| /* |
| * Copyright (C) 2010-2011 Kevin Stone |
| * Copyright (C) 2016 Paul B Mahol |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with FFmpeg; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <float.h> |
| |
| #include "libavutil/common.h" |
| #include "libavutil/float_dsp.h" |
| #include "libavutil/imgutils.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "avfilter.h" |
| #include "formats.h" |
| #include "internal.h" |
| #include "video.h" |
| |
| typedef struct FrameData { |
| uint8_t *paddedp[3]; |
| int padded_stride[3]; |
| int padded_width[3]; |
| int padded_height[3]; |
| |
| uint8_t *dstp[3]; |
| int dst_stride[3]; |
| |
| int field[3]; |
| |
| int32_t *lcount[3]; |
| float *input; |
| float *temp; |
| } FrameData; |
| |
| typedef struct NNEDIContext { |
| const AVClass *class; |
| |
| char *weights_file; |
| |
| AVFrame *src; |
| AVFrame *second; |
| AVFrame *dst; |
| int eof; |
| int64_t cur_pts; |
| |
| AVFloatDSPContext *fdsp; |
| int nb_planes; |
| int linesize[4]; |
| int planeheight[4]; |
| |
| float *weights0; |
| float *weights1[2]; |
| int asize; |
| int nns; |
| int xdia; |
| int ydia; |
| |
| // Parameters |
| int deint; |
| int field; |
| int process_plane; |
| int nsize; |
| int nnsparam; |
| int qual; |
| int etype; |
| int pscrn; |
| int fapprox; |
| |
| int max_value; |
| |
| void (*copy_pad)(const AVFrame *, FrameData *, struct NNEDIContext *, int); |
| void (*evalfunc_0)(struct NNEDIContext *, FrameData *); |
| void (*evalfunc_1)(struct NNEDIContext *, FrameData *); |
| |
| // Functions used in evalfunc_0 |
| void (*readpixels)(const uint8_t *, const int, float *); |
| void (*compute_network0)(struct NNEDIContext *s, const float *, const float *, uint8_t *); |
| int32_t (*process_line0)(const uint8_t *, int, uint8_t *, const uint8_t *, const int, const int, const int); |
| |
| // Functions used in evalfunc_1 |
| void (*extract)(const uint8_t *, const int, const int, const int, float *, float *); |
| void (*dot_prod)(struct NNEDIContext *, const float *, const float *, float *, const int, const int, const float *); |
| void (*expfunc)(float *, const int); |
| void (*wae5)(const float *, const int, float *); |
| |
| FrameData frame_data; |
| } NNEDIContext; |
| |
| #define OFFSET(x) offsetof(NNEDIContext, x) |
| #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
| |
| static const AVOption nnedi_options[] = { |
| {"weights", "set weights file", OFFSET(weights_file), AV_OPT_TYPE_STRING, {.str="nnedi3_weights.bin"}, 0, 0, FLAGS }, |
| {"deint", "set which frames to deinterlace", OFFSET(deint), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "deint" }, |
| {"all", "deinterlace all frames", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "deint" }, |
| {"interlaced", "only deinterlace frames marked as interlaced", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "deint" }, |
| {"field", "set mode of operation", OFFSET(field), AV_OPT_TYPE_INT, {.i64=-1}, -2, 3, FLAGS, "field" }, |
| {"af", "use frame flags, both fields", 0, AV_OPT_TYPE_CONST, {.i64=-2}, 0, 0, FLAGS, "field" }, |
| {"a", "use frame flags, single field", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "field" }, |
| {"t", "use top field only", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "field" }, |
| {"b", "use bottom field only", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "field" }, |
| {"tf", "use both fields, top first", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "field" }, |
| {"bf", "use both fields, bottom first", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "field" }, |
| {"planes", "set which planes to process", OFFSET(process_plane), AV_OPT_TYPE_INT, {.i64=7}, 0, 7, FLAGS }, |
| {"nsize", "set size of local neighborhood around each pixel, used by the predictor neural network", OFFSET(nsize), AV_OPT_TYPE_INT, {.i64=6}, 0, 6, FLAGS, "nsize" }, |
| {"s8x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nsize" }, |
| {"s16x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nsize" }, |
| {"s32x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nsize" }, |
| {"s48x6", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nsize" }, |
| {"s8x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nsize" }, |
| {"s16x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=5}, 0, 0, FLAGS, "nsize" }, |
| {"s32x4", NULL, 0, AV_OPT_TYPE_CONST, {.i64=6}, 0, 0, FLAGS, "nsize" }, |
| {"nns", "set number of neurons in predictor neural network", OFFSET(nnsparam), AV_OPT_TYPE_INT, {.i64=1}, 0, 4, FLAGS, "nns" }, |
