blob: 11f8c0016ec5c3c5e0556529e7d95b0fc49bd324 [file] [log] [blame] [edit]
/*
* Copyright (c) 2012-2016 Paul B Mahol
* Copyright (c) 2013 Marton Balint
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/avassert.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "libavutil/pixdesc.h"
#include "libavutil/xga_font_data.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
typedef struct ThreadData {
AVFrame *in;
AVFrame *out;
int component;
int offset_y;
int offset_x;
} ThreadData;
enum FilterType {
LOWPASS,
FLAT,
AFLAT,
CHROMA,
COLOR,
ACOLOR,
XFLAT,
YFLAT,
NB_FILTERS
};
enum DisplayType {
OVERLAY,
STACK,
PARADE,
NB_DISPLAYS
};
enum ScaleType {
DIGITAL,
MILLIVOLTS,
IRE,
NB_SCALES
};
enum GraticuleType {
GRAT_NONE,
GRAT_GREEN,
GRAT_ORANGE,
GRAT_INVERT,
NB_GRATICULES
};
typedef struct GraticuleLine {
const char *name;
uint16_t pos;
} GraticuleLine;
typedef struct GraticuleLines {
struct GraticuleLine line[4];
} GraticuleLines;
typedef struct WaveformContext {
const AVClass *class;
int mode;
int acomp;
int dcomp;
int ncomp;
int pcomp;
uint8_t bg_color[4];
float fintensity;
int intensity;
int mirror;
int display;
int envelope;
int graticule;
float opacity;
float bgopacity;
int estart[4];
int eend[4];
int *emax[4][4];
int *emin[4][4];
int *peak;
int filter;
int flags;
int bits;
int max;
int size;
int scale;
uint8_t grat_yuva_color[4];
int shift_w[4], shift_h[4];
GraticuleLines *glines;
int nb_glines;
int rgb;
float ftint[2];
int tint[2];
int (*waveform_slice)(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs);
void (*graticulef)(struct WaveformContext *s, AVFrame *out);
void (*blend_line)(uint8_t *dst, int size, int linesize, float o1, float o2,
int v, int step);
void (*draw_text)(AVFrame *out, int x, int y, int mult,
float o1, float o2, const char *txt,
const uint8_t color[4]);
const AVPixFmtDescriptor *desc;
const AVPixFmtDescriptor *odesc;
} WaveformContext;
#define OFFSET(x) offsetof(WaveformContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption waveform_options[] = {
{ "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "mode" },
{ "m", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "mode" },
{ "row", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "mode" },
{ "column", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "mode" },
{ "intensity", "set intensity", OFFSET(fintensity), AV_OPT_TYPE_FLOAT, {.dbl=0.04}, 0, 1, FLAGS },
{ "i", "set intensity", OFFSET(fintensity), AV_OPT_TYPE_FLOAT, {.dbl=0.04}, 0, 1, FLAGS },
{ "mirror", "set mirroring", OFFSET(mirror), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
{ "r", "set mirroring", OFFSET(mirror), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
{ "display", "set display mode", OFFSET(display), AV_OPT_TYPE_INT, {.i64=STACK}, 0, NB_DISPLAYS-1, FLAGS, "display" },
{ "d", "set display mode", OFFSET(display), AV_OPT_TYPE_INT, {.i64=STACK}, 0, NB_DISPLAYS-1, FLAGS, "display" },
{ "overlay", NULL, 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY}, 0, 0, FLAGS, "display" },
{ "stack", NULL, 0, AV_OPT_TYPE_CONST, {.i64=STACK}, 0, 0, FLAGS, "display" },
{ "parade", NULL, 0, AV_OPT_TYPE_CONST, {.i64=PARADE}, 0, 0, FLAGS, "display" },
{ "components", "set components to display", OFFSET(pcomp), AV_OPT_TYPE_INT, {.i64=1}, 1, 15, FLAGS },
{ "c", "set components to display", OFFSET(pcomp), AV_OPT_TYPE_INT, {.i64=1}, 1, 15, FLAGS },
{ "envelope", "set envelope to display", OFFSET(envelope), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS, "envelope" },
{ "e", "set envelope to display", OFFSET(envelope), AV_OPT_TYPE_INT, {.i64=0}, 0, 3, FLAGS, "envelope" },
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "envelope" },
{ "instant", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "envelope" },
{ "peak", NULL, 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "envelope" },
{ "peak+instant", NULL, 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, FLAGS, "envelope" },
{ "filter", "set filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_FILTERS-1, FLAGS, "filter" },
{ "f", "set filter", OFFSET(filter), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_FILTERS-1, FLAGS, "filter" },
{ "lowpass", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LOWPASS}, 0, 0, FLAGS, "filter" },
