| /* |
| * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with FFmpeg; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| #include <math.h> |
| #include <string.h> |
| #include "checkasm.h" |
| #include "libavcodec/vp9data.h" |
| #include "libavcodec/vp9.h" |
| #include "libavutil/common.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/intreadwrite.h" |
| #include "libavutil/mathematics.h" |
| |
| static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff }; |
| #define SIZEOF_PIXEL ((bit_depth + 7) / 8) |
| |
| #define randomize_buffers() \ |
| do { \ |
| uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
| int k; \ |
| for (k = -4; k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \ |
| uint32_t r = rnd() & mask; \ |
| AV_WN32A(a + k, r); \ |
| } \ |
| for (k = 0; k < size * SIZEOF_PIXEL; k += 4) { \ |
| uint32_t r = rnd() & mask; \ |
| AV_WN32A(l + k, r); \ |
| } \ |
| } while (0) |
| |
| static void check_ipred(void) |
| { |
| LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]); |
| uint8_t *a = &a_buf[32 * 2]; |
| LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); |
| VP9DSPContext dsp; |
| int tx, mode, bit_depth; |
| declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, |
| const uint8_t *left, const uint8_t *top); |
| static const char *const mode_names[N_INTRA_PRED_MODES] = { |
| [VERT_PRED] = "vert", |
| [HOR_PRED] = "hor", |
| [DC_PRED] = "dc", |
| [DIAG_DOWN_LEFT_PRED] = "diag_downleft", |
| [DIAG_DOWN_RIGHT_PRED] = "diag_downright", |
| [VERT_RIGHT_PRED] = "vert_right", |
| [HOR_DOWN_PRED] = "hor_down", |
| [VERT_LEFT_PRED] = "vert_left", |
| [HOR_UP_PRED] = "hor_up", |
| [TM_VP8_PRED] = "tm", |
| [LEFT_DC_PRED] = "dc_left", |
| [TOP_DC_PRED] = "dc_top", |
| [DC_128_PRED] = "dc_128", |
| [DC_127_PRED] = "dc_127", |
| [DC_129_PRED] = "dc_129", |
| }; |
| |
| for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
| ff_vp9dsp_init(&dsp, bit_depth, 0); |
| for (tx = 0; tx < 4; tx++) { |
| int size = 4 << tx; |
| |
| for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) { |
| if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp", |
| mode_names[mode], size, size, bit_depth)) { |
| randomize_buffers(); |
| call_ref(dst0, size * SIZEOF_PIXEL, l, a); |
| call_new(dst1, size * SIZEOF_PIXEL, l, a); |
| if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL)) |
| fail(); |
| bench_new(dst1, size * SIZEOF_PIXEL,l, a); |
| } |
| } |
| } |
| } |
| report("ipred"); |
| } |
| |
| #undef randomize_buffers |
| |
| #define randomize_buffers() \ |
| do { \ |
| uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
| for (y = 0; y < sz; y++) { \ |
| for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \ |
| uint32_t r = rnd() & mask; \ |
| AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \ |
| AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \ |
| } \ |
| for (x = 0; x < sz; x++) { \ |
| if (bit_depth == 8) { \ |
| coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \ |
| } else { \ |
| ((int32_t *) coef)[y * sz + x] = \ |
| ((uint16_t *) src)[y * sz + x] - \ |
| ((uint16_t *) dst)[y * sz + x]; \ |
| } \ |
| } \ |
| } \ |
| } while(0) |
| |
| // wht function copied from libvpx |
| static void fwht_1d(double *out, const double *in, int sz) |
| { |
| double t0 = in[0] + in[1]; |
| double t3 = in[3] - in[2]; |
| double t4 = trunc((t0 - t3) * 0.5); |
| double t1 = t4 - in[1]; |
| double t2 = t4 - in[2]; |
| |
| out[0] = t0 - t2; |
| out[1] = t2; |
| out[2] = t3 + t1; |
| out[3] = t1; |
| } |
| |
| // standard DCT-II |
| static void fdct_1d(double *out, const double *in, int sz) |
| { |
| int k, n; |
| |
| for (k = 0; k < sz; k++) { |