| {"n16", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "nns" }, |
| {"n32", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "nns" }, |
| {"n64", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "nns" }, |
| {"n128", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "nns" }, |
| {"n256", NULL, 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, FLAGS, "nns" }, |
| {"qual", "set quality", OFFSET(qual), AV_OPT_TYPE_INT, {.i64=1}, 1, 2, FLAGS, "qual" }, |
| {"fast", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "qual" }, |
| {"slow", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "qual" }, |
| {"etype", "set which set of weights to use in the predictor", OFFSET(etype), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "etype" }, |
| {"a", "weights trained to minimize absolute error", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "etype" }, |
| {"s", "weights trained to minimize squared error", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "etype" }, |
| {"pscrn", "set prescreening", OFFSET(pscrn), AV_OPT_TYPE_INT, {.i64=2}, 0, 2, FLAGS, "pscrn" }, |
| {"none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "pscrn" }, |
| {"original", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "pscrn" }, |
| {"new", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "pscrn" }, |
| {"fapprox", NULL, OFFSET(fapprox), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(nnedi); |
| |
| static int config_input(AVFilterLink *inlink) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| NNEDIContext *s = ctx->priv; |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); |
| int ret; |
| |
| s->nb_planes = av_pix_fmt_count_planes(inlink->format); |
| if ((ret = av_image_fill_linesizes(s->linesize, inlink->format, inlink->w)) < 0) |
| return ret; |
| |
| s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); |
| s->planeheight[0] = s->planeheight[3] = inlink->h; |
| |
| return 0; |
| } |
| |
| static int config_output(AVFilterLink *outlink) |
| { |
| AVFilterContext *ctx = outlink->src; |
| NNEDIContext *s = ctx->priv; |
| |
| outlink->time_base.num = ctx->inputs[0]->time_base.num; |
| outlink->time_base.den = ctx->inputs[0]->time_base.den * 2; |
| outlink->w = ctx->inputs[0]->w; |
| outlink->h = ctx->inputs[0]->h; |
| |
| if (s->field > 1 || s->field == -2) |
| outlink->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate, |
| (AVRational){2, 1}); |
| |
| return 0; |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat pix_fmts[] = { |
| AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, |
| AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, |
| AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, |
| AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, |
| AV_PIX_FMT_YUVJ411P, |
| AV_PIX_FMT_GBRP, |
| AV_PIX_FMT_GRAY8, |
| AV_PIX_FMT_NONE |
| }; |
| |
| AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); |
| if (!fmts_list) |
| return AVERROR(ENOMEM); |
| return ff_set_common_formats(ctx, fmts_list); |
| } |
| |
| static void copy_pad(const AVFrame *src, FrameData *frame_data, NNEDIContext *s, int fn) |
| { |
| const int off = 1 - fn; |
| int plane, y, x; |
| |
| for (plane = 0; plane < s->nb_planes; plane++) { |
| const uint8_t *srcp = (const uint8_t *)src->data[plane]; |
| uint8_t *dstp = (uint8_t *)frame_data->paddedp[plane]; |
| |
| const int src_stride = src->linesize[plane]; |
| const int dst_stride = frame_data->padded_stride[plane]; |
| |
| const int src_height = s->planeheight[plane]; |
| const int dst_height = frame_data->padded_height[plane]; |
| |
| const int src_width = s->linesize[plane]; |
| const int dst_width = frame_data->padded_width[plane]; |
| |
| int c = 4; |
| |
| if (!(s->process_plane & (1 << plane))) |
| continue; |
| |
| // Copy. |
| for (y = off; y < src_height; y += 2) |
| memcpy(dstp + 32 + (6 + y) * dst_stride, |
| srcp + y * src_stride, |
| src_width * sizeof(uint8_t)); |
| |
| // And pad. |
| dstp += (6 + off) * dst_stride; |
| for (y = 6 + off; y < dst_height - 6; y += 2) { |
| int c = 2; |
| |
| for (x = 0; x < 32; x++) |
| dstp[x] = dstp[64 - x]; |
| |
| for (x = dst_width - 32; x < dst_width; x++, c += 2) |
| dstp[x] = dstp[x - c]; |
| |
| dstp += dst_stride * 2; |
| } |
| |
| dstp = (uint8_t *)frame_data->paddedp[plane]; |
| for (y = off; y < 6; y += 2) |
| memcpy(dstp + y * dst_stride, |
| dstp + (12 + 2 * off - y) * dst_stride, |
| dst_width * sizeof(uint8_t)); |
| |
| for (y = dst_height - 6 + off; y < dst_height; y += 2, c += 4) |
| memcpy(dstp + y * dst_stride, |
| dstp + (y - c) * dst_stride, |