{ "flat" , NULL, 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "filter" },
{ "aflat" , NULL, 0, AV_OPT_TYPE_CONST, {.i64=AFLAT}, 0, 0, FLAGS, "filter" },
{ "chroma", NULL, 0, AV_OPT_TYPE_CONST, {.i64=CHROMA}, 0, 0, FLAGS, "filter" },
{ "color", NULL, 0, AV_OPT_TYPE_CONST, {.i64=COLOR}, 0, 0, FLAGS, "filter" },
{ "acolor", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ACOLOR}, 0, 0, FLAGS, "filter" },
{ "xflat", NULL, 0, AV_OPT_TYPE_CONST, {.i64=XFLAT}, 0, 0, FLAGS, "filter" },
{ "yflat", NULL, 0, AV_OPT_TYPE_CONST, {.i64=YFLAT}, 0, 0, FLAGS, "filter" },
{ "graticule", "set graticule", OFFSET(graticule), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_GRATICULES-1, FLAGS, "graticule" },
{ "g", "set graticule", OFFSET(graticule), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_GRATICULES-1, FLAGS, "graticule" },
{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64=GRAT_NONE}, 0, 0, FLAGS, "graticule" },
{ "green", NULL, 0, AV_OPT_TYPE_CONST, {.i64=GRAT_GREEN}, 0, 0, FLAGS, "graticule" },
{ "orange", NULL, 0, AV_OPT_TYPE_CONST, {.i64=GRAT_ORANGE}, 0, 0, FLAGS, "graticule" },
{ "invert", NULL, 0, AV_OPT_TYPE_CONST, {.i64=GRAT_INVERT}, 0, 0, FLAGS, "graticule" },
{ "opacity", "set graticule opacity", OFFSET(opacity), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, FLAGS },
{ "o", "set graticule opacity", OFFSET(opacity), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, FLAGS },
{ "flags", "set graticule flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, 3, FLAGS, "flags" },
{ "fl", "set graticule flags", OFFSET(flags), AV_OPT_TYPE_FLAGS, {.i64=1}, 0, 3, FLAGS, "flags" },
{ "numbers", "draw numbers", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "flags" },
{ "dots", "draw dots instead of lines", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "flags" },
{ "scale", "set scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_SCALES-1, FLAGS, "scale" },
{ "s", "set scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=0}, 0, NB_SCALES-1, FLAGS, "scale" },
{ "digital", NULL, 0, AV_OPT_TYPE_CONST, {.i64=DIGITAL}, 0, 0, FLAGS, "scale" },
{ "millivolts", NULL, 0, AV_OPT_TYPE_CONST, {.i64=MILLIVOLTS}, 0, 0, FLAGS, "scale" },
{ "ire", NULL, 0, AV_OPT_TYPE_CONST, {.i64=IRE}, 0, 0, FLAGS, "scale" },
{ "bgopacity", "set background opacity", OFFSET(bgopacity), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, FLAGS },
{ "b", "set background opacity", OFFSET(bgopacity), AV_OPT_TYPE_FLOAT, {.dbl=0.75}, 0, 1, FLAGS },
{ "tint0", "set 1st tint", OFFSET(ftint[0]), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, FLAGS},
{ "t0", "set 1st tint", OFFSET(ftint[0]), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, FLAGS},
{ "tint1", "set 2nd tint", OFFSET(ftint[1]), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, FLAGS},
{ "t1", "set 2nd tint", OFFSET(ftint[1]), AV_OPT_TYPE_FLOAT, {.dbl=0}, -1, 1, FLAGS},
{ NULL }
};
AVFILTER_DEFINE_CLASS(waveform);
static const enum AVPixelFormat in_lowpass_pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat in_color_pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat in_flat_pix_fmts[] = {
AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA422P12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_rgb8_lowpass_pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_rgb9_lowpass_pix_fmts[] = {
AV_PIX_FMT_GBRP9,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_rgb10_lowpass_pix_fmts[] = {
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_rgb12_lowpass_pix_fmts[] = {
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_yuv8_lowpass_pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_yuv9_lowpass_pix_fmts[] = {
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_yuv10_lowpass_pix_fmts[] = {
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_yuv12_lowpass_pix_fmts[] = {
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUVA444P12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_gray8_lowpass_pix_fmts[] = {
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_gray9_lowpass_pix_fmts[] = {
AV_PIX_FMT_GRAY9,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_gray10_lowpass_pix_fmts[] = {
AV_PIX_FMT_GRAY10,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat out_gray12_lowpass_pix_fmts[] = {