| out[k] = 0.0; |
| for (n = 0; n < sz; n++) |
| out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0)); |
| } |
| out[0] *= M_SQRT1_2; |
| } |
| |
| // see "Towards jointly optimal spatial prediction and adaptive transform in |
| // video/image coding", by J. Han, A. Saxena, and K. Rose |
| // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. |
| static void fadst4_1d(double *out, const double *in, int sz) |
| { |
| int k, n; |
| |
| for (k = 0; k < sz; k++) { |
| out[k] = 0.0; |
| for (n = 0; n < sz; n++) |
| out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0)); |
| } |
| } |
| |
| // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", |
| // by Jingning Han, Yaowu Xu, and Debargha Mukherjee |
| // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf |
| static void fadst_1d(double *out, const double *in, int sz) |
| { |
| int k, n; |
| |
| for (k = 0; k < sz; k++) { |
| out[k] = 0.0; |
| for (n = 0; n < sz; n++) |
| out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0)); |
| } |
| } |
| |
| typedef void (*ftx1d_fn)(double *out, const double *in, int sz); |
| static void ftx_2d(double *out, const double *in, enum TxfmMode tx, |
| enum TxfmType txtp, int sz) |
| { |
| static const double scaling_factors[5][4] = { |
| { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 }, |
| { 2.0, 2.0, 2.0, 2.0 }, |
| { 1.0, 1.0, 1.0, 1.0 }, |
| { 0.25 }, |
| { 4.0 } |
| }; |
| static const ftx1d_fn ftx1d_tbl[5][4][2] = { |
| { |
| { fdct_1d, fdct_1d }, |
| { fadst4_1d, fdct_1d }, |
| { fdct_1d, fadst4_1d }, |
| { fadst4_1d, fadst4_1d }, |
| }, { |
| { fdct_1d, fdct_1d }, |
| { fadst_1d, fdct_1d }, |
| { fdct_1d, fadst_1d }, |
| { fadst_1d, fadst_1d }, |
| }, { |
| { fdct_1d, fdct_1d }, |
| { fadst_1d, fdct_1d }, |
| { fdct_1d, fadst_1d }, |
| { fadst_1d, fadst_1d }, |
| }, { |
| { fdct_1d, fdct_1d }, |
| }, { |
| { fwht_1d, fwht_1d }, |
| }, |
| }; |
| double temp[1024]; |
| double scaling_factor = scaling_factors[tx][txtp]; |
| int i, j; |
| |
| // cols |
| for (i = 0; i < sz; ++i) { |
| double temp_out[32]; |
| |
| ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz); |
| // scale and transpose |
| for (j = 0; j < sz; ++j) |
| temp[j * sz + i] = temp_out[j] * scaling_factor; |
| } |
| |
| // rows |
| for (i = 0; i < sz; i++) |
| ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz); |
| } |
| |
| static void ftx(int16_t *buf, enum TxfmMode tx, |
| enum TxfmType txtp, int sz, int bit_depth) |
| { |
| double ind[1024], outd[1024]; |
| int n; |
| |
| emms_c(); |
| for (n = 0; n < sz * sz; n++) { |
| if (bit_depth == 8) |
| ind[n] = buf[n]; |
| else |
| ind[n] = ((int32_t *) buf)[n]; |
| } |
| ftx_2d(outd, ind, tx, txtp, sz); |
| for (n = 0; n < sz * sz; n++) { |
| if (bit_depth == 8) |
| buf[n] = lrint(outd[n]); |
| else |
| ((int32_t *) buf)[n] = lrint(outd[n]); |
| } |
| } |
| |
| static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx, |
| enum TxfmType txtp, int sz, int sub, int bit_depth) |
| { |
| // copy the topleft coefficients such that the return value (being the |
| // coefficient scantable index for the eob token) guarantees that only |
| // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both |
| // dimensions are non-zero. This leads to braching to specific optimized |
| // simd versions (e.g. dc-only) so that we get full asm coverage in this |
| // test |
| |
| int n; |
| const int16_t *scan = ff_vp9_scans[tx][txtp]; |
| int eob; |
| |
| for (n = 0; n < sz * sz; n++) { |
| int rc = scan[n], rcx = rc % sz, rcy = rc / sz; |
| |
| // find eob for this sub-idct |
| if (rcx >= sub || rcy >= sub) |
| break; |
| |
| // copy coef |