| dst_width * sizeof(uint8_t)); |
| } |
| } |
| |
| static void elliott(float *data, const int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| data[i] = data[i] / (1.0f + FFABS(data[i])); |
| } |
| |
| static void dot_prod(NNEDIContext *s, const float *data, const float *weights, float *vals, const int n, const int len, const float *scale) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| float sum; |
| |
| sum = s->fdsp->scalarproduct_float(data, &weights[i * len], len); |
| |
| vals[i] = sum * scale[0] + weights[n * len + i]; |
| } |
| } |
| |
| static void dot_prods(NNEDIContext *s, const float *dataf, const float *weightsf, float *vals, const int n, const int len, const float *scale) |
| { |
| const int16_t *data = (int16_t *)dataf; |
| const int16_t *weights = (int16_t *)weightsf; |
| const float *wf = (float *)&weights[n * len]; |
| int i, j; |
| |
| for (i = 0; i < n; i++) { |
| int sum = 0, off = ((i >> 2) << 3) + (i & 3); |
| for (j = 0; j < len; j++) |
| sum += data[j] * weights[i * len + j]; |
| |
| vals[i] = sum * wf[off] * scale[0] + wf[off + 4]; |
| } |
| } |
| |
| static void compute_network0(NNEDIContext *s, const float *input, const float *weights, uint8_t *d) |
| { |
| float t, temp[12], scale = 1.0f; |
| |
| dot_prod(s, input, weights, temp, 4, 48, &scale); |
| t = temp[0]; |
| elliott(temp, 4); |
| temp[0] = t; |
| dot_prod(s, temp, weights + 4 * 49, temp + 4, 4, 4, &scale); |
| elliott(temp + 4, 4); |
| dot_prod(s, temp, weights + 4 * 49 + 4 * 5, temp + 8, 4, 8, &scale); |
| if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9])) |
| d[0] = 1; |
| else |
| d[0] = 0; |
| } |
| |
| static void compute_network0_i16(NNEDIContext *s, const float *inputf, const float *weightsf, uint8_t *d) |
| { |
| const float *wf = weightsf + 2 * 48; |
| float t, temp[12], scale = 1.0f; |
| |
| dot_prods(s, inputf, weightsf, temp, 4, 48, &scale); |
| t = temp[0]; |
| elliott(temp, 4); |
| temp[0] = t; |
| dot_prod(s, temp, wf + 8, temp + 4, 4, 4, &scale); |
| elliott(temp + 4, 4); |
| dot_prod(s, temp, wf + 8 + 4 * 5, temp + 8, 4, 8, &scale); |
| if (FFMAX(temp[10], temp[11]) <= FFMAX(temp[8], temp[9])) |
| d[0] = 1; |
| else |
| d[0] = 0; |
| } |
| |
| static void pixel2float48(const uint8_t *t8, const int pitch, float *p) |
| { |
| const uint8_t *t = (const uint8_t *)t8; |
| int y, x; |
| |
| for (y = 0; y < 4; y++) |
| for (x = 0; x < 12; x++) |
| p[y * 12 + x] = t[y * pitch * 2 + x]; |
| } |
| |
| static void byte2word48(const uint8_t *t, const int pitch, float *pf) |
| { |
| int16_t *p = (int16_t *)pf; |
| int y, x; |
| |
| for (y = 0; y < 4; y++) |
| for (x = 0; x < 12; x++) |
| p[y * 12 + x] = t[y * pitch * 2 + x]; |
| } |
| |
| static int32_t process_line0(const uint8_t *tempu, int width, uint8_t *dstp8, const uint8_t *src3p8, const int src_pitch, const int max_value, const int chroma) |
| { |
| uint8_t *dstp = (uint8_t *)dstp8; |
| const uint8_t *src3p = (const uint8_t *)src3p8; |
| int minimum = 0; |
| int maximum = max_value - 1; // Technically the -1 is only needed for 8 and 16 bit input. |
| int count = 0, x; |
| for (x = 0; x < width; x++) { |
| if (tempu[x]) { |
| int tmp = 19 * (src3p[x + src_pitch * 2] + src3p[x + src_pitch * 4]) - 3 * (src3p[x] + src3p[x + src_pitch * 6]); |
| tmp /= 32; |
| dstp[x] = FFMAX(FFMIN(tmp, maximum), minimum); |
| } else { |
| dstp[x] = 255; |
| count++; |
| } |
| } |
| return count; |
| } |
| |
| // new prescreener functions |
| static void byte2word64(const uint8_t *t, const int pitch, float *p) |
| { |
| int16_t *ps = (int16_t *)p; |
| int y, x; |
| |
| for (y = 0; y < 4; y++) |
| for (x = 0; x < 16; x++) |
| ps[y * 16 + x] = t[y * pitch * 2 + x]; |
| } |
| |
| static void compute_network0new(NNEDIContext *s, const float *datai, const float *weights, uint8_t *d) |
| { |
| int16_t *data = (int16_t *)datai; |
| int16_t *ws = (int16_t *)weights; |
| float *wf = (float *)&ws[4 * 64]; |
| float vals[8]; |
| int mask, i, j; |
| |
| for (i = 0; i < 4; i++) { |
| int sum = 0; |
| float t; |
| |
| for (j = 0; j < 64; j++) |
| sum += data[j] * ws[(i << 3) + ((j >> 3) << 5) + (j & 7)]; |
| t = sum * wf[i] + wf[4 + i]; |
| vals[i] = t / (1.0f + FFABS(t)); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| float sum = 0.0f; |
| |
| for (j = 0; j < 4; j++) |
| sum += vals[j] * wf[8 + i + (j << 2)]; |
| vals[4 + i] = sum + wf[8 + 16 + i]; |
| } |
| |
| mask = 0; |
| for (i = 0; i < 4; i++) { |
| if (vals[4 + i] > 0.0f) |
| mask |= (0x1 << (i << 3)); |
| } |
| |
| ((int *)d)[0] = mask; |
| } |
| |
