blob: 4fc3ba2044b5fdc02ed5e44dc52bfa0b6b4b2a00 [file] [log] [blame] [edit]
/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN native backend implementation.
*/
#include "dnn_backend_native.h"
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#include "dnn_backend_native_layers.h"
#include "dnn_io_proc.h"
#define OFFSET(x) offsetof(NativeContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
static const AVOption dnn_native_options[] = {
{ "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS },
{ NULL },
};
const AVClass dnn_native_class = {
.class_name = "dnn_native",
.item_name = av_default_item_name,
.option = dnn_native_options,
.version = LIBAVUTIL_VERSION_INT,
.category = AV_CLASS_CATEGORY_FILTER,
};
static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc);
static DNNReturnType get_input_native(void *model, DNNData *input, const char *input_name)
{
NativeModel *native_model = (NativeModel *)model;
NativeContext *ctx = &native_model->ctx;
for (int i = 0; i < native_model->operands_num; ++i) {
DnnOperand *oprd = &native_model->operands[i];
if (strcmp(oprd->name, input_name) == 0) {
if (oprd->type != DOT_INPUT) {
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name);
return DNN_ERROR;
}
input->dt = oprd->data_type;
av_assert0(oprd->dims[0] == 1);
input->height = oprd->dims[1];
input->width = oprd->dims[2];
input->channels = oprd->dims[3];
return DNN_SUCCESS;
}
}
// do not find the input operand
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
return DNN_ERROR;
}
static DNNReturnType get_output_native(void *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height)
{
DNNReturnType ret;
NativeModel *native_model = (NativeModel *)model;
NativeContext *ctx = &native_model->ctx;
AVFrame *in_frame = av_frame_alloc();
AVFrame *out_frame = NULL;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for input frame\n");
return DNN_ERROR;
}
out_frame = av_frame_alloc();
if (!out_frame) {
av_log(ctx, AV_LOG_ERROR, "Could not allocate memory for output frame\n");
av_frame_free(&in_frame);
return DNN_ERROR;
}
in_frame->width = input_width;
in_frame->height = input_height;
ret = execute_model_native(native_model->model, input_name, in_frame, &output_name, 1, out_frame, 0);
*output_width = out_frame->width;
*output_height = out_frame->height;
av_frame_free(&out_frame);
av_frame_free(&in_frame);
return ret;
}
// Loads model and its parameters that are stored in a binary file with following structure:
// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters...
// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases
// For DEPTH_TO_SPACE layer: block_size
DNNModel *ff_dnn_load_model_native(const char *model_filename, const char *options, void *userdata)
{
DNNModel *model = NULL;
char header_expected[] = "FFMPEGDNNNATIVE";
char *buf;
size_t size;
int version, header_size, major_version_expected = 1;
NativeModel *native_model = NULL;
AVIOContext *model_file_context;
int file_size, dnn_size, parsed_size;
int32_t layer;
DNNLayerType layer_type;
if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){
return NULL;
}
file_size = avio_size(model_file_context);
model = av_mallocz(sizeof(DNNModel));
if (!model){
goto fail;
}
/**
* check file header with string and version
*/
size = sizeof(header_expected);
buf = av_malloc(size);
if (!buf) {
goto fail;
}
// size - 1 to skip the ending '\0' which is not saved in file
avio_get_str(model_file_context, size - 1, buf, size);
dnn_size = size - 1;
if (strncmp(buf, header_expected, size) != 0) {
av_freep(&buf);
goto fail;
}
av_freep(&buf);
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (version != major_version_expected) {
goto fail;
}
// currently no need to check minor version
version = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
header_size = dnn_size;
native_model = av_mallocz(sizeof(NativeModel));
if (!native_model){
goto fail;
}
native_model->ctx.class = &dnn_native_class;
model->options = options;
if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0)
goto fail;
model->model = (void *)native_model;
native_model->model = model;
#if !HAVE_PTHREAD_CANCEL
if (native_model->ctx.options.conv2d_threads > 1){
av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported "
"on this build (pthread support is required)\n");
}
#endif
avio_seek(model_file_context, file_size - 8, SEEK_SET);
native_model->layers_num = (int32_t)avio_rl32(model_file_context);
native_model->operands_num = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
avio_seek(model_file_context, header_size, SEEK_SET);
native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer));
if (!native_model->layers){
goto fail;
}
native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand));
if (!native_model->operands){
goto fail;
}
for (layer = 0; layer < native_model->layers_num; ++layer){
layer_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (layer_type >= DLT_COUNT) {
goto fail;
}
native_model->layers[layer].type = layer_type;
parsed_size = layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num);
if (!parsed_size) {
goto fail;
}
dnn_size += parsed_size;
}
for (int32_t i = 0; i < native_model->operands_num; ++i){
DnnOperand *oprd;
int32_t name_len;
int32_t operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
if (operand_index >= native_model->operands_num) {
goto fail;
}
oprd = &native_model->operands[operand_index];
name_len = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name));