| if (bit_depth == 8) { |
| out[rc] = in[rc]; |
| } else { |
| AV_COPY32(&out[rc * 2], &in[rc * 2]); |
| } |
| } |
| |
| eob = n; |
| |
| for (; n < sz * sz; n++) { |
| int rc = scan[n]; |
| |
| // zero |
| if (bit_depth == 8) { |
| out[rc] = 0; |
| } else { |
| AV_ZERO32(&out[rc * 2]); |
| } |
| } |
| |
| return eob; |
| } |
| |
| static int iszero(const int16_t *c, int sz) |
| { |
| int n; |
| |
| for (n = 0; n < sz / sizeof(int16_t); n += 2) |
| if (AV_RN32A(&c[n])) |
| return 0; |
| |
| return 1; |
| } |
| |
| #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8)) |
| |
| static void check_itxfm(void) |
| { |
| LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]); |
| LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]); |
| declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob); |
| VP9DSPContext dsp; |
| int y, x, tx, txtp, bit_depth, sub; |
| static const char *const txtp_types[N_TXFM_TYPES] = { |
| [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct", |
| [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst" |
| }; |
| |
| for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
| ff_vp9dsp_init(&dsp, bit_depth, 0); |
| |
| for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) { |
| int sz = 4 << (tx & 3); |
| int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1; |
| |
| for (txtp = 0; txtp < n_txtps; txtp++) { |
| // skip testing sub-IDCTs for WHT or ADST since they don't |
| // implement it in any of the SIMD functions. If they do, |
| // consider changing this to ensure we have complete test |
| // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc, |
| // since the arm version can distinguish them at that level. |
| for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz; |
| sub < 4 ? (sub <<= 1) : (sub += 4)) { |
| if (check_func(dsp.itxfm_add[tx][txtp], |
| "vp9_inv_%s_%dx%d_sub%d_add_%d", |
| tx == 4 ? "wht_wht" : txtp_types[txtp], |
| sz, sz, sub, bit_depth)) { |
| int eob; |
| |
| randomize_buffers(); |
| ftx(coef, tx, txtp, sz, bit_depth); |
| |
| if (sub < sz) { |
| eob = copy_subcoefs(subcoef0, coef, tx, txtp, |
| sz, sub, bit_depth); |
| } else { |
| eob = sz * sz; |
| memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); |
| } |
| |
| memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL); |
| memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL); |
| memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); |
| call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob); |
| call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob); |
| if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) || |
| !iszero(subcoef0, sz * sz * SIZEOF_COEF) || |
| !iszero(subcoef1, sz * sz * SIZEOF_COEF)) |
| fail(); |
| |
| bench_new(dst, sz * SIZEOF_PIXEL, coef, eob); |
| } |
| } |
| } |
| } |
| } |
| report("itxfm"); |
| } |
| |
| #undef randomize_buffers |
| |
| #define setpx(a,b,c) \ |
| do { \ |
| if (SIZEOF_PIXEL == 1) { \ |
| buf0[(a) + (b) * jstride] = av_clip_uint8(c); \ |
| } else { \ |
| ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \ |
| } \ |
| } while (0) |
| |
| // c can be an assignment and must not be put under () |
| #define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1))) |
| #define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8)) |
| static void randomize_loopfilter_buffers(int bidx, int lineoff, int str, |
| int bit_depth, int dir, const int *E, |
| const int *F, const int *H, const int *I, |
| uint8_t *buf0, uint8_t *buf1) |
| { |
| uint32_t mask = (1 << bit_depth) - 1; |
| int off = dir ? lineoff : lineoff * 16; |
| int istride = dir ? 1 : 16; |
| int jstride = dir ? str : 1; |