| static void evalfunc_0(NNEDIContext *s, FrameData *frame_data) |
| { |
| float *input = frame_data->input; |
| const float *weights0 = s->weights0; |
| float *temp = frame_data->temp; |
| uint8_t *tempu = (uint8_t *)temp; |
| int plane, x, y; |
| |
| // And now the actual work. |
| for (plane = 0; plane < s->nb_planes; plane++) { |
| const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane]; |
| const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t); |
| |
| const int width = frame_data->padded_width[plane]; |
| const int height = frame_data->padded_height[plane]; |
| |
| uint8_t *dstp = (uint8_t *)frame_data->dstp[plane]; |
| const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t); |
| const uint8_t *src3p; |
| int ystart, ystop; |
| int32_t *lcount; |
| |
| if (!(s->process_plane & (1 << plane))) |
| continue; |
| |
| for (y = 1 - frame_data->field[plane]; y < height - 12; y += 2) { |
| memcpy(dstp + y * dst_stride, |
| srcp + 32 + (6 + y) * src_stride, |
| (width - 64) * sizeof(uint8_t)); |
| |
| } |
| |
| ystart = 6 + frame_data->field[plane]; |
| ystop = height - 6; |
| srcp += ystart * src_stride; |
| dstp += (ystart - 6) * dst_stride - 32; |
| src3p = srcp - src_stride * 3; |
| lcount = frame_data->lcount[plane] - 6; |
| |
| if (s->pscrn == 1) { // original |
| for (y = ystart; y < ystop; y += 2) { |
| for (x = 32; x < width - 32; x++) { |
| s->readpixels((const uint8_t *)(src3p + x - 5), src_stride, input); |
| s->compute_network0(s, input, weights0, tempu+x); |
| } |
| lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane); |
| src3p += src_stride * 2; |
| dstp += dst_stride * 2; |
| } |
| } else if (s->pscrn > 1) { // new |
| for (y = ystart; y < ystop; y += 2) { |
| for (x = 32; x < width - 32; x += 4) { |
| s->readpixels((const uint8_t *)(src3p + x - 6), src_stride, input); |
| s->compute_network0(s, input, weights0, tempu + x); |
| } |
| lcount[y] += s->process_line0(tempu + 32, width - 64, (uint8_t *)(dstp + 32), (const uint8_t *)(src3p + 32), src_stride, s->max_value, plane); |
| src3p += src_stride * 2; |
| dstp += dst_stride * 2; |
| } |
| } else { // no prescreening |
| for (y = ystart; y < ystop; y += 2) { |
| memset(dstp + 32, 255, (width - 64) * sizeof(uint8_t)); |
| lcount[y] += width - 64; |
| dstp += dst_stride * 2; |
| } |
| } |
| } |
| } |
| |
| static void extract_m8(const uint8_t *srcp8, const int stride, const int xdia, const int ydia, float *mstd, float *input) |
| { |
| // uint8_t or uint16_t or float |
| const uint8_t *srcp = (const uint8_t *)srcp8; |
| float scale; |
| double tmp; |
| |
| // int32_t or int64_t or double |
| int64_t sum = 0, sumsq = 0; |
| int y, x; |
| |
| for (y = 0; y < ydia; y++) { |
| const uint8_t *srcpT = srcp + y * stride * 2; |
| |
| for (x = 0; x < xdia; x++) { |
| sum += srcpT[x]; |
| sumsq += (uint32_t)srcpT[x] * (uint32_t)srcpT[x]; |
| input[x] = srcpT[x]; |
| } |
| input += xdia; |
| } |
| scale = 1.0f / (xdia * ydia); |
| mstd[0] = sum * scale; |
| tmp = (double)sumsq * scale - (double)mstd[0] * mstd[0]; |
| mstd[3] = 0.0f; |
| if (tmp <= FLT_EPSILON) |
| mstd[1] = mstd[2] = 0.0f; |
| else { |
| mstd[1] = sqrt(tmp); |
| mstd[2] = 1.0f / mstd[1]; |
| } |
| } |
| |
| static void extract_m8_i16(const uint8_t *srcp, const int stride, const int xdia, const int ydia, float *mstd, float *inputf) |
| { |
| int16_t *input = (int16_t *)inputf; |
| float scale; |
| int sum = 0, sumsq = 0; |
| int y, x; |
| |
| for (y = 0; y < ydia; y++) { |
| const uint8_t *srcpT = srcp + y * stride * 2; |
| for (x = 0; x < xdia; x++) { |
| sum += srcpT[x]; |
| sumsq += srcpT[x] * srcpT[x]; |
| input[x] = srcpT[x]; |
| } |
| input += xdia; |
| } |
| scale = 1.0f / (float)(xdia * ydia); |
| mstd[0] = sum * scale; |
| mstd[1] = sumsq * scale - mstd[0] * mstd[0]; |
| mstd[3] = 0.0f; |
| if (mstd[1] <= FLT_EPSILON) |
| mstd[1] = mstd[2] = 0.0f; |
| else { |
| mstd[1] = sqrt(mstd[1]); |
| mstd[2] = 1.0f / mstd[1]; |
| } |
| } |
| |
| |
| static const float exp_lo = -80.0f; |
| static const float exp_hi = +80.0f; |
| |
| static void e2_m16(float *s, const int n) |
| { |
| int i; |
| |
| for (i = 0; i < n; i++) |
| s[i] = exp(av_clipf(s[i], exp_lo, exp_hi)); |
| } |
| |
| const float min_weight_sum = 1e-10f; |
| |
| static void weighted_avg_elliott_mul5_m16(const float *w, const int n, float *mstd) |
| { |
| float vsum = 0.0f, wsum = 0.0f; |
| int i; |
| |
| for (i = 0; i < n; i++) { |
| vsum += w[i] * (w[n + i] / (1.0f + FFABS(w[n + i]))); |
| wsum += w[i]; |
| } |
| if (wsum > min_weight_sum) |
| mstd[3] += ((5.0f * vsum) / wsum) * mstd[1] + mstd[0]; |