AV_PIX_FMT_GRAY12,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat flat_pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV444P12,
AV_PIX_FMT_NONE
};
static int query_formats(AVFilterContext *ctx)
{
WaveformContext *s = ctx->priv;
const enum AVPixelFormat *out_pix_fmts;
const enum AVPixelFormat *in_pix_fmts;
const AVPixFmtDescriptor *desc, *desc2;
AVFilterFormats *avff, *avff2;
int depth, depth2, rgb, i, ret, ncomp, ncomp2;
if (!ctx->inputs[0]->incfg.formats ||
!ctx->inputs[0]->incfg.formats->nb_formats) {
return AVERROR(EAGAIN);
}
switch (s->filter) {
case LOWPASS: in_pix_fmts = in_lowpass_pix_fmts; break;
case CHROMA:
case XFLAT:
case YFLAT:
case AFLAT:
case FLAT: in_pix_fmts = in_flat_pix_fmts; break;
case ACOLOR:
case COLOR: in_pix_fmts = in_color_pix_fmts; break;
default: return AVERROR_BUG;
}
if (!ctx->inputs[0]->outcfg.formats) {
if ((ret = ff_formats_ref(ff_make_format_list(in_pix_fmts), &ctx->inputs[0]->outcfg.formats)) < 0)
return ret;
}
avff = ctx->inputs[0]->incfg.formats;
avff2 = ctx->inputs[0]->outcfg.formats;
desc = av_pix_fmt_desc_get(avff->formats[0]);
desc2 = av_pix_fmt_desc_get(avff2->formats[0]);
ncomp = desc->nb_components;
ncomp2 = desc2->nb_components;
rgb = desc->flags & AV_PIX_FMT_FLAG_RGB;
depth = desc->comp[0].depth;
depth2 = desc2->comp[0].depth;
if (ncomp != ncomp2 || depth != depth2)
return AVERROR(EAGAIN);
for (i = 1; i < avff->nb_formats; i++) {
desc = av_pix_fmt_desc_get(avff->formats[i]);
if (rgb != (desc->flags & AV_PIX_FMT_FLAG_RGB) ||
depth != desc->comp[0].depth)
return AVERROR(EAGAIN);
}
if (s->filter == LOWPASS && ncomp == 1 && depth == 8)
out_pix_fmts = out_gray8_lowpass_pix_fmts;
else if (s->filter == LOWPASS && ncomp == 1 && depth == 9)
out_pix_fmts = out_gray9_lowpass_pix_fmts;
else if (s->filter == LOWPASS && ncomp == 1 && depth == 10)
out_pix_fmts = out_gray10_lowpass_pix_fmts;
else if (s->filter == LOWPASS && ncomp == 1 && depth == 12)
out_pix_fmts = out_gray12_lowpass_pix_fmts;
else if (rgb && depth == 8 && ncomp > 2)
out_pix_fmts = out_rgb8_lowpass_pix_fmts;
else if (rgb && depth == 9 && ncomp > 2)
out_pix_fmts = out_rgb9_lowpass_pix_fmts;
else if (rgb && depth == 10 && ncomp > 2)
out_pix_fmts = out_rgb10_lowpass_pix_fmts;
else if (rgb && depth == 12 && ncomp > 2)
out_pix_fmts = out_rgb12_lowpass_pix_fmts;
else if (depth == 8 && ncomp > 2)
out_pix_fmts = out_yuv8_lowpass_pix_fmts;
else if (depth == 9 && ncomp > 2)
out_pix_fmts = out_yuv9_lowpass_pix_fmts;
else if (depth == 10 && ncomp > 2)
out_pix_fmts = out_yuv10_lowpass_pix_fmts;
else if (depth == 12 && ncomp > 2)
out_pix_fmts = out_yuv12_lowpass_pix_fmts;
else
return AVERROR(EAGAIN);
if ((ret = ff_formats_ref(ff_make_format_list(out_pix_fmts), &ctx->outputs[0]->incfg.formats)) < 0)
return ret;
return 0;
}
static void envelope_instant16(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
const int dst_linesize = out->linesize[component] / 2;
const int bg = s->bg_color[component] * (s->max / 256);
const int limit = s->max - 1;
const int dst_h = s->display == PARADE ? out->height / s->acomp : out->height;
const int dst_w = s->display == PARADE ? out->width / s->acomp : out->width;
const int start = s->estart[plane];
const int end = s->eend[plane];
uint16_t *dst;
int x, y;
if (s->mode) {
for (x = offset; x < offset + dst_w; x++) {
for (y = start; y < end; y++) {
dst = (uint16_t *)out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
dst[0] = limit;
break;
}
}
for (y = end - 1; y >= start; y--) {
dst = (uint16_t *)out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
dst[0] = limit;
break;
}
}
}
} else {
for (y = offset; y < offset + dst_h; y++) {
dst = (uint16_t *)out->data[component] + y * dst_linesize;
for (x = start; x < end; x++) {
if (dst[x] != bg) {
dst[x] = limit;
break;
}
}
for (x = end - 1; x >= start; x--) {
if (dst[x] != bg) {
dst[x] = limit;
break;
}
}
}
}
}
static void envelope_instant(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
const int dst_linesize = out->linesize[component];
const uint8_t bg = s->bg_color[component];
const int dst_h = s->display == PARADE ? out->height / s->acomp : out->height;
const int dst_w = s->display == PARADE ? out->width / s->acomp : out->width;
const int start = s->estart[plane];
const int end = s->eend[plane];
