blob: 39af74c221af7d4e6961a0541959cc0a6dd7f5ff [file] [log] [blame]
/*
* Copyright (c) 2016 Ronald S. Bultje <rsbultje@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* @file
* Convert between colorspaces.
*/
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixfmt.h"
#include "avfilter.h"
#include "colorspacedsp.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "colorspace.h"
enum DitherMode {
DITHER_NONE,
DITHER_FSB,
DITHER_NB,
};
enum Colorspace {
CS_UNSPECIFIED,
CS_BT470M,
CS_BT470BG,
CS_BT601_6_525,
CS_BT601_6_625,
CS_BT709,
CS_SMPTE170M,
CS_SMPTE240M,
CS_BT2020,
CS_NB,
};
enum Whitepoint {
WP_D65,
WP_C,
WP_DCI,
WP_E,
WP_NB,
};
enum WhitepointAdaptation {
WP_ADAPT_BRADFORD,
WP_ADAPT_VON_KRIES,
NB_WP_ADAPT_NON_IDENTITY,
WP_ADAPT_IDENTITY = NB_WP_ADAPT_NON_IDENTITY,
NB_WP_ADAPT,
};
static const enum AVColorTransferCharacteristic default_trc[CS_NB + 1] = {
[CS_UNSPECIFIED] = AVCOL_TRC_UNSPECIFIED,
[CS_BT470M] = AVCOL_TRC_GAMMA22,
[CS_BT470BG] = AVCOL_TRC_GAMMA28,
[CS_BT601_6_525] = AVCOL_TRC_SMPTE170M,
[CS_BT601_6_625] = AVCOL_TRC_SMPTE170M,
[CS_BT709] = AVCOL_TRC_BT709,
[CS_SMPTE170M] = AVCOL_TRC_SMPTE170M,
[CS_SMPTE240M] = AVCOL_TRC_SMPTE240M,
[CS_BT2020] = AVCOL_TRC_BT2020_10,
[CS_NB] = AVCOL_TRC_UNSPECIFIED,
};
static const enum AVColorPrimaries default_prm[CS_NB + 1] = {
[CS_UNSPECIFIED] = AVCOL_PRI_UNSPECIFIED,
[CS_BT470M] = AVCOL_PRI_BT470M,
[CS_BT470BG] = AVCOL_PRI_BT470BG,
[CS_BT601_6_525] = AVCOL_PRI_SMPTE170M,
[CS_BT601_6_625] = AVCOL_PRI_BT470BG,
[CS_BT709] = AVCOL_PRI_BT709,
[CS_SMPTE170M] = AVCOL_PRI_SMPTE170M,
[CS_SMPTE240M] = AVCOL_PRI_SMPTE240M,
[CS_BT2020] = AVCOL_PRI_BT2020,
[CS_NB] = AVCOL_PRI_UNSPECIFIED,
};
static const enum AVColorSpace default_csp[CS_NB + 1] = {
[CS_UNSPECIFIED] = AVCOL_SPC_UNSPECIFIED,
[CS_BT470M] = AVCOL_SPC_SMPTE170M,
[CS_BT470BG] = AVCOL_SPC_BT470BG,
[CS_BT601_6_525] = AVCOL_SPC_SMPTE170M,
[CS_BT601_6_625] = AVCOL_SPC_BT470BG,
[CS_BT709] = AVCOL_SPC_BT709,
[CS_SMPTE170M] = AVCOL_SPC_SMPTE170M,
[CS_SMPTE240M] = AVCOL_SPC_SMPTE240M,
[CS_BT2020] = AVCOL_SPC_BT2020_NCL,
[CS_NB] = AVCOL_SPC_UNSPECIFIED,
};
struct ColorPrimaries {
enum Whitepoint wp;
struct PrimaryCoefficients coeff;
};
struct TransferCharacteristics {
double alpha, beta, gamma, delta;
};
typedef struct ColorSpaceContext {
const AVClass *class;
ColorSpaceDSPContext dsp;
enum Colorspace user_all, user_iall;
enum AVColorSpace in_csp, out_csp, user_csp, user_icsp;
enum AVColorRange in_rng, out_rng, user_rng, user_irng;
enum AVColorTransferCharacteristic in_trc, out_trc, user_trc, user_itrc;
enum AVColorPrimaries in_prm, out_prm, user_prm, user_iprm;
enum AVPixelFormat in_format, user_format;
int fast_mode;
enum DitherMode dither;
enum WhitepointAdaptation wp_adapt;
int16_t *rgb[3];
ptrdiff_t rgb_stride;
unsigned rgb_sz;
int *dither_scratch[3][2], *dither_scratch_base[3][2];
const struct ColorPrimaries *in_primaries, *out_primaries;
int lrgb2lrgb_passthrough;
DECLARE_ALIGNED(16, int16_t, lrgb2lrgb_coeffs)[3][3][8];
const struct TransferCharacteristics *in_txchr, *out_txchr;
int rgb2rgb_passthrough;
int16_t *lin_lut, *delin_lut;
const struct LumaCoefficients *in_lumacoef, *out_lumacoef;
int yuv2yuv_passthrough, yuv2yuv_fastmode;
DECLARE_ALIGNED(16, int16_t, yuv2rgb_coeffs)[3][3][8];
DECLARE_ALIGNED(16, int16_t, rgb2yuv_coeffs)[3][3][8];
DECLARE_ALIGNED(16, int16_t, yuv2yuv_coeffs)[3][3][8];
DECLARE_ALIGNED(16, int16_t, yuv_offset)[2 /* in, out */][8];
yuv2rgb_fn yuv2rgb;
rgb2yuv_fn rgb2yuv;
rgb2yuv_fsb_fn rgb2yuv_fsb;
yuv2yuv_fn yuv2yuv;
double yuv2rgb_dbl_coeffs[3][3], rgb2yuv_dbl_coeffs[3][3];
int in_y_rng, in_uv_rng, out_y_rng, out_uv_rng;
int did_warn_range;
} ColorSpaceContext;
// FIXME deal with odd width/heights
// FIXME faster linearize/delinearize implementation (integer pow)
// FIXME bt2020cl support (linearization between yuv/rgb step instead of between rgb/xyz)
// FIXME test that the values in (de)lin_lut don't exceed their container storage
// type size (only useful if we keep the LUT and don't move to fast integer pow)
// FIXME dithering if bitdepth goes down?