| int i, j; |
| for (i = 0; i < 2; i++) /* flat16 */ { |
| int idx = off + i * istride, p0, q0; |
| setpx(idx, 0, q0 = rnd() & mask); |
| setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
| for (j = 1; j < 8; j++) { |
| setsx(idx, -1 - j, p0, F[bidx]); |
| setsx(idx, j, q0, F[bidx]); |
| } |
| } |
| for (i = 2; i < 4; i++) /* flat8 */ { |
| int idx = off + i * istride, p0, q0; |
| setpx(idx, 0, q0 = rnd() & mask); |
| setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
| for (j = 1; j < 4; j++) { |
| setsx(idx, -1 - j, p0, F[bidx]); |
| setsx(idx, j, q0, F[bidx]); |
| } |
| for (j = 4; j < 8; j++) { |
| setpx(idx, -1 - j, rnd() & mask); |
| setpx(idx, j, rnd() & mask); |
| } |
| } |
| for (i = 4; i < 6; i++) /* regular */ { |
| int idx = off + i * istride, p2, p1, p0, q0, q1, q2; |
| setpx(idx, 0, q0 = rnd() & mask); |
| setsx(idx, 1, q1 = q0, I[bidx]); |
| setsx(idx, 2, q2 = q1, I[bidx]); |
| setsx(idx, 3, q2, I[bidx]); |
| setsx(idx, -1, p0 = q0, E[bidx] >> 2); |
| setsx(idx, -2, p1 = p0, I[bidx]); |
| setsx(idx, -3, p2 = p1, I[bidx]); |
| setsx(idx, -4, p2, I[bidx]); |
| for (j = 4; j < 8; j++) { |
| setpx(idx, -1 - j, rnd() & mask); |
| setpx(idx, j, rnd() & mask); |
| } |
| } |
| for (i = 6; i < 8; i++) /* off */ { |
| int idx = off + i * istride; |
| for (j = 0; j < 8; j++) { |
| setpx(idx, -1 - j, rnd() & mask); |
| setpx(idx, j, rnd() & mask); |
| } |
| } |
| } |
| #define randomize_buffers(bidx, lineoff, str) \ |
| randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \ |
| E, F, H, I, buf0, buf1) |
| |
| static void check_loopfilter(void) |
| { |
| LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]); |
| VP9DSPContext dsp; |
| int dir, wd, wd2, bit_depth; |
| static const char *const dir_name[2] = { "h", "v" }; |
| static const int E[2] = { 20, 28 }, I[2] = { 10, 16 }; |
| static const int H[2] = { 7, 11 }, F[2] = { 1, 1 }; |
| declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H); |
| |
| for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
| ff_vp9dsp_init(&dsp, bit_depth, 0); |
| |
| for (dir = 0; dir < 2; dir++) { |
| int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL; |
| int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL; |
| uint8_t *buf0 = base0 + midoff_aligned; |
| uint8_t *buf1 = base1 + midoff_aligned; |
| |
| for (wd = 0; wd < 3; wd++) { |
| // 4/8/16wd_8px |
| if (check_func(dsp.loop_filter_8[wd][dir], |
| "vp9_loop_filter_%s_%d_8_%dbpp", |
| dir_name[dir], 4 << wd, bit_depth)) { |
| randomize_buffers(0, 0, 8); |
| memcpy(buf1 - midoff, buf0 - midoff, |
| 16 * 8 * SIZEOF_PIXEL); |
| call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
| call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
| if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL)) |
| fail(); |
| bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); |
| } |
| } |
| |
| midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL; |
| midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL; |
| |
| buf0 = base0 + midoff_aligned; |
| buf1 = base1 + midoff_aligned; |
| |
| // 16wd_16px loopfilter |
| if (check_func(dsp.loop_filter_16[dir], |
| "vp9_loop_filter_%s_16_16_%dbpp", |
| dir_name[dir], bit_depth)) { |
| randomize_buffers(0, 0, 16); |
| randomize_buffers(0, 8, 16); |
| memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); |
| call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
| call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
| if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) |
| fail(); |
| bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); |
| } |
| |
| for (wd = 0; wd < 2; wd++) { |