uint8_t *dst;
int x, y;
if (s->mode) {
for (x = offset; x < offset + dst_w; x++) {
for (y = start; y < end; y++) {
dst = out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
dst[0] = 255;
break;
}
}
for (y = end - 1; y >= start; y--) {
dst = out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
dst[0] = 255;
break;
}
}
}
} else {
for (y = offset; y < offset + dst_h; y++) {
dst = out->data[component] + y * dst_linesize;
for (x = start; x < end; x++) {
if (dst[x] != bg) {
dst[x] = 255;
break;
}
}
for (x = end - 1; x >= start; x--) {
if (dst[x] != bg) {
dst[x] = 255;
break;
}
}
}
}
}
static void envelope_peak16(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
const int dst_linesize = out->linesize[component] / 2;
const int bg = s->bg_color[component] * (s->max / 256);
const int limit = s->max - 1;
const int dst_h = s->display == PARADE ? out->height / s->acomp : out->height;
const int dst_w = s->display == PARADE ? out->width / s->acomp : out->width;
const int start = s->estart[plane];
const int end = s->eend[plane];
int *emax = s->emax[plane][component];
int *emin = s->emin[plane][component];
uint16_t *dst;
int x, y;
if (s->mode) {
for (x = offset; x < offset + dst_w; x++) {
for (y = start; y < end && y < emin[x - offset]; y++) {
dst = (uint16_t *)out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
emin[x - offset] = y;
break;
}
}
for (y = end - 1; y >= start && y >= emax[x - offset]; y--) {
dst = (uint16_t *)out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
emax[x - offset] = y;
break;
}
}
}
if (s->envelope == 3)
envelope_instant16(s, out, plane, component, offset);
for (x = offset; x < offset + dst_w; x++) {
dst = (uint16_t *)out->data[component] + emin[x - offset] * dst_linesize + x;
dst[0] = limit;
dst = (uint16_t *)out->data[component] + emax[x - offset] * dst_linesize + x;
dst[0] = limit;
}
} else {
for (y = offset; y < offset + dst_h; y++) {
dst = (uint16_t *)out->data[component] + y * dst_linesize;
for (x = start; x < end && x < emin[y - offset]; x++) {
if (dst[x] != bg) {
emin[y - offset] = x;
break;
}
}
for (x = end - 1; x >= start && x >= emax[y - offset]; x--) {
if (dst[x] != bg) {
emax[y - offset] = x;
break;
}
}
}
if (s->envelope == 3)
envelope_instant16(s, out, plane, component, offset);
for (y = offset; y < offset + dst_h; y++) {
dst = (uint16_t *)out->data[component] + y * dst_linesize + emin[y - offset];
dst[0] = limit;
dst = (uint16_t *)out->data[component] + y * dst_linesize + emax[y - offset];
dst[0] = limit;
}
}
}
static void envelope_peak(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
const int dst_linesize = out->linesize[component];
const int bg = s->bg_color[component];
const int dst_h = s->display == PARADE ? out->height / s->acomp : out->height;
const int dst_w = s->display == PARADE ? out->width / s->acomp : out->width;
const int start = s->estart[plane];
const int end = s->eend[plane];
int *emax = s->emax[plane][component];
int *emin = s->emin[plane][component];
uint8_t *dst;
int x, y;
if (s->mode) {
for (x = offset; x < offset + dst_w; x++) {
for (y = start; y < end && y < emin[x - offset]; y++) {
dst = out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
emin[x - offset] = y;
break;
}
}
for (y = end - 1; y >= start && y >= emax[x - offset]; y--) {
dst = out->data[component] + y * dst_linesize + x;
if (dst[0] != bg) {
emax[x - offset] = y;
break;
}
}
}
if (s->envelope == 3)
envelope_instant(s, out, plane, component, offset);
for (x = offset; x < offset + dst_w; x++) {
dst = out->data[component] + emin[x - offset] * dst_linesize + x;
dst[0] = 255;
dst = out->data[component] + emax[x - offset] * dst_linesize + x;
dst[0] = 255;
}
} else {
for (y = offset; y < offset + dst_h; y++) {
dst = out->data[component] + y * dst_linesize;
for (x = start; x < end && x < emin[y - offset]; x++) {
if (dst[x] != bg) {
emin[y - offset] = x;
break;
}
}
for (x = end - 1; x >= start && x >= emax[y - offset]; x--) {
if (dst[x] != bg) {
emax[y - offset] = x;
break;
}
}
}
if (s->envelope == 3)
envelope_instant(s, out, plane, component, offset);
for (y = offset; y < offset + dst_h; y++) {
dst = out->data[component] + y * dst_linesize + emin[y - offset];
dst[0] = 255;
dst = out->data[component] + y * dst_linesize + emax[y - offset];
dst[0] = 255;
}
}
}
