_model->status) != TF_OK) {
av_freep(&tf_outputs);
av_freep(&output_tensors);
av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n");
return DNN_ERROR;
}
for (uint32_t i = 0; i < nb_output; ++i) {
output.height = TF_Dim(output_tensors[i], 1);
output.width = TF_Dim(output_tensors[i], 2);
output.channels = TF_Dim(output_tensors[i], 3);
output.data = TF_TensorData(output_tensors[i]);
output.dt = TF_TensorType(output_tensors[i]);
if (do_ioproc) {
if (tf_model->model->post_proc != NULL) {
tf_model->model->post_proc(out_frame, &output, tf_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
} else {
out_frame->width = output.width;
out_frame->height = output.height;
}
}
for (uint32_t i = 0; i < nb_output; ++i) {
if (output_tensors[i]) {
TF_DeleteTensor(output_tensors[i]);
}
}
TF_DeleteTensor(input_tensor);
av_freep(&output_tensors);
av_freep(&tf_outputs);
return DNN_SUCCESS;
}
DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
TFModel *tf_model = (TFModel *)model->model;
TFContext *ctx = &tf_model->ctx;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n");
return DNN_ERROR;
}
if (!out_frame) {
av_log(ctx, AV_LOG_ERROR, "out frame is NULL when execute model.\n");
return DNN_ERROR;
}
return execute_model_tf(model, input_name, in_frame, output_names, nb_output, out_frame, 1);
}
void ff_dnn_free_model_tf(DNNModel **model)
{
TFModel *tf_model;
if (*model){
tf_model = (TFModel *)(*model)->model;
if (tf_model->graph){
TF_DeleteGraph(tf_model->graph);
}
if (tf_model->session){
TF_CloseSession(tf_model->session, tf_model->status);
TF_DeleteSession(tf_model->session, tf_model->status);
}
if (tf_model->status){
TF_DeleteStatus(tf_model->status);
}
av_freep(&tf_model);
av_freep(model);
}
}