// FIXME bitexact for fate integration?
// FIXME I'm pretty sure gamma22/28 also have a linear toe slope, but I can't
// find any actual tables that document their real values...
// See http://www.13thmonkey.org/~boris/gammacorrection/ first graph why it matters
static const struct TransferCharacteristics transfer_characteristics[AVCOL_TRC_NB] = {
[AVCOL_TRC_BT709] = { 1.099, 0.018, 0.45, 4.5 },
[AVCOL_TRC_GAMMA22] = { 1.0, 0.0, 1.0 / 2.2, 0.0 },
[AVCOL_TRC_GAMMA28] = { 1.0, 0.0, 1.0 / 2.8, 0.0 },
[AVCOL_TRC_SMPTE170M] = { 1.099, 0.018, 0.45, 4.5 },
[AVCOL_TRC_SMPTE240M] = { 1.1115, 0.0228, 0.45, 4.0 },
[AVCOL_TRC_LINEAR] = { 1.0, 0.0, 1.0, 0.0 },
[AVCOL_TRC_IEC61966_2_1] = { 1.055, 0.0031308, 1.0 / 2.4, 12.92 },
[AVCOL_TRC_IEC61966_2_4] = { 1.099, 0.018, 0.45, 4.5 },
[AVCOL_TRC_BT2020_10] = { 1.099, 0.018, 0.45, 4.5 },
[AVCOL_TRC_BT2020_12] = { 1.0993, 0.0181, 0.45, 4.5 },
};
static const struct TransferCharacteristics *
get_transfer_characteristics(enum AVColorTransferCharacteristic trc)
{
const struct TransferCharacteristics *coeffs;
if (trc >= AVCOL_TRC_NB)
return NULL;
coeffs = &transfer_characteristics[trc];
if (!coeffs->alpha)
return NULL;
return coeffs;
}
static const struct WhitepointCoefficients whitepoint_coefficients[WP_NB] = {
[WP_D65] = { 0.3127, 0.3290 },
[WP_C] = { 0.3100, 0.3160 },
[WP_DCI] = { 0.3140, 0.3510 },
[WP_E] = { 1/3.0f, 1/3.0f },
};
static const struct ColorPrimaries color_primaries[AVCOL_PRI_NB] = {
[AVCOL_PRI_BT709] = { WP_D65, { 0.640, 0.330, 0.300, 0.600, 0.150, 0.060 } },
[AVCOL_PRI_BT470M] = { WP_C, { 0.670, 0.330, 0.210, 0.710, 0.140, 0.080 } },
[AVCOL_PRI_BT470BG] = { WP_D65, { 0.640, 0.330, 0.290, 0.600, 0.150, 0.060 } },
[AVCOL_PRI_SMPTE170M] = { WP_D65, { 0.630, 0.340, 0.310, 0.595, 0.155, 0.070 } },
[AVCOL_PRI_SMPTE240M] = { WP_D65, { 0.630, 0.340, 0.310, 0.595, 0.155, 0.070 } },
[AVCOL_PRI_SMPTE428] = { WP_E, { 0.735, 0.265, 0.274, 0.718, 0.167, 0.009 } },
[AVCOL_PRI_SMPTE431] = { WP_DCI, { 0.680, 0.320, 0.265, 0.690, 0.150, 0.060 } },
[AVCOL_PRI_SMPTE432] = { WP_D65, { 0.680, 0.320, 0.265, 0.690, 0.150, 0.060 } },
[AVCOL_PRI_FILM] = { WP_C, { 0.681, 0.319, 0.243, 0.692, 0.145, 0.049 } },
[AVCOL_PRI_BT2020] = { WP_D65, { 0.708, 0.292, 0.170, 0.797, 0.131, 0.046 } },
[AVCOL_PRI_JEDEC_P22] = { WP_D65, { 0.630, 0.340, 0.295, 0.605, 0.155, 0.077 } },
};
static const struct ColorPrimaries *get_color_primaries(enum AVColorPrimaries prm)
{
const struct ColorPrimaries *p;
if (prm >= AVCOL_PRI_NB)
return NULL;
p = &color_primaries[prm];
if (!p->coeff.xr)
return NULL;
return p;
}
static int fill_gamma_table(ColorSpaceContext *s)
{
int n;
double in_alpha = s->in_txchr->alpha, in_beta = s->in_txchr->beta;
double in_gamma = s->in_txchr->gamma, in_delta = s->in_txchr->delta;
double in_ialpha = 1.0 / in_alpha, in_igamma = 1.0 / in_gamma, in_idelta = 1.0 / in_delta;
double out_alpha = s->out_txchr->alpha, out_beta = s->out_txchr->beta;
double out_gamma = s->out_txchr->gamma, out_delta = s->out_txchr->delta;
s->lin_lut = av_malloc(sizeof(*s->lin_lut) * 32768 * 2);
if (!s->lin_lut)
return AVERROR(ENOMEM);
s->delin_lut = &s->lin_lut[32768];
for (n = 0; n < 32768; n++) {
double v = (n - 2048.0) / 28672.0, d, l;
// delinearize
if (v <= -out_beta) {
d = -out_alpha * pow(-v, out_gamma) + (out_alpha - 1.0);
} else if (v < out_beta) {
d = out_delta * v;
} else {
d = out_alpha * pow(v, out_gamma) - (out_alpha - 1.0);
}
s->delin_lut[n] = av_clip_int16(lrint(d * 28672.0));
// linearize
if (v <= -in_beta * in_delta) {
l = -pow((1.0 - in_alpha - v) * in_ialpha, in_igamma);
} else if (v < in_beta * in_delta) {
l = v * in_idelta;
} else {
l = pow((v + in_alpha - 1.0) * in_ialpha, in_igamma);
}
s->lin_lut[n] = av_clip_int16(lrint(l * 28672.0));
}
return 0;
}
/*
* See http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
* This function uses the Bradford mechanism.