static void envelope16(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
if (s->envelope == 0) {
return;
} else if (s->envelope == 1) {
envelope_instant16(s, out, plane, component, offset);
} else {
envelope_peak16(s, out, plane, component, offset);
}
}
static void envelope(WaveformContext *s, AVFrame *out, int plane, int component, int offset)
{
if (s->envelope == 0) {
return;
} else if (s->envelope == 1) {
envelope_instant(s, out, plane, component, offset);
} else {
envelope_peak(s, out, plane, component, offset);
}
}
static void update16(uint16_t *target, int max, int intensity, int limit)
{
if (*target <= max)
*target += intensity;
else
*target = limit;
}
static void update(uint8_t *target, int max, int intensity)
{
if (*target <= max)
*target += intensity;
else
*target = 255;
}
static void update_cr(uint8_t *target, int unused, int intensity)
{
if (*target - intensity > 0)
*target -= intensity;
else
*target = 0;
}
static void update16_cr(uint16_t *target, int unused, int intensity, int limit)
{
if (*target - intensity > 0)
*target -= intensity;
else
*target = 0;
}
static av_always_inline void lowpass16(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int dplane = (s->rgb || s->display == OVERLAY) ? plane : 0;
const int shift_w = s->shift_w[component];
const int shift_h = s->shift_h[component];
const int src_linesize = in->linesize[plane] / 2;
const int dst_linesize = out->linesize[dplane] / 2;
const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1);
const int limit = s->max - 1;
const int max = limit - intensity;
const int src_h = AV_CEIL_RSHIFT(in->height, shift_h);
const int src_w = AV_CEIL_RSHIFT(in->width, shift_w);
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int step = column ? 1 << shift_w : 1 << shift_h;
const uint16_t *src_data = (const uint16_t *)in->data[plane] + sliceh_start * src_linesize;
uint16_t *dst_data = (uint16_t *)out->data[dplane] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
uint16_t * const dst_bottom_line = dst_data + dst_linesize * (s->size - 1);
uint16_t * const dst_line = (mirror ? dst_bottom_line : dst_data);
const uint16_t *p;
int y;
if (!column && mirror)
dst_data += s->size;
for (y = sliceh_start; y < sliceh_end; y++) {
const uint16_t *src_data_end = src_data + slicew_end;
uint16_t *dst = dst_line + slicew_start * step;
for (p = src_data + slicew_start; p < src_data_end; p++) {
uint16_t *target;
int i = 0, v = FFMIN(*p, limit);
if (column) {
do {
target = dst++ + dst_signed_linesize * v;
update16(target, max, intensity, limit);
} while (++i < step);
} else {
uint16_t *row = dst_data;
do {
if (mirror)
target = row - v - 1;
else
target = row + v;
update16(target, max, intensity, limit);
row += dst_linesize;
} while (++i < step);
}
}
src_data += src_linesize;
dst_data += dst_linesize * step;
}
if (s->display != OVERLAY && column && !s->rgb) {
const int mult = s->max / 256;
const int bg = s->bg_color[0] * mult;
const int t0 = s->tint[0];
const int t1 = s->tint[1];
uint16_t *dst0, *dst1;
const uint16_t *src;
int x;
src = (const uint16_t *)(out->data[0]) + offset_y * dst_linesize + offset_x;
dst0 = (uint16_t *)(out->data[1]) + offset_y * dst_linesize + offset_x;
dst1 = (uint16_t *)(out->data[2]) + offset_y * dst_linesize + offset_x;
for (y = 0; y < s->max; y++) {
for (x = slicew_start * step; x < slicew_end * step; x++) {
if (src[x] != bg) {
dst0[x] = t0;
dst1[x] = t1;
}
}
src += dst_linesize;
dst0 += dst_linesize;
dst1 += dst_linesize;
}
} else if (s->display != OVERLAY && !s->rgb) {
const int mult = s->max / 256;
const int bg = s->bg_color[0] * mult;
const int t0 = s->tint[0];
const int t1 = s->tint[1];
uint16_t *dst0, *dst1;
const uint16_t *src;
int x;
src = (const uint16_t *)out->data[0] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
dst0 = (uint16_t *)(out->data[1]) + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
dst1 = (uint16_t *)(out->data[2]) + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
for (y = sliceh_start * step; y < sliceh_end * step; y++) {
for (x = 0; x < s->max; x++) {
if (src[x] != bg) {
dst0[x] = t0;
dst1[x] = t1;
}
}
src += dst_linesize;
dst0 += dst_linesize;
dst1 += dst_linesize;
}
}
}
#define LOWPASS16_FUNC(name, column, mirror) \
static int lowpass16_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