| else |
| mstd[3] += mstd[0]; |
| } |
| |
| |
| static void evalfunc_1(NNEDIContext *s, FrameData *frame_data) |
| { |
| float *input = frame_data->input; |
| float *temp = frame_data->temp; |
| float **weights1 = s->weights1; |
| const int qual = s->qual; |
| const int asize = s->asize; |
| const int nns = s->nns; |
| const int xdia = s->xdia; |
| const int xdiad2m1 = (xdia / 2) - 1; |
| const int ydia = s->ydia; |
| const float scale = 1.0f / (float)qual; |
| int plane, y, x, i; |
| |
| for (plane = 0; plane < s->nb_planes; plane++) { |
| const uint8_t *srcp = (const uint8_t *)frame_data->paddedp[plane]; |
| const int src_stride = frame_data->padded_stride[plane] / sizeof(uint8_t); |
| |
| const int width = frame_data->padded_width[plane]; |
| const int height = frame_data->padded_height[plane]; |
| |
| uint8_t *dstp = (uint8_t *)frame_data->dstp[plane]; |
| const int dst_stride = frame_data->dst_stride[plane] / sizeof(uint8_t); |
| |
| const int ystart = frame_data->field[plane]; |
| const int ystop = height - 12; |
| const uint8_t *srcpp; |
| |
| if (!(s->process_plane & (1 << plane))) |
| continue; |
| |
| srcp += (ystart + 6) * src_stride; |
| dstp += ystart * dst_stride - 32; |
| srcpp = srcp - (ydia - 1) * src_stride - xdiad2m1; |
| |
| for (y = ystart; y < ystop; y += 2) { |
| for (x = 32; x < width - 32; x++) { |
| float mstd[4]; |
| |
| if (dstp[x] != 255) |
| continue; |
| |
| s->extract((const uint8_t *)(srcpp + x), src_stride, xdia, ydia, mstd, input); |
| for (i = 0; i < qual; i++) { |
| s->dot_prod(s, input, weights1[i], temp, nns * 2, asize, mstd + 2); |
| s->expfunc(temp, nns); |
| s->wae5(temp, nns, mstd); |
| } |
| |
| dstp[x] = FFMIN(FFMAX((int)(mstd[3] * scale + 0.5f), 0), s->max_value); |
| } |
| srcpp += src_stride * 2; |
| dstp += dst_stride * 2; |
| } |
| } |
| } |
| |
| #define NUM_NSIZE 7 |
| #define NUM_NNS 5 |
| |
| static int roundds(const double f) |
| { |
| if (f - floor(f) >= 0.5) |
| return FFMIN((int)ceil(f), 32767); |
| return FFMAX((int)floor(f), -32768); |
| } |
| |
| static void select_functions(NNEDIContext *s) |
| { |
| s->copy_pad = copy_pad; |
| s->evalfunc_0 = evalfunc_0; |
| s->evalfunc_1 = evalfunc_1; |
| |
| // evalfunc_0 |
| s->process_line0 = process_line0; |
| |
| if (s->pscrn < 2) { // original prescreener |
| if (s->fapprox & 1) { // int16 dot products |
| s->readpixels = byte2word48; |
| s->compute_network0 = compute_network0_i16; |
| } else { |
| s->readpixels = pixel2float48; |
| s->compute_network0 = compute_network0; |
| } |
| } else { // new prescreener |
| // only int16 dot products |
| s->readpixels = byte2word64; |
| s->compute_network0 = compute_network0new; |
| } |
| |
| // evalfunc_1 |
| s->wae5 = weighted_avg_elliott_mul5_m16; |
| |
| if (s->fapprox & 2) { // use int16 dot products |
| s->extract = extract_m8_i16; |
| s->dot_prod = dot_prods; |
| } else { // use float dot products |
| s->extract = extract_m8; |
| s->dot_prod = dot_prod; |
| } |
| |
| s->expfunc = e2_m16; |
| } |
| |
| static int modnpf(const int m, const int n) |
| { |
| if ((m % n) == 0) |
| return m; |
| return m + n - (m % n); |
| } |
| |
| static int get_frame(AVFilterContext *ctx, int is_second) |
| { |
| NNEDIContext *s = ctx->priv; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| AVFrame *src = s->src; |
| FrameData *frame_data; |
| int effective_field = s->field; |
| size_t temp_size; |
| int field_n; |
| int plane; |
| |
| if (effective_field > 1) |
| effective_field -= 2; |
| else if (effective_field < 0) |
| effective_field += 2; |
| |
| if (s->field < 0 && src->interlaced_frame && src->top_field_first == 0) |
| effective_field = 0; |
| else if (s->field < 0 && src->interlaced_frame && src->top_field_first == 1) |
| effective_field = 1; |
| else |
| effective_field = !effective_field; |
| |
| if (s->field > 1 || s->field == -2) { |
| if (is_second) { |
| field_n = (effective_field == 0); |
| } else { |
| field_n = (effective_field == 1); |
| } |
| } else { |
| field_n = effective_field; |
| } |
| |
| s->dst = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!s->dst) |
| return AVERROR(ENOMEM); |
| av_frame_copy_props(s->dst, src); |
| s->dst->interlaced_frame = 0; |
| |
| frame_data = &s->frame_data; |
| |
| for (plane = 0; plane < s->nb_planes; plane++) { |
| int dst_height = s->planeheight[plane]; |
| int dst_width = s->linesize[plane]; |
| |
| const int min_alignment = 16; |
| const int min_pad = 10; |
| |
| if (!(s->process_plane & (1 << plane))) { |
| av_image_copy_plane(s->dst->data[plane], s->dst->linesize[plane], |