*/
static void fill_whitepoint_conv_table(double out[3][3], enum WhitepointAdaptation wp_adapt,
enum Whitepoint src, enum Whitepoint dst)
{
static const double ma_tbl[NB_WP_ADAPT_NON_IDENTITY][3][3] = {
[WP_ADAPT_BRADFORD] = {
{ 0.8951, 0.2664, -0.1614 },
{ -0.7502, 1.7135, 0.0367 },
{ 0.0389, -0.0685, 1.0296 },
}, [WP_ADAPT_VON_KRIES] = {
{ 0.40024, 0.70760, -0.08081 },
{ -0.22630, 1.16532, 0.04570 },
{ 0.00000, 0.00000, 0.91822 },
},
};
const double (*ma)[3] = ma_tbl[wp_adapt];
const struct WhitepointCoefficients *wp_src = &whitepoint_coefficients[src];
double zw_src = 1.0 - wp_src->xw - wp_src->yw;
const struct WhitepointCoefficients *wp_dst = &whitepoint_coefficients[dst];
double zw_dst = 1.0 - wp_dst->xw - wp_dst->yw;
double mai[3][3], fac[3][3], tmp[3][3];
double rs, gs, bs, rd, gd, bd;
ff_matrix_invert_3x3(ma, mai);
rs = ma[0][0] * wp_src->xw + ma[0][1] * wp_src->yw + ma[0][2] * zw_src;
gs = ma[1][0] * wp_src->xw + ma[1][1] * wp_src->yw + ma[1][2] * zw_src;
bs = ma[2][0] * wp_src->xw + ma[2][1] * wp_src->yw + ma[2][2] * zw_src;
rd = ma[0][0] * wp_dst->xw + ma[0][1] * wp_dst->yw + ma[0][2] * zw_dst;
gd = ma[1][0] * wp_dst->xw + ma[1][1] * wp_dst->yw + ma[1][2] * zw_dst;
bd = ma[2][0] * wp_dst->xw + ma[2][1] * wp_dst->yw + ma[2][2] * zw_dst;
fac[0][0] = rd / rs;
fac[1][1] = gd / gs;
fac[2][2] = bd / bs;
fac[0][1] = fac[0][2] = fac[1][0] = fac[1][2] = fac[2][0] = fac[2][1] = 0.0;
ff_matrix_mul_3x3(tmp, ma, fac);
ff_matrix_mul_3x3(out, tmp, mai);
}
static void apply_lut(int16_t *buf[3], ptrdiff_t stride,
int w, int h, const int16_t *lut)
{
int y, x, n;
for (n = 0; n < 3; n++) {
int16_t *data = buf[n];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++)
data[x] = lut[av_clip_uintp2(2048 + data[x], 15)];
data += stride;
}
}
}
typedef struct ThreadData {
AVFrame *in, *out;
ptrdiff_t in_linesize[3], out_linesize[3];
int in_ss_h, out_ss_h;
} ThreadData;
static int convert(AVFilterContext *ctx, void *data, int job_nr, int n_jobs)
{
const ThreadData *td = data;
ColorSpaceContext *s = ctx->priv;
uint8_t *in_data[3], *out_data[3];
int16_t *rgb[3];
int h_in = (td->in->height + 1) >> 1;
int h1 = 2 * (job_nr * h_in / n_jobs), h2 = 2 * ((job_nr + 1) * h_in / n_jobs);
int w = td->in->width, h = h2 - h1;
in_data[0] = td->in->data[0] + td->in_linesize[0] * h1;
in_data[1] = td->in->data[1] + td->in_linesize[1] * (h1 >> td->in_ss_h);
in_data[2] = td->in->data[2] + td->in_linesize[2] * (h1 >> td->in_ss_h);
out_data[0] = td->out->data[0] + td->out_linesize[0] * h1;
out_data[1] = td->out->data[1] + td->out_linesize[1] * (h1 >> td->out_ss_h);
out_data[2] = td->out->data[2] + td->out_linesize[2] * (h1 >> td->out_ss_h);
rgb[0] = s->rgb[0] + s->rgb_stride * h1;
rgb[1] = s->rgb[1] + s->rgb_stride * h1;
rgb[2] = s->rgb[2] + s->rgb_stride * h1;
// FIXME for simd, also make sure we do pictures with negative stride
// top-down so we don't overwrite lines with padding of data before it
// in the same buffer (same as swscale)
if (s->yuv2yuv_fastmode) {
// FIXME possibly use a fast mode in case only the y range changes?
// since in that case, only the diagonal entries in yuv2yuv_coeffs[]
// are non-zero
s->yuv2yuv(out_data, td->out_linesize, in_data, td->in_linesize, w, h,
s->yuv2yuv_coeffs, s->yuv_offset);
} else {
// FIXME maybe (for caching efficiency) do pipeline per-line instead of
// full buffer per function? (Or, since yuv2rgb requires 2 lines: per
// 2 lines, for yuv420.)
/*
* General design:
* - yuv2rgb converts from whatever range the input was ([16-235/240] or
* [0,255] or the 10/12bpp equivalents thereof) to an integer version
* of RGB in psuedo-restricted 15+sign bits. That means that the float
* range [0.0,1.0] is in [0,28762], and the remainder of the int16_t
* range is used for overflow/underflow outside the representable
* range of this RGB type. rgb2yuv is the exact opposite.
* - gamma correction is done using a LUT since that appears to work
* fairly fast.
* - If the input is chroma-subsampled (420/422), the yuv2rgb conversion
* (or rgb2yuv conversion) uses nearest-neighbour sampling to read
* read chroma pixels at luma resolution. If you want some more fancy
* filter, you can use swscale to convert to yuv444p.
* - all coefficients are 14bit (so in the [-2.0,2.0] range).