lowpass16(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
LOWPASS16_FUNC(column_mirror, 1, 1)
LOWPASS16_FUNC(column, 1, 0)
LOWPASS16_FUNC(row_mirror, 0, 1)
LOWPASS16_FUNC(row, 0, 0)
static av_always_inline void lowpass(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int dplane = (s->rgb || s->display == OVERLAY) ? plane : 0;
const int shift_w = s->shift_w[component];
const int shift_h = s->shift_h[component];
const int src_linesize = in->linesize[plane];
const int dst_linesize = out->linesize[dplane];
const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1);
const int max = 255 - intensity;
const int src_h = AV_CEIL_RSHIFT(in->height, shift_h);
const int src_w = AV_CEIL_RSHIFT(in->width, shift_w);
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int step = column ? 1 << shift_w : 1 << shift_h;
const uint8_t *src_data = in->data[plane] + sliceh_start * src_linesize;
uint8_t *dst_data = out->data[dplane] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
uint8_t * const dst_bottom_line = dst_data + dst_linesize * (s->size - 1);
uint8_t * const dst_line = (mirror ? dst_bottom_line : dst_data);
const uint8_t *p;
int y;
if (!column && mirror)
dst_data += s->size;
for (y = sliceh_start; y < sliceh_end; y++) {
const uint8_t *src_data_end = src_data + slicew_end;
uint8_t *dst = dst_line + slicew_start * step;
for (p = src_data + slicew_start; p < src_data_end; p++) {
uint8_t *target;
int i = 0;
if (column) {
do {
target = dst++ + dst_signed_linesize * *p;
update(target, max, intensity);
} while (++i < step);
} else {
uint8_t *row = dst_data;
do {
if (mirror)
target = row - *p - 1;
else
target = row + *p;
update(target, max, intensity);
row += dst_linesize;
} while (++i < step);
}
}
src_data += src_linesize;
dst_data += dst_linesize * step;
}
if (s->display != OVERLAY && column && !s->rgb) {
const int bg = s->bg_color[0];
const int dst_h = 256;
const int t0 = s->tint[0];
const int t1 = s->tint[1];
uint8_t *dst0, *dst1;
const uint8_t *src;
int x;
src = out->data[0] + offset_y * dst_linesize + offset_x;
dst0 = out->data[1] + offset_y * dst_linesize + offset_x;
dst1 = out->data[2] + offset_y * dst_linesize + offset_x;
for (y = 0; y < dst_h; y++) {
for (x = slicew_start * step; x < slicew_end * step; x++) {
if (src[x] != bg) {
dst0[x] = t0;
dst1[x] = t1;
}
}
src += dst_linesize;
dst0 += dst_linesize;
dst1 += dst_linesize;
}
} else if (s->display != OVERLAY && !s->rgb) {
const int bg = s->bg_color[0];
const int dst_w = 256;
const int t0 = s->tint[0];
const int t1 = s->tint[1];
uint8_t *dst0, *dst1;
const uint8_t *src;
int x;
src = out->data[0] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
dst0 = out->data[1] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
dst1 = out->data[2] + (offset_y + sliceh_start * step) * dst_linesize + offset_x;
for (y = sliceh_start * step; y < sliceh_end * step; y++) {
for (x = 0; x < dst_w; x++) {
if (src[x] != bg) {
dst0[x] = t0;
dst1[x] = t1;
}
}
src += dst_linesize;
dst0 += dst_linesize;
dst1 += dst_linesize;
}
}
}
#define LOWPASS_FUNC(name, column, mirror) \
static int lowpass_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
lowpass(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
LOWPASS_FUNC(column_mirror, 1, 1)
LOWPASS_FUNC(column, 1, 0)
LOWPASS_FUNC(row_mirror, 0, 1)
LOWPASS_FUNC(row, 0, 0)
static av_always_inline void flat16(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int c0_linesize = in->linesize[ plane + 0 ] / 2;
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp] / 2;
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp] / 2;
const int c0_shift_w = s->shift_w[ component + 0 ];
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp];
const int c0_shift_h = s->shift_h[ component + 0 ];
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp];
const int d0_linesize = out->linesize[ plane + 0 ] / 2;
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp] / 2;
const int limit = s->max - 1;
const int max = limit - intensity;
const int mid = s->max / 2;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
int x, y;
if (column) {
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1);
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1);
for (x = slicew_start; x < slicew_end; x++) {