| src->data[plane], src->linesize[plane], |
| s->linesize[plane], |
| s->planeheight[plane]); |
| continue; |
| } |
| |
| frame_data->padded_width[plane] = dst_width + 64; |
| frame_data->padded_height[plane] = dst_height + 12; |
| frame_data->padded_stride[plane] = modnpf(frame_data->padded_width[plane] + min_pad, min_alignment); // TODO: maybe min_pad is in pixels too? |
| if (!frame_data->paddedp[plane]) { |
| frame_data->paddedp[plane] = av_malloc_array(frame_data->padded_stride[plane], frame_data->padded_height[plane]); |
| if (!frame_data->paddedp[plane]) |
| return AVERROR(ENOMEM); |
| } |
| |
| frame_data->dstp[plane] = s->dst->data[plane]; |
| frame_data->dst_stride[plane] = s->dst->linesize[plane]; |
| |
| if (!frame_data->lcount[plane]) { |
| frame_data->lcount[plane] = av_calloc(dst_height, sizeof(int32_t) * 16); |
| if (!frame_data->lcount[plane]) |
| return AVERROR(ENOMEM); |
| } else { |
| memset(frame_data->lcount[plane], 0, dst_height * sizeof(int32_t) * 16); |
| } |
| |
| frame_data->field[plane] = field_n; |
| } |
| |
| if (!frame_data->input) { |
| frame_data->input = av_malloc(512 * sizeof(float)); |
| if (!frame_data->input) |
| return AVERROR(ENOMEM); |
| } |
| // evalfunc_0 requires at least padded_width[0] bytes. |
| // evalfunc_1 requires at least 512 floats. |
| if (!frame_data->temp) { |
| temp_size = FFMAX(frame_data->padded_width[0], 512 * sizeof(float)); |
| frame_data->temp = av_malloc(temp_size); |
| if (!frame_data->temp) |
| return AVERROR(ENOMEM); |
| } |
| |
| // Copy src to a padded "frame" in frame_data and mirror the edges. |
| s->copy_pad(src, frame_data, s, field_n); |
| |
| // Handles prescreening and the cubic interpolation. |
| s->evalfunc_0(s, frame_data); |
| |
| // The rest. |
| s->evalfunc_1(s, frame_data); |
| |
| return 0; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *src) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| NNEDIContext *s = ctx->priv; |
| int ret; |
| |
| if ((s->field > 1 || |
| s->field == -2) && !s->second) { |
| goto second; |
| } else if (s->field > 1 || |
| s->field == -2) { |
| AVFrame *dst; |
| |
| s->src = s->second; |
| ret = get_frame(ctx, 1); |
| if (ret < 0) { |
| av_frame_free(&s->dst); |
| av_frame_free(&s->second); |
| s->src = NULL; |
| return ret; |
| } |
| dst = s->dst; |
| |
| if (src->pts != AV_NOPTS_VALUE && |
| dst->pts != AV_NOPTS_VALUE) |
| dst->pts += src->pts; |
| else |
| dst->pts = AV_NOPTS_VALUE; |
| |
| ret = ff_filter_frame(outlink, dst); |
| if (ret < 0) |
| return ret; |
| if (s->eof) |
| return 0; |
| s->cur_pts = s->second->pts; |
| av_frame_free(&s->second); |
| second: |
| if ((s->deint && src->interlaced_frame && |
| !ctx->is_disabled) || |
| (!s->deint && !ctx->is_disabled)) { |
| s->second = src; |
| } |
| } |
| |
| if ((s->deint && !src->interlaced_frame) || ctx->is_disabled) { |
| AVFrame *dst = av_frame_clone(src); |
| if (!dst) { |
| av_frame_free(&src); |
| av_frame_free(&s->second); |
| return AVERROR(ENOMEM); |
| } |
| |
| if (s->field > 1 || s->field == -2) { |
| av_frame_free(&s->second); |
| if ((s->deint && src->interlaced_frame) || |
| (!s->deint)) |
| s->second = src; |
| } else { |
| av_frame_free(&src); |
| } |
| if (dst->pts != AV_NOPTS_VALUE) |
| dst->pts *= 2; |
| return ff_filter_frame(outlink, dst); |
| } |
| |
| s->src = src; |
| ret = get_frame(ctx, 0); |
| if (ret < 0) { |
| av_frame_free(&s->dst); |
| av_frame_free(&s->src); |
| av_frame_free(&s->second); |
| return ret; |
| } |
| |
| if (src->pts != AV_NOPTS_VALUE) |
| s->dst->pts = src->pts * 2; |
| if (s->field <= 1 && s->field > -2) { |
| av_frame_free(&src); |
| s->src = NULL; |
| } |
| |
| return ff_filter_frame(outlink, s->dst); |
| } |
| |
| static int request_frame(AVFilterLink *link) |
| { |
| AVFilterContext *ctx = link->src; |
| NNEDIContext *s = ctx->priv; |
| int ret; |
| |
| if (s->eof) |
| return AVERROR_EOF; |
| |
| ret = ff_request_frame(ctx->inputs[0]); |
| |
| if (ret == AVERROR_EOF && s->second) { |
| AVFrame *next = av_frame_clone(s->second); |
| |
| if (!next) |
| return AVERROR(ENOMEM); |
| |
| next->pts = s->second->pts * 2 - s->cur_pts; |
| s->eof = 1; |
| |
| filter_frame(ctx->inputs[0], next); |
| } else if (ret < 0) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| NNEDIContext *s = ctx->priv; |
| FILE *weights_file = NULL; |
| int64_t expected_size = 13574928; |
| int64_t weights_size; |
| float *bdata; |
| size_t bytes_read; |
| const int xdia_table[NUM_NSIZE] = { 8, 16, 32, 48, 8, 16, 32 }; |
| const int ydia_table[NUM_NSIZE] = { 6, 6, 6, 6, 4, 4, 4 }; |