*/
s->yuv2rgb(rgb, s->rgb_stride, in_data, td->in_linesize, w, h,
s->yuv2rgb_coeffs, s->yuv_offset[0]);
if (!s->rgb2rgb_passthrough) {
apply_lut(rgb, s->rgb_stride, w, h, s->lin_lut);
if (!s->lrgb2lrgb_passthrough)
s->dsp.multiply3x3(rgb, s->rgb_stride, w, h, s->lrgb2lrgb_coeffs);
apply_lut(rgb, s->rgb_stride, w, h, s->delin_lut);
}
if (s->dither == DITHER_FSB) {
s->rgb2yuv_fsb(out_data, td->out_linesize, rgb, s->rgb_stride, w, h,
s->rgb2yuv_coeffs, s->yuv_offset[1], s->dither_scratch);
} else {
s->rgb2yuv(out_data, td->out_linesize, rgb, s->rgb_stride, w, h,
s->rgb2yuv_coeffs, s->yuv_offset[1]);
}
}
return 0;
}
static int get_range_off(AVFilterContext *ctx, int *off,
int *y_rng, int *uv_rng,
enum AVColorRange rng, int depth)
{
switch (rng) {
case AVCOL_RANGE_UNSPECIFIED: {
ColorSpaceContext *s = ctx->priv;
if (!s->did_warn_range) {
av_log(ctx, AV_LOG_WARNING, "Input range not set, assuming tv/mpeg\n");
s->did_warn_range = 1;
}
}
// fall-through
case AVCOL_RANGE_MPEG:
*off = 16 << (depth - 8);
*y_rng = 219 << (depth - 8);
*uv_rng = 224 << (depth - 8);
break;
case AVCOL_RANGE_JPEG:
*off = 0;
*y_rng = *uv_rng = (256 << (depth - 8)) - 1;
break;
default:
return AVERROR(EINVAL);
}
return 0;
}
static int create_filtergraph(AVFilterContext *ctx,
const AVFrame *in, const AVFrame *out)
{
ColorSpaceContext *s = ctx->priv;
const AVPixFmtDescriptor *in_desc = av_pix_fmt_desc_get(in->format);
const AVPixFmtDescriptor *out_desc = av_pix_fmt_desc_get(out->format);
int emms = 0, m, n, o, res, fmt_identical, redo_yuv2rgb = 0, redo_rgb2yuv = 0;
#define supported_depth(d) ((d) == 8 || (d) == 10 || (d) == 12)
#define supported_subsampling(lcw, lch) \
(((lcw) == 0 && (lch) == 0) || ((lcw) == 1 && (lch) == 0) || ((lcw) == 1 && (lch) == 1))
#define supported_format(d) \
((d) != NULL && (d)->nb_components == 3 && \
!((d)->flags & AV_PIX_FMT_FLAG_RGB) && \
supported_depth((d)->comp[0].depth) && \
supported_subsampling((d)->log2_chroma_w, (d)->log2_chroma_h))
if (!supported_format(in_desc)) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported input format %d (%s) or bitdepth (%d)\n",
in->format, av_get_pix_fmt_name(in->format),
in_desc ? in_desc->comp[0].depth : -1);
return AVERROR(EINVAL);
}
if (!supported_format(out_desc)) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output format %d (%s) or bitdepth (%d)\n",
out->format, av_get_pix_fmt_name(out->format),
out_desc ? out_desc->comp[0].depth : -1);
return AVERROR(EINVAL);
}
if (in->color_primaries != s->in_prm) s->in_primaries = NULL;
if (out->color_primaries != s->out_prm) s->out_primaries = NULL;
if (in->color_trc != s->in_trc) s->in_txchr = NULL;
if (out->color_trc != s->out_trc) s->out_txchr = NULL;
if (in->colorspace != s->in_csp ||
in->color_range != s->in_rng) s->in_lumacoef = NULL;
if (out->colorspace != s->out_csp ||
out->color_range != s->out_rng) s->out_lumacoef = NULL;
if (!s->out_primaries || !s->in_primaries) {
s->in_prm = in->color_primaries;
if (s->user_iall != CS_UNSPECIFIED)
s->in_prm = default_prm[FFMIN(s->user_iall, CS_NB)];
if (s->user_iprm != AVCOL_PRI_UNSPECIFIED)
s->in_prm = s->user_iprm;
s->in_primaries = get_color_primaries(s->in_prm);
if (!s->in_primaries) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported input primaries %d (%s)\n",
s->in_prm, av_color_primaries_name(s->in_prm));
return AVERROR(EINVAL);
}
s->out_prm = out->color_primaries;
s->out_primaries = get_color_primaries(s->out_prm);
if (!s->out_primaries) {
if (s->out_prm == AVCOL_PRI_UNSPECIFIED) {
if (s->user_all == CS_UNSPECIFIED) {
av_log(ctx, AV_LOG_ERROR, "Please specify output primaries\n");
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output color property %d\n", s->user_all);
}
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output primaries %d (%s)\n",
s->out_prm, av_color_primaries_name(s->out_prm));
}
return AVERROR(EINVAL);
}
s->lrgb2lrgb_passthrough = !memcmp(s->in_primaries, s->out_primaries,
sizeof(*s->in_primaries));
if (!s->lrgb2lrgb_passthrough) {
double rgb2xyz[3][3], xyz2rgb[3][3], rgb2rgb[3][3];
const struct WhitepointCoefficients *wp_out, *wp_in;
wp_out = &whitepoint_coefficients[s->out_primaries->wp];
wp_in = &whitepoint_coefficients[s->in_primaries->wp];
ff_fill_rgb2xyz_table(&s->out_primaries->coeff, wp_out, rgb2xyz);