const uint16_t *c0_data = (uint16_t *)in->data[plane + 0];
const uint16_t *c1_data = (uint16_t *)in->data[(plane + 1) % s->ncomp];
const uint16_t *c2_data = (uint16_t *)in->data[(plane + 2) % s->ncomp];
uint16_t *d0_data = (uint16_t *)(out->data[plane]) + offset_y * d0_linesize + offset_x;
uint16_t *d1_data = (uint16_t *)(out->data[(plane + 1) % s->ncomp]) + offset_y * d1_linesize + offset_x;
uint16_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1);
uint16_t * const d0 = (mirror ? d0_bottom_line : d0_data);
uint16_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1);
uint16_t * const d1 = (mirror ? d1_bottom_line : d1_data);
for (y = 0; y < src_h; y++) {
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit) + s->max;
const int c1 = FFMIN(FFABS(c1_data[x >> c1_shift_w] - mid) + FFABS(c2_data[x >> c2_shift_w] - mid), limit);
uint16_t *target;
target = d0 + x + d0_signed_linesize * c0;
update16(target, max, intensity, limit);
target = d1 + x + d1_signed_linesize * (c0 - c1);
update16(target, max, intensity, limit);
target = d1 + x + d1_signed_linesize * (c0 + c1);
update16(target, max, intensity, limit);
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
}
}
} else {
const uint16_t *c0_data = (uint16_t *)(in->data[plane]) + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint16_t *c1_data = (uint16_t *)(in->data[(plane + 1) % s->ncomp]) + (sliceh_start >> c1_shift_h) * c1_linesize;
const uint16_t *c2_data = (uint16_t *)(in->data[(plane + 2) % s->ncomp]) + (sliceh_start >> c2_shift_h) * c2_linesize;
uint16_t *d0_data = (uint16_t *)(out->data[plane]) + (offset_y + sliceh_start) * d0_linesize + offset_x;
uint16_t *d1_data = (uint16_t *)(out->data[(plane + 1) % s->ncomp]) + (offset_y + sliceh_start) * d1_linesize + offset_x;
if (mirror) {
d0_data += s->size - 1;
d1_data += s->size - 1;
}
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit) + s->max;
const int c1 = FFMIN(FFABS(c1_data[x >> c1_shift_w] - mid) + FFABS(c2_data[x >> c2_shift_w] - mid), limit);
uint16_t *target;
if (mirror) {
target = d0_data - c0;
update16(target, max, intensity, limit);
target = d1_data - (c0 - c1);
update16(target, max, intensity, limit);
target = d1_data - (c0 + c1);
update16(target, max, intensity, limit);
} else {
target = d0_data + c0;
update16(target, max, intensity, limit);
target = d1_data + (c0 - c1);
update16(target, max, intensity, limit);
target = d1_data + (c0 + c1);
update16(target, max, intensity, limit);
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
}
}
}
#define FLAT16_FUNC(name, column, mirror) \
static int flat16_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
flat16(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
FLAT16_FUNC(column_mirror, 1, 1)
FLAT16_FUNC(column, 1, 0)
FLAT16_FUNC(row_mirror, 0, 1)
FLAT16_FUNC(row, 0, 0)
static av_always_inline void flat(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int c0_linesize = in->linesize[ plane + 0 ];
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp];
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp];
const int c0_shift_w = s->shift_w[ component + 0 ];
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp];
const int c0_shift_h = s->shift_h[ component + 0 ];
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp];
const int d0_linesize = out->linesize[ plane + 0 ];
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp];
const int max = 255 - intensity;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
int x, y;
if (column) {
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1);
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1);
for (x = slicew_start; x < slicew_end; x++) {
const uint8_t *c0_data = in->data[plane + 0];
const uint8_t *c1_data = in->data[(plane + 1) % s->ncomp];
const uint8_t *c2_data = in->data[(plane + 2) % s->ncomp];
uint8_t *d0_data = out->data[plane] + offset_y * d0_linesize + offset_x;
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x;
uint8_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1);
uint8_t * const d0 = (mirror ? d0_bottom_line : d0_data);
uint8_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1);
uint8_t * const d1 = (mirror ? d1_bottom_line : d1_data);
for (y = 0; y < src_h; y++) {
const int c0 = c0_data[x >> c0_shift_w] + 256;