| const int nns_table[NUM_NNS] = { 16, 32, 64, 128, 256 }; |
| const int dims0 = 49 * 4 + 5 * 4 + 9 * 4; |
| const int dims0new = 4 * 65 + 4 * 5; |
| const int dims1 = nns_table[s->nnsparam] * 2 * (xdia_table[s->nsize] * ydia_table[s->nsize] + 1); |
| int dims1tsize = 0; |
| int dims1offset = 0; |
| int ret = 0, i, j, k; |
| |
| weights_file = av_fopen_utf8(s->weights_file, "rb"); |
| if (!weights_file) { |
| av_log(ctx, AV_LOG_ERROR, "No weights file provided, aborting!\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (fseek(weights_file, 0, SEEK_END)) { |
| av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the end of weights file.\n"); |
| fclose(weights_file); |
| return AVERROR(EINVAL); |
| } |
| |
| weights_size = ftell(weights_file); |
| |
| if (weights_size == -1) { |
| fclose(weights_file); |
| av_log(ctx, AV_LOG_ERROR, "Couldn't get size of weights file.\n"); |
| return AVERROR(EINVAL); |
| } else if (weights_size != expected_size) { |
| fclose(weights_file); |
| av_log(ctx, AV_LOG_ERROR, "Unexpected weights file size.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (fseek(weights_file, 0, SEEK_SET)) { |
| fclose(weights_file); |
| av_log(ctx, AV_LOG_ERROR, "Couldn't seek to the start of weights file.\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| bdata = (float *)av_malloc(expected_size); |
| if (!bdata) { |
| fclose(weights_file); |
| return AVERROR(ENOMEM); |
| } |
| |
| bytes_read = fread(bdata, 1, expected_size, weights_file); |
| |
| if (bytes_read != (size_t)expected_size) { |
| fclose(weights_file); |
| ret = AVERROR_INVALIDDATA; |
| av_log(ctx, AV_LOG_ERROR, "Couldn't read weights file.\n"); |
| goto fail; |
| } |
| |
| fclose(weights_file); |
| |
| for (j = 0; j < NUM_NNS; j++) { |
| for (i = 0; i < NUM_NSIZE; i++) { |
| if (i == s->nsize && j == s->nnsparam) |
| dims1offset = dims1tsize; |
| dims1tsize += nns_table[j] * 2 * (xdia_table[i] * ydia_table[i] + 1) * 2; |
| } |
| } |
| |
| s->weights0 = av_malloc_array(FFMAX(dims0, dims0new), sizeof(float)); |
| if (!s->weights0) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| for (i = 0; i < 2; i++) { |
| s->weights1[i] = av_malloc_array(dims1, sizeof(float)); |
| if (!s->weights1[i]) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| } |
| |
| // Adjust prescreener weights |
| if (s->pscrn >= 2) {// using new prescreener |
| const float *bdw; |
| int16_t *ws; |
| float *wf; |
| double mean[4] = { 0.0, 0.0, 0.0, 0.0 }; |
| int *offt = av_calloc(4 * 64, sizeof(int)); |
| |
| if (!offt) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| for (j = 0; j < 4; j++) |
| for (k = 0; k < 64; k++) |
| offt[j * 64 + k] = ((k >> 3) << 5) + ((j & 3) << 3) + (k & 7); |
| |
| bdw = bdata + dims0 + dims0new * (s->pscrn - 2); |
| ws = (int16_t *)s->weights0; |
| wf = (float *)&ws[4 * 64]; |
| // Calculate mean weight of each first layer neuron |
| for (j = 0; j < 4; j++) { |
| double cmean = 0.0; |
| for (k = 0; k < 64; k++) |
| cmean += bdw[offt[j * 64 + k]]; |
| mean[j] = cmean / 64.0; |
| } |
| // Factor mean removal and 1.0/127.5 scaling |
| // into first layer weights. scale to int16 range |
| for (j = 0; j < 4; j++) { |
| double scale, mval = 0.0; |
| |
| for (k = 0; k < 64; k++) |
| mval = FFMAX(mval, FFABS((bdw[offt[j * 64 + k]] - mean[j]) / 127.5)); |
| scale = 32767.0 / mval; |
| for (k = 0; k < 64; k++) |
| ws[offt[j * 64 + k]] = roundds(((bdw[offt[j * 64 + k]] - mean[j]) / 127.5) * scale); |
| wf[j] = (float)(mval / 32767.0); |
| } |
| memcpy(wf + 4, bdw + 4 * 64, (dims0new - 4 * 64) * sizeof(float)); |
| av_free(offt); |
| } else { // using old prescreener |
| double mean[4] = { 0.0, 0.0, 0.0, 0.0 }; |
| // Calculate mean weight of each first layer neuron |
| for (j = 0; j < 4; j++) { |
| double cmean = 0.0; |
| for (k = 0; k < 48; k++) |
| cmean += bdata[j * 48 + k]; |
| mean[j] = cmean / 48.0; |
| } |
| if (s->fapprox & 1) {// use int16 dot products in first layer |
| int16_t *ws = (int16_t *)s->weights0; |
| float *wf = (float *)&ws[4 * 48]; |
| // Factor mean removal and 1.0/127.5 scaling |
| // into first layer weights. scale to int16 range |
| for (j = 0; j < 4; j++) { |
| double scale, mval = 0.0; |
| for (k = 0; k < 48; k++) |
| mval = FFMAX(mval, FFABS((bdata[j * 48 + k] - mean[j]) / 127.5)); |
| scale = 32767.0 / mval; |
| for (k = 0; k < 48; k++) |
| ws[j * 48 + k] = roundds(((bdata[j * 48 + k] - mean[j]) / 127.5) * scale); |
| wf[j] = (float)(mval / 32767.0); |
| } |
| memcpy(wf + 4, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float)); |