ff_matrix_invert_3x3(rgb2xyz, xyz2rgb);
ff_fill_rgb2xyz_table(&s->in_primaries->coeff, wp_in, rgb2xyz);
if (s->out_primaries->wp != s->in_primaries->wp &&
s->wp_adapt != WP_ADAPT_IDENTITY) {
double wpconv[3][3], tmp[3][3];
fill_whitepoint_conv_table(wpconv, s->wp_adapt, s->in_primaries->wp,
s->out_primaries->wp);
ff_matrix_mul_3x3(tmp, rgb2xyz, wpconv);
ff_matrix_mul_3x3(rgb2rgb, tmp, xyz2rgb);
} else {
ff_matrix_mul_3x3(rgb2rgb, rgb2xyz, xyz2rgb);
}
for (m = 0; m < 3; m++)
for (n = 0; n < 3; n++) {
s->lrgb2lrgb_coeffs[m][n][0] = lrint(16384.0 * rgb2rgb[m][n]);
for (o = 1; o < 8; o++)
s->lrgb2lrgb_coeffs[m][n][o] = s->lrgb2lrgb_coeffs[m][n][0];
}
emms = 1;
}
}
if (!s->in_txchr) {
av_freep(&s->lin_lut);
s->in_trc = in->color_trc;
if (s->user_iall != CS_UNSPECIFIED)
s->in_trc = default_trc[FFMIN(s->user_iall, CS_NB)];
if (s->user_itrc != AVCOL_TRC_UNSPECIFIED)
s->in_trc = s->user_itrc;
s->in_txchr = get_transfer_characteristics(s->in_trc);
if (!s->in_txchr) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported input transfer characteristics %d (%s)\n",
s->in_trc, av_color_transfer_name(s->in_trc));
return AVERROR(EINVAL);
}
}
if (!s->out_txchr) {
av_freep(&s->lin_lut);
s->out_trc = out->color_trc;
s->out_txchr = get_transfer_characteristics(s->out_trc);
if (!s->out_txchr) {
if (s->out_trc == AVCOL_TRC_UNSPECIFIED) {
if (s->user_all == CS_UNSPECIFIED) {
av_log(ctx, AV_LOG_ERROR,
"Please specify output transfer characteristics\n");
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output color property %d\n", s->user_all);
}
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output transfer characteristics %d (%s)\n",
s->out_trc, av_color_transfer_name(s->out_trc));
}
return AVERROR(EINVAL);
}
}
s->rgb2rgb_passthrough = s->fast_mode || (s->lrgb2lrgb_passthrough &&
!memcmp(s->in_txchr, s->out_txchr, sizeof(*s->in_txchr)));
if (!s->rgb2rgb_passthrough && !s->lin_lut) {
res = fill_gamma_table(s);
if (res < 0)
return res;
emms = 1;
}
if (!s->in_lumacoef) {
s->in_csp = in->colorspace;
if (s->user_iall != CS_UNSPECIFIED)
s->in_csp = default_csp[FFMIN(s->user_iall, CS_NB)];
if (s->user_icsp != AVCOL_SPC_UNSPECIFIED)
s->in_csp = s->user_icsp;
s->in_rng = in->color_range;
if (s->user_irng != AVCOL_RANGE_UNSPECIFIED)
s->in_rng = s->user_irng;
s->in_lumacoef = ff_get_luma_coefficients(s->in_csp);
if (!s->in_lumacoef) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported input colorspace %d (%s)\n",
s->in_csp, av_color_space_name(s->in_csp));
return AVERROR(EINVAL);
}
redo_yuv2rgb = 1;
}
if (!s->out_lumacoef) {
s->out_csp = out->colorspace;
s->out_rng = out->color_range;
s->out_lumacoef = ff_get_luma_coefficients(s->out_csp);
if (!s->out_lumacoef) {
if (s->out_csp == AVCOL_SPC_UNSPECIFIED) {
if (s->user_all == CS_UNSPECIFIED) {
av_log(ctx, AV_LOG_ERROR,
"Please specify output transfer characteristics\n");
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output color property %d\n", s->user_all);
}
} else {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output transfer characteristics %d (%s)\n",
s->out_csp, av_color_space_name(s->out_csp));
}
return AVERROR(EINVAL);
}
redo_rgb2yuv = 1;
}
fmt_identical = in_desc->log2_chroma_h == out_desc->log2_chroma_h &&
in_desc->log2_chroma_w == out_desc->log2_chroma_w;
s->yuv2yuv_fastmode = s->rgb2rgb_passthrough && fmt_identical;
s->yuv2yuv_passthrough = s->yuv2yuv_fastmode && s->in_rng == s->out_rng &&
!memcmp(s->in_lumacoef, s->out_lumacoef,
sizeof(*s->in_lumacoef)) &&
in_desc->comp[0].depth == out_desc->comp[0].depth;
if (!s->yuv2yuv_passthrough) {
if (redo_yuv2rgb) {
double rgb2yuv[3][3], (*yuv2rgb)[3] = s->yuv2rgb_dbl_coeffs;
int off, bits, in_rng;
res = get_range_off(ctx, &off, &s->in_y_rng, &s->in_uv_rng,
s->in_rng, in_desc->comp[0].depth);
if (res < 0) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported input color range %d (%s)\n",
s->in_rng, av_color_range_name(s->in_rng));
return res;
}
for (n = 0; n < 8; n++)
s->yuv_offset[0][n] = off;
ff_fill_rgb2yuv_table(s->in_lumacoef, rgb2yuv);
ff_matrix_invert_3x3(rgb2yuv, yuv2rgb);
bits = 1 << (in_desc->comp[0].depth - 1);
for (n = 0; n < 3; n++) {
for (in_rng = s->in_y_rng, m = 0; m < 3; m++, in_rng = s->in_uv_rng) {
s->yuv2rgb_coeffs[n][m][0] = lrint(28672 * bits * yuv2rgb[n][m] / in_rng);