| for (wd2 = 0; wd2 < 2; wd2++) { |
| // mix2 loopfilter |
| if (check_func(dsp.loop_filter_mix2[wd][wd2][dir], |
| "vp9_loop_filter_mix2_%s_%d%d_16_%dbpp", |
| dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) { |
| randomize_buffers(0, 0, 16); |
| randomize_buffers(1, 8, 16); |
| memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); |
| #define M(a) (((a)[1] << 8) | (a)[0]) |
| call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
| call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
| if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) |
| fail(); |
| bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); |
| #undef M |
| } |
| } |
| } |
| } |
| } |
| report("loopfilter"); |
| } |
| |
| #undef setsx |
| #undef setpx |
| #undef setdx |
| #undef randomize_buffers |
| |
| #define DST_BUF_SIZE (size * size * SIZEOF_PIXEL) |
| #define SRC_BUF_STRIDE 72 |
| #define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL) |
| #define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1)) |
| |
| #define randomize_buffers() \ |
| do { \ |
| uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ |
| int k; \ |
| for (k = 0; k < SRC_BUF_SIZE; k += 4) { \ |
| uint32_t r = rnd() & mask; \ |
| AV_WN32A(buf + k, r); \ |
| } \ |
| if (op == 1) { \ |
| for (k = 0; k < DST_BUF_SIZE; k += 4) { \ |
| uint32_t r = rnd() & mask; \ |
| AV_WN32A(dst0 + k, r); \ |
| AV_WN32A(dst1 + k, r); \ |
| } \ |
| } \ |
| } while (0) |
| |
| static void check_mc(void) |
| { |
| LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]); |
| LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]); |
| VP9DSPContext dsp; |
| int op, hsize, bit_depth, filter, dx, dy; |
| declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride, |
| const uint8_t *ref, ptrdiff_t ref_stride, |
| int h, int mx, int my); |
| static const char *const filter_names[4] = { |
| "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin" |
| }; |
| static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } }; |
| static const char *const op_names[2] = { "put", "avg" }; |
| char str[256]; |
| |
| for (op = 0; op < 2; op++) { |
| for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { |
| ff_vp9dsp_init(&dsp, bit_depth, 0); |
| for (hsize = 0; hsize < 5; hsize++) { |
| int size = 64 >> hsize; |
| |
| for (filter = 0; filter < 4; filter++) { |
| for (dx = 0; dx < 2; dx++) { |
| for (dy = 0; dy < 2; dy++) { |
| if (dx || dy) { |
| snprintf(str, sizeof(str), |
| "%s_%s_%d%s", op_names[op], |
| filter_names[filter], size, |
| subpel_names[dy][dx]); |
| } else { |
| snprintf(str, sizeof(str), |
| "%s%d", op_names[op], size); |
| } |
| if (check_func(dsp.mc[hsize][filter][op][dx][dy], |
| "vp9_%s_%dbpp", str, bit_depth)) { |
| int mx = dx ? 1 + (rnd() % 14) : 0; |
| int my = dy ? 1 + (rnd() % 14) : 0; |
| randomize_buffers(); |
| call_ref(dst0, size * SIZEOF_PIXEL, |
| src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
| size, mx, my); |
| call_new(dst1, size * SIZEOF_PIXEL, |
| src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
| size, mx, my); |
| if (memcmp(dst0, dst1, DST_BUF_SIZE)) |
| fail(); |
| |
| // simd implementations for each filter of subpel |
| // functions are identical |
| if (filter >= 1 && filter <= 2) continue; |
| // 10/12 bpp for bilin are identical |
| if (bit_depth == 12 && filter == 3) continue; |
| |
| bench_new(dst1, size * SIZEOF_PIXEL, |
| src, SRC_BUF_STRIDE * SIZEOF_PIXEL, |
| size, mx, my); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| report("mc"); |
| } |
| |
| void checkasm_check_vp9dsp(void) |
| { |
| check_ipred(); |
| check_itxfm(); |
| check_loopfilter(); |
| check_mc(); |
| } |