| } else {// use float dot products in first layer |
| double half = (1 << 8) - 1; |
| |
| half /= 2; |
| |
| // Factor mean removal and 1.0/half scaling |
| // into first layer weights. |
| for (j = 0; j < 4; j++) |
| for (k = 0; k < 48; k++) |
| s->weights0[j * 48 + k] = (float)((bdata[j * 48 + k] - mean[j]) / half); |
| memcpy(s->weights0 + 4 * 48, bdata + 4 * 48, (dims0 - 4 * 48) * sizeof(float)); |
| } |
| } |
| |
| // Adjust prediction weights |
| for (i = 0; i < 2; i++) { |
| const float *bdataT = bdata + dims0 + dims0new * 3 + dims1tsize * s->etype + dims1offset + i * dims1; |
| const int nnst = nns_table[s->nnsparam]; |
| const int asize = xdia_table[s->nsize] * ydia_table[s->nsize]; |
| const int boff = nnst * 2 * asize; |
| double *mean = (double *)av_calloc(asize + 1 + nnst * 2, sizeof(double)); |
| |
| if (!mean) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| // Calculate mean weight of each neuron (ignore bias) |
| for (j = 0; j < nnst * 2; j++) { |
| double cmean = 0.0; |
| for (k = 0; k < asize; k++) |
| cmean += bdataT[j * asize + k]; |
| mean[asize + 1 + j] = cmean / (double)asize; |
| } |
| // Calculate mean softmax neuron |
| for (j = 0; j < nnst; j++) { |
| for (k = 0; k < asize; k++) |
| mean[k] += bdataT[j * asize + k] - mean[asize + 1 + j]; |
| mean[asize] += bdataT[boff + j]; |
| } |
| for (j = 0; j < asize + 1; j++) |
| mean[j] /= (double)(nnst); |
| |
| if (s->fapprox & 2) { // use int16 dot products |
| int16_t *ws = (int16_t *)s->weights1[i]; |
| float *wf = (float *)&ws[nnst * 2 * asize]; |
| // Factor mean removal into weights, remove global offset from |
| // softmax neurons, and scale weights to int16 range. |
| for (j = 0; j < nnst; j++) { // softmax neurons |
| double scale, mval = 0.0; |
| for (k = 0; k < asize; k++) |
| mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k])); |
| scale = 32767.0 / mval; |
| for (k = 0; k < asize; k++) |
| ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j] - mean[k]) * scale); |
| wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0); |
| wf[(j >> 2) * 8 + (j & 3) + 4] = (float)(bdataT[boff + j] - mean[asize]); |
| } |
| for (j = nnst; j < nnst * 2; j++) { // elliott neurons |
| double scale, mval = 0.0; |
| for (k = 0; k < asize; k++) |
| mval = FFMAX(mval, FFABS(bdataT[j * asize + k] - mean[asize + 1 + j])); |
| scale = 32767.0 / mval; |
| for (k = 0; k < asize; k++) |
| ws[j * asize + k] = roundds((bdataT[j * asize + k] - mean[asize + 1 + j]) * scale); |
| wf[(j >> 2) * 8 + (j & 3)] = (float)(mval / 32767.0); |
| wf[(j >> 2) * 8 + (j & 3) + 4] = bdataT[boff + j]; |
| } |
| } else { // use float dot products |
| // Factor mean removal into weights, and remove global |
| // offset from softmax neurons. |
| for (j = 0; j < nnst * 2; j++) { |
| for (k = 0; k < asize; k++) { |
| const double q = j < nnst ? mean[k] : 0.0; |
| s->weights1[i][j * asize + k] = (float)(bdataT[j * asize + k] - mean[asize + 1 + j] - q); |
| } |
| s->weights1[i][boff + j] = (float)(bdataT[boff + j] - (j < nnst ? mean[asize] : 0.0)); |
| } |
| } |
| av_free(mean); |
| } |
| |
| s->nns = nns_table[s->nnsparam]; |
| s->xdia = xdia_table[s->nsize]; |
| s->ydia = ydia_table[s->nsize]; |
| s->asize = xdia_table[s->nsize] * ydia_table[s->nsize]; |
| |
| s->max_value = 65535 >> 8; |
| |
| select_functions(s); |
| |
| s->fdsp = avpriv_float_dsp_alloc(0); |
| if (!s->fdsp) |
| ret = AVERROR(ENOMEM); |
| |
| fail: |
| av_free(bdata); |
| return ret; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| NNEDIContext *s = ctx->priv; |
| int i; |
| |
| av_freep(&s->weights0); |
| |
| for (i = 0; i < 2; i++) |
| av_freep(&s->weights1[i]); |
| |
| for (i = 0; i < s->nb_planes; i++) { |
| av_freep(&s->frame_data.paddedp[i]); |
| av_freep(&s->frame_data.lcount[i]); |
| } |
| |
| av_freep(&s->frame_data.input); |
| av_freep(&s->frame_data.temp); |
| av_freep(&s->fdsp); |
| av_frame_free(&s->second); |
| } |
| |
| static const AVFilterPad inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| .config_props = config_input, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_output, |
| .request_frame = request_frame, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_nnedi = { |
| .name = "nnedi", |
| .description = NULL_IF_CONFIG_SMALL("Apply neural network edge directed interpolation intra-only deinterlacer."), |
| .priv_size = sizeof(NNEDIContext), |
| .priv_class = &nnedi_class, |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = inputs, |
| .outputs = outputs, |
| .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, |
| }; |