for (o = 1; o < 8; o++)
s->yuv2rgb_coeffs[n][m][o] = s->yuv2rgb_coeffs[n][m][0];
}
}
av_assert2(s->yuv2rgb_coeffs[0][1][0] == 0);
av_assert2(s->yuv2rgb_coeffs[2][2][0] == 0);
av_assert2(s->yuv2rgb_coeffs[0][0][0] == s->yuv2rgb_coeffs[1][0][0]);
av_assert2(s->yuv2rgb_coeffs[0][0][0] == s->yuv2rgb_coeffs[2][0][0]);
s->yuv2rgb = s->dsp.yuv2rgb[(in_desc->comp[0].depth - 8) >> 1]
[in_desc->log2_chroma_h + in_desc->log2_chroma_w];
emms = 1;
}
if (redo_rgb2yuv) {
double (*rgb2yuv)[3] = s->rgb2yuv_dbl_coeffs;
int off, out_rng, bits;
res = get_range_off(ctx, &off, &s->out_y_rng, &s->out_uv_rng,
s->out_rng, out_desc->comp[0].depth);
if (res < 0) {
av_log(ctx, AV_LOG_ERROR,
"Unsupported output color range %d (%s)\n",
s->out_rng, av_color_range_name(s->out_rng));
return res;
}
for (n = 0; n < 8; n++)
s->yuv_offset[1][n] = off;
ff_fill_rgb2yuv_table(s->out_lumacoef, rgb2yuv);
bits = 1 << (29 - out_desc->comp[0].depth);
for (out_rng = s->out_y_rng, n = 0; n < 3; n++, out_rng = s->out_uv_rng) {
for (m = 0; m < 3; m++) {
s->rgb2yuv_coeffs[n][m][0] = lrint(bits * out_rng * rgb2yuv[n][m] / 28672);
for (o = 1; o < 8; o++)
s->rgb2yuv_coeffs[n][m][o] = s->rgb2yuv_coeffs[n][m][0];
}
}
av_assert2(s->rgb2yuv_coeffs[1][2][0] == s->rgb2yuv_coeffs[2][0][0]);
s->rgb2yuv = s->dsp.rgb2yuv[(out_desc->comp[0].depth - 8) >> 1]
[out_desc->log2_chroma_h + out_desc->log2_chroma_w];
s->rgb2yuv_fsb = s->dsp.rgb2yuv_fsb[(out_desc->comp[0].depth - 8) >> 1]
[out_desc->log2_chroma_h + out_desc->log2_chroma_w];
emms = 1;
}
if (s->yuv2yuv_fastmode && (redo_yuv2rgb || redo_rgb2yuv)) {
int idepth = in_desc->comp[0].depth, odepth = out_desc->comp[0].depth;
double (*rgb2yuv)[3] = s->rgb2yuv_dbl_coeffs;
double (*yuv2rgb)[3] = s->yuv2rgb_dbl_coeffs;
double yuv2yuv[3][3];
int in_rng, out_rng;
ff_matrix_mul_3x3(yuv2yuv, yuv2rgb, rgb2yuv);
for (out_rng = s->out_y_rng, m = 0; m < 3; m++, out_rng = s->out_uv_rng) {
for (in_rng = s->in_y_rng, n = 0; n < 3; n++, in_rng = s->in_uv_rng) {
s->yuv2yuv_coeffs[m][n][0] =
lrint(16384 * yuv2yuv[m][n] * out_rng * (1 << idepth) /
(in_rng * (1 << odepth)));
for (o = 1; o < 8; o++)
s->yuv2yuv_coeffs[m][n][o] = s->yuv2yuv_coeffs[m][n][0];
}
}
av_assert2(s->yuv2yuv_coeffs[1][0][0] == 0);
av_assert2(s->yuv2yuv_coeffs[2][0][0] == 0);
s->yuv2yuv = s->dsp.yuv2yuv[(idepth - 8) >> 1][(odepth - 8) >> 1]
[in_desc->log2_chroma_h + in_desc->log2_chroma_w];
}
}
if (emms)
emms_c();
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
ColorSpaceContext *s = ctx->priv;
ff_colorspacedsp_init(&s->dsp);
return 0;
}
static void uninit(AVFilterContext *ctx)
{
ColorSpaceContext *s = ctx->priv;
av_freep(&s->rgb[0]);
av_freep(&s->rgb[1]);
av_freep(&s->rgb[2]);
s->rgb_sz = 0;
av_freep(&s->dither_scratch_base[0][0]);
av_freep(&s->dither_scratch_base[0][1]);
av_freep(&s->dither_scratch_base[1][0]);
av_freep(&s->dither_scratch_base[1][1]);
av_freep(&s->dither_scratch_base[2][0]);
av_freep(&s->dither_scratch_base[2][1]);
av_freep(&s->lin_lut);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
AVFilterContext *ctx = link->dst;
AVFilterLink *outlink = ctx->outputs[0];
ColorSpaceContext *s = ctx->priv;
// FIXME if yuv2yuv_passthrough, don't get a new buffer but use the
// input one if it is writable *OR* the actual literal values of in_*
// and out_* are identical (not just their respective properties)
AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
int res;
ptrdiff_t rgb_stride = FFALIGN(in->width * sizeof(int16_t), 32);
unsigned rgb_sz = rgb_stride * in->height;
ThreadData td;
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
res = av_frame_copy_props(out, in);
if (res < 0) {
av_frame_free(&in);
av_frame_free(&out);
return res;
}
out->color_primaries = s->user_prm == AVCOL_PRI_UNSPECIFIED ?
default_prm[FFMIN(s->user_all, CS_NB)] : s->user_prm;
if (s->user_trc == AVCOL_TRC_UNSPECIFIED) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(out->format);
out->color_trc = default_trc[FFMIN(s->user_all, CS_NB)];
if (out->color_trc == AVCOL_TRC_BT2020_10 && desc && desc->comp[0].depth >= 12)
out->color_trc = AVCOL_TRC_BT2020_12;
} else {
out->color_trc = s->user_trc;
}
out->colorspace = s->user_csp == AVCOL_SPC_UNSPECIFIED ?
default_csp[FFMIN(s->user_all, CS_NB)] : s->user_csp;
out->color_range = s->user_rng == AVCOL_RANGE_UNSPECIFIED ?