dnn_size += name_len;
oprd->type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
oprd->data_type = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
for (int32_t dim = 0; dim < 4; ++dim) {
oprd->dims[dim] = (int32_t)avio_rl32(model_file_context);
dnn_size += 4;
}
oprd->isNHWC = 1;
}
avio_closep(&model_file_context);
if (dnn_size != file_size){
ff_dnn_free_model_native(&model);
return NULL;
}
model->get_input = &get_input_native;
model->get_output = &get_output_native;
model->userdata = userdata;
return model;
fail:
ff_dnn_free_model_native(&model);
avio_closep(&model_file_context);
return NULL;
}
static DNNReturnType execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame,
int do_ioproc)
{
NativeModel *native_model = (NativeModel *)model->model;
NativeContext *ctx = &native_model->ctx;
int32_t layer;
DNNData input, output;
DnnOperand *oprd = NULL;
if (native_model->layers_num <= 0 || native_model->operands_num <= 0) {
av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n");
return DNN_ERROR;
}
for (int i = 0; i < native_model->operands_num; ++i) {
oprd = &native_model->operands[i];
if (strcmp(oprd->name, input_name) == 0) {
if (oprd->type != DOT_INPUT) {
av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name);
return DNN_ERROR;
}
break;
}
oprd = NULL;
}
if (!oprd) {
av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name);
return DNN_ERROR;
}
oprd->dims[1] = in_frame->height;
oprd->dims[2] = in_frame->width;
av_freep(&oprd->data);
oprd->length = calculate_operand_data_length(oprd);
if (oprd->length <= 0) {
av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n");
return DNN_ERROR;
}
oprd->data = av_malloc(oprd->length);
if (!oprd->data) {
av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n");
return DNN_ERROR;
}
input.height = oprd->dims[1];
input.width = oprd->dims[2];
input.channels = oprd->dims[3];
input.data = oprd->data;
input.dt = oprd->data_type;
if (do_ioproc) {
if (native_model->model->pre_proc != NULL) {
native_model->model->pre_proc(in_frame, &input, native_model->model->userdata);
} else {
proc_from_frame_to_dnn(in_frame, &input, ctx);
}
}
if (nb_output != 1) {
// currently, the filter does not need multiple outputs,
// so we just pending the support until we really need it.
av_log(ctx, AV_LOG_ERROR, "do not support multiple outputs\n");
return DNN_ERROR;
}
for (layer = 0; layer < native_model->layers_num; ++layer){
DNNLayerType layer_type = native_model->layers[layer].type;
if (layer_funcs[layer_type].pf_exec(native_model->operands,
native_model->layers[layer].input_operand_indexes,
native_model->layers[layer].output_operand_index,
native_model->layers[layer].params,
&native_model->ctx) == DNN_ERROR) {
av_log(ctx, AV_LOG_ERROR, "Failed to execuet model\n");
return DNN_ERROR;
}
}
for (uint32_t i = 0; i < nb_output; ++i) {
DnnOperand *oprd = NULL;
const char *output_name = output_names[i];
for (int j = 0; j < native_model->operands_num; ++j) {
if (strcmp(native_model->operands[j].name, output_name) == 0) {
oprd = &native_model->operands[j];
break;
}
}
if (oprd == NULL) {
av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n");
return DNN_ERROR;
}
output.data = oprd->data;
output.height = oprd->dims[1];
output.width = oprd->dims[2];
output.channels = oprd->dims[3];
output.dt = oprd->data_type;
if (do_ioproc) {
if (native_model->model->post_proc != NULL) {
native_model->model->post_proc(out_frame, &output, native_model->model->userdata);
} else {
proc_from_dnn_to_frame(out_frame, &output, ctx);
}
} else {
out_frame->width = output.width;
out_frame->height = output.height;
}
}
return DNN_SUCCESS;
}
DNNReturnType ff_dnn_execute_model_native(const DNNModel *model, const char *input_name, AVFrame *in_frame,
const char **output_names, uint32_t nb_output, AVFrame *out_frame)
{
NativeModel *native_model = (NativeModel *)model->model;
NativeContext *ctx = &native_model->ctx;
if (!in_frame) {
av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n");
return DNN_ERROR;
}
if (!out_frame) {
av_log(ctx, AV_LOG_ERROR, "out frame is NULL when execute model.\n");
return DNN_ERROR;
}
return execute_model_native(model, input_name, in_frame, output_names, nb_output, out_frame, 1);
}
int32_t calculate_operand_dims_count(const DnnOperand *oprd)
{
int32_t result = 1;
for (int i = 0; i < 4; ++i)
result *= oprd->dims[i];
return result;
}
int32_t calculate_operand_data_length(const DnnOperand* oprd)
{
// currently, we just support DNN_FLOAT
uint64_t len = sizeof(float);
for (int i = 0; i < 4; i++) {
len *= oprd->dims[i];
if (len > INT32_MAX)
return 0;
}
return len;
}
void ff_dnn_free_model_native(DNNModel **model)
{
NativeModel *native_model;
ConvolutionalParams *conv_params;
int32_t layer;
if (*model)
{
if ((*model)->model) {
native_model = (NativeModel *)(*model)->model;
if (native_model->layers) {
for (layer = 0; layer < native_model->layers_num; ++layer){
if (native_model->layers[layer].type == DLT_CONV2D){
conv_params = (ConvolutionalParams *)native_model->layers[layer].params;
av_freep(&conv_params->kernel);
av_freep(&conv_params->biases);
}
av_freep(&native_model->layers[layer].params);
}
av_freep(&native_model->layers);
}
if (native_model->operands) {
for (uint32_t operand = 0; operand < native_model->operands_num; ++operand)
av_freep(&native_model->operands[operand].data);
av_freep(&native_model->operands);
}
av_freep(&native_model);
}
av_freep(model);
}
}