in->color_range : s->user_rng;
if (rgb_sz != s->rgb_sz) {
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(out->format);
int uvw = in->width >> desc->log2_chroma_w;
av_freep(&s->rgb[0]);
av_freep(&s->rgb[1]);
av_freep(&s->rgb[2]);
s->rgb_sz = 0;
av_freep(&s->dither_scratch_base[0][0]);
av_freep(&s->dither_scratch_base[0][1]);
av_freep(&s->dither_scratch_base[1][0]);
av_freep(&s->dither_scratch_base[1][1]);
av_freep(&s->dither_scratch_base[2][0]);
av_freep(&s->dither_scratch_base[2][1]);
s->rgb[0] = av_malloc(rgb_sz);
s->rgb[1] = av_malloc(rgb_sz);
s->rgb[2] = av_malloc(rgb_sz);
s->dither_scratch_base[0][0] =
av_malloc(sizeof(*s->dither_scratch_base[0][0]) * (in->width + 4));
s->dither_scratch_base[0][1] =
av_malloc(sizeof(*s->dither_scratch_base[0][1]) * (in->width + 4));
s->dither_scratch_base[1][0] =
av_malloc(sizeof(*s->dither_scratch_base[1][0]) * (uvw + 4));
s->dither_scratch_base[1][1] =
av_malloc(sizeof(*s->dither_scratch_base[1][1]) * (uvw + 4));
s->dither_scratch_base[2][0] =
av_malloc(sizeof(*s->dither_scratch_base[2][0]) * (uvw + 4));
s->dither_scratch_base[2][1] =
av_malloc(sizeof(*s->dither_scratch_base[2][1]) * (uvw + 4));
s->dither_scratch[0][0] = &s->dither_scratch_base[0][0][1];
s->dither_scratch[0][1] = &s->dither_scratch_base[0][1][1];
s->dither_scratch[1][0] = &s->dither_scratch_base[1][0][1];
s->dither_scratch[1][1] = &s->dither_scratch_base[1][1][1];
s->dither_scratch[2][0] = &s->dither_scratch_base[2][0][1];
s->dither_scratch[2][1] = &s->dither_scratch_base[2][1][1];
if (!s->rgb[0] || !s->rgb[1] || !s->rgb[2] ||
!s->dither_scratch_base[0][0] || !s->dither_scratch_base[0][1] ||
!s->dither_scratch_base[1][0] || !s->dither_scratch_base[1][1] ||
!s->dither_scratch_base[2][0] || !s->dither_scratch_base[2][1]) {
uninit(ctx);
av_frame_free(&in);
av_frame_free(&out);
return AVERROR(ENOMEM);
}
s->rgb_sz = rgb_sz;
}
res = create_filtergraph(ctx, in, out);
if (res < 0) {
av_frame_free(&in);
av_frame_free(&out);
return res;
}
s->rgb_stride = rgb_stride / sizeof(int16_t);
td.in = in;
td.out = out;
td.in_linesize[0] = in->linesize[0];
td.in_linesize[1] = in->linesize[1];
td.in_linesize[2] = in->linesize[2];
td.out_linesize[0] = out->linesize[0];
td.out_linesize[1] = out->linesize[1];
td.out_linesize[2] = out->linesize[2];
td.in_ss_h = av_pix_fmt_desc_get(in->format)->log2_chroma_h;
td.out_ss_h = av_pix_fmt_desc_get(out->format)->log2_chroma_h;
if (s->yuv2yuv_passthrough) {
res = av_frame_copy(out, in);
if (res < 0) {
av_frame_free(&in);
av_frame_free(&out);
return res;
}
} else {
ctx->internal->execute(ctx, convert, &td, NULL,
FFMIN((in->height + 1) >> 1, ff_filter_get_nb_threads(ctx)));
}
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_NONE
};
int res;
ColorSpaceContext *s = ctx->priv;
AVFilterFormats *formats = ff_make_format_list(pix_fmts);
if (!formats)
return AVERROR(ENOMEM);
if (s->user_format == AV_PIX_FMT_NONE)
return ff_set_common_formats(ctx, formats);
res = ff_formats_ref(formats, &ctx->inputs[0]->outcfg.formats);
if (res < 0)
return res;
formats = NULL;
res = ff_add_format(&formats, s->user_format);
if (res < 0)
return res;
return ff_formats_ref(formats, &ctx->outputs[0]->incfg.formats);
}
static int config_props(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->dst;
AVFilterLink *inlink = outlink->src->inputs[0];
if (inlink->w % 2 || inlink->h % 2) {
av_log(ctx, AV_LOG_ERROR, "Invalid odd size (%dx%d)\n",
inlink->w, inlink->h);
return AVERROR_PATCHWELCOME;
}
outlink->w = inlink->w;
outlink->h = inlink->h;
outlink->sample_aspect_ratio = inlink->sample_aspect_ratio;
outlink->time_base = inlink->time_base;
return 0;
}
#define OFFSET(x) offsetof(ColorSpaceContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
#define ENUM(x, y, z) { x, "", 0, AV_OPT_TYPE_CONST, { .i64 = y }, INT_MIN, INT_MAX, FLAGS, z }
static const AVOption colorspace_options[] = {
{ "all", "Set all color properties together",
OFFSET(user_all), AV_OPT_TYPE_INT, { .i64 = CS_UNSPECIFIED },
CS_UNSPECIFIED, CS_NB - 1, FLAGS, "all" },
ENUM("bt470m", CS_BT470M, "all"),
ENUM("bt470bg", CS_BT470BG, "all"),
ENUM("bt601-6-525", CS_BT601_6_525, "all"),
ENUM("bt601-6-625", CS_BT601_6_625, "all"),
ENUM("bt709", CS_BT709, "all"),
ENUM("smpte170m", CS_SMPTE170M, "all"),
ENUM("smpte240m", CS_SMPTE240M, "all"),
ENUM("bt2020", CS_BT2020, "all"),
{ "space", "Output colorspace",
OFFSET(user_csp), AV_OPT_TYPE_INT, { .i64 = AVCOL_SPC_UNSPECIFIED },
AVCOL_SPC_RGB, AVCOL_SPC_NB - 1, FLAGS, "csp"},
ENUM("bt709", AVCOL_SPC_BT709, "csp"),
ENUM("fcc", AVCOL_SPC_FCC, "csp"),
ENUM("bt470bg", AVCOL_SPC_BT470BG, "csp"),
ENUM("smpte170m", AVCOL_SPC_SMPTE170M, "csp"),
ENUM("smpte240m", AVCOL_SPC_SMPTE240M, "csp"),
ENUM("ycgco", AVCOL_SPC_YCGCO, "csp"),
ENUM("gbr", AVCOL_SPC_RGB, "csp"),
ENUM("bt2020nc", AVCOL_SPC_BT2020_NCL, "csp"),
ENUM("bt2020ncl", AVCOL_SPC_BT2020_NCL, "csp"),
{ "range", "Output color range",
OFFSET(user_rng), AV_OPT_TYPE_INT, { .i64 = AVCOL_RANGE_UNSPECIFIED },
AVCOL_RANGE_UNSPECIFIED, AVCOL_RANGE_NB - 1, FLAGS, "rng" },
ENUM("tv", AVCOL_RANGE_MPEG, "rng"),
ENUM("mpeg", AVCOL_RANGE_MPEG, "rng"),
ENUM("pc", AVCOL_RANGE_JPEG, "rng"),
ENUM("jpeg", AVCOL_RANGE_JPEG, "rng"),
{ "primaries", "Output color primaries",
OFFSET(user_prm), AV_OPT_TYPE_INT, { .i64 = AVCOL_PRI_UNSPECIFIED },
AVCOL_PRI_RESERVED0, AVCOL_PRI_NB - 1, FLAGS, "prm" },
ENUM("bt709", AVCOL_PRI_BT709, "prm"),
ENUM("bt470m", AVCOL_PRI_BT470M, "prm"),
ENUM("bt470bg", AVCOL_PRI_BT470BG, "prm"),
ENUM("smpte170m", AVCOL_PRI_SMPTE170M, "prm"),
ENUM("smpte240m", AVCOL_PRI_SMPTE240M, "prm"),
ENUM("smpte428", AVCOL_PRI_SMPTE428, "prm"),
ENUM("film", AVCOL_PRI_FILM, "prm"),
ENUM("smpte431", AVCOL_PRI_SMPTE431, "prm"),
ENUM("smpte432", AVCOL_PRI_SMPTE432, "prm"),
ENUM("bt2020", AVCOL_PRI_BT2020, "prm"),
ENUM("jedec-p22", AVCOL_PRI_JEDEC_P22, "prm"),
ENUM("ebu3213", AVCOL_PRI_EBU3213, "prm"),
{ "trc", "Output transfer characteristics",
OFFSET(user_trc), AV_OPT_TYPE_INT, { .i64 = AVCOL_TRC_UNSPECIFIED },
AVCOL_TRC_RESERVED0, AVCOL_TRC_NB - 1, FLAGS, "trc" },
ENUM("bt709", AVCOL_TRC_BT709, "trc"),
ENUM("bt470m", AVCOL_TRC_GAMMA22, "trc"),
ENUM("gamma22", AVCOL_TRC_GAMMA22, "trc"),
ENUM("bt470bg", AVCOL_TRC_GAMMA28, "trc"),
ENUM("gamma28", AVCOL_TRC_GAMMA28, "trc"),
ENUM("smpte170m", AVCOL_TRC_SMPTE170M, "trc"),
ENUM("smpte240m", AVCOL_TRC_SMPTE240M, "trc"),
ENUM("linear", AVCOL_TRC_LINEAR, "trc"),
ENUM("srgb", AVCOL_TRC_IEC61966_2_1, "trc"),
ENUM("iec61966-2-1", AVCOL_TRC_IEC61966_2_1, "trc"),
ENUM("xvycc", AVCOL_TRC_IEC61966_2_4, "trc"),
ENUM("iec61966-2-4", AVCOL_TRC_IEC61966_2_4, "trc"),
ENUM("bt2020-10", AVCOL_TRC_BT2020_10, "trc"),
ENUM("bt2020-12", AVCOL_TRC_BT2020_12, "trc"),
{ "format", "Output pixel format",
OFFSET(user_format), AV_OPT_TYPE_INT, { .i64 = AV_PIX_FMT_NONE },
AV_PIX_FMT_NONE, AV_PIX_FMT_GBRAP12LE, FLAGS, "fmt" },
ENUM("yuv420p", AV_PIX_FMT_YUV420P, "fmt"),
ENUM("yuv420p10", AV_PIX_FMT_YUV420P10, "fmt"),
ENUM("yuv420p12", AV_PIX_FMT_YUV420P12, "fmt"),
ENUM("yuv422p", AV_PIX_FMT_YUV422P, "fmt"),
ENUM("yuv422p10", AV_PIX_FMT_YUV422P10, "fmt"),
ENUM("yuv422p12", AV_PIX_FMT_YUV422P12, "fmt"),
ENUM("yuv444p", AV_PIX_FMT_YUV444P, "fmt"),
ENUM("yuv444p10", AV_PIX_FMT_YUV444P10, "fmt"),
ENUM("yuv444p12", AV_PIX_FMT_YUV444P12, "fmt"),
{ "fast", "Ignore primary chromaticity and gamma correction",
OFFSET(fast_mode), AV_OPT_TYPE_BOOL, { .i64 = 0 },
0, 1, FLAGS },
{ "dither", "Dithering mode",
OFFSET(dither), AV_OPT_TYPE_INT, { .i64 = DITHER_NONE },
DITHER_NONE, DITHER_NB - 1, FLAGS, "dither" },
ENUM("none", DITHER_NONE, "dither"),
ENUM("fsb", DITHER_FSB, "dither"),
{ "wpadapt", "Whitepoint adaptation method",
OFFSET(wp_adapt), AV_OPT_TYPE_INT, { .i64 = WP_ADAPT_BRADFORD },
WP_ADAPT_BRADFORD, NB_WP_ADAPT - 1, FLAGS, "wpadapt" },
ENUM("bradford", WP_ADAPT_BRADFORD, "wpadapt"),
ENUM("vonkries", WP_ADAPT_VON_KRIES, "wpadapt"),
ENUM("identity", WP_ADAPT_IDENTITY, "wpadapt"),
{ "iall", "Set all input color properties together",
OFFSET(user_iall), AV_OPT_TYPE_INT, { .i64 = CS_UNSPECIFIED },
CS_UNSPECIFIED, CS_NB - 1, FLAGS, "all" },
{ "ispace", "Input colorspace",
OFFSET(user_icsp), AV_OPT_TYPE_INT, { .i64 = AVCOL_SPC_UNSPECIFIED },
AVCOL_PRI_RESERVED0, AVCOL_PRI_NB - 1, FLAGS, "csp" },
{ "irange", "Input color range",
OFFSET(user_irng), AV_OPT_TYPE_INT, { .i64 = AVCOL_RANGE_UNSPECIFIED },
AVCOL_RANGE_UNSPECIFIED, AVCOL_RANGE_NB - 1, FLAGS, "rng" },
{ "iprimaries", "Input color primaries",
OFFSET(user_iprm), AV_OPT_TYPE_INT, { .i64 = AVCOL_PRI_UNSPECIFIED },
AVCOL_PRI_RESERVED0, AVCOL_PRI_NB - 1, FLAGS, "prm" },
{ "itrc", "Input transfer characteristics",
OFFSET(user_itrc), AV_OPT_TYPE_INT, { .i64 = AVCOL_TRC_UNSPECIFIED },
AVCOL_TRC_RESERVED0, AVCOL_TRC_NB - 1, FLAGS, "trc" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(colorspace);
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
},
{ NULL }
};
AVFilter ff_vf_colorspace = {
.name = "colorspace",
.description = NULL_IF_CONFIG_SMALL("Convert between colorspaces."),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.priv_size = sizeof(ColorSpaceContext),
.priv_class = &colorspace_class,
.inputs = inputs,
.outputs = outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};