const int c1 = FFABS(c1_data[x >> c1_shift_w] - 128) + FFABS(c2_data[x >> c2_shift_w] - 128);
uint8_t *target;
target = d0 + x + d0_signed_linesize * c0;
update(target, max, intensity);
target = d1 + x + d1_signed_linesize * (c0 - c1);
update(target, max, intensity);
target = d1 + x + d1_signed_linesize * (c0 + c1);
update(target, max, intensity);
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
}
}
} else {
const uint8_t *c0_data = in->data[plane] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint8_t *c1_data = in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
const uint8_t *c2_data = in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize;
uint8_t *d0_data = out->data[plane] + (offset_y + sliceh_start) * d0_linesize + offset_x;
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + (offset_y + sliceh_start) * d1_linesize + offset_x;
if (mirror) {
d0_data += s->size - 1;
d1_data += s->size - 1;
}
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int c0 = c0_data[x >> c0_shift_w] + 256;
const int c1 = FFABS(c1_data[x >> c1_shift_w] - 128) + FFABS(c2_data[x >> c2_shift_w] - 128);
uint8_t *target;
if (mirror) {
target = d0_data - c0;
update(target, max, intensity);
target = d1_data - (c0 - c1);
update(target, max, intensity);
target = d1_data - (c0 + c1);
update(target, max, intensity);
} else {
target = d0_data + c0;
update(target, max, intensity);
target = d1_data + (c0 - c1);
update(target, max, intensity);
target = d1_data + (c0 + c1);
update(target, max, intensity);
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
}
}
}
#define FLAT_FUNC(name, column, mirror) \
static int flat_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
flat(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
FLAT_FUNC(column_mirror, 1, 1)
FLAT_FUNC(column, 1, 0)
FLAT_FUNC(row_mirror, 0, 1)
FLAT_FUNC(row, 0, 0)
#define AFLAT16(name, update_cb, update_cr, column, mirror) \
static int name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
const int intensity = s->intensity; \
const int plane = s->desc->comp[component].plane; \
const int c0_linesize = in->linesize[ plane + 0 ] / 2; \
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp] / 2; \
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp] / 2; \
const int c0_shift_w = s->shift_w[ component + 0 ]; \
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp]; \
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp]; \
const int c0_shift_h = s->shift_h[ component + 0 ]; \
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp]; \
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp]; \
const int d0_linesize = out->linesize[ plane + 0 ] / 2; \
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp] / 2; \
const int d2_linesize = out->linesize[(plane + 2) % s->ncomp] / 2; \
const int limit = s->max - 1; \
const int max = limit - intensity; \
const int mid = s->max / 2; \
const int src_h = in->height; \
const int src_w = in->width; \
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0; \
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h; \
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0; \
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w; \
int x, y; \
\
if (column) { \
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1); \
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1); \
const int d2_signed_linesize = d2_linesize * (mirror == 1 ? -1 : 1); \
\
for (x = slicew_start; x < slicew_end; x++) { \
const uint16_t *c0_data = (uint16_t *)in->data[plane + 0]; \
const uint16_t *c1_data = (uint16_t *)in->data[(plane + 1) % s->ncomp]; \
const uint16_t *c2_data = (uint16_t *)in->data[(plane + 2) % s->ncomp]; \
uint16_t *d0_data = (uint16_t *)out->data[plane] + offset_y * d0_linesize + offset_x; \
uint16_t *d1_data = (uint16_t *)out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x; \
uint16_t *d2_data = (uint16_t *)out->data[(plane + 2) % s->ncomp] + offset_y * d2_linesize + offset_x; \
uint16_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1); \
uint16_t * const d0 = (mirror ? d0_bottom_line : d0_data); \
uint16_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1); \
uint16_t * const d1 = (mirror ? d1_bottom_line : d1_data); \
uint16_t * const d2_bottom_line = d2_data + d2_linesize * (s->size - 1); \
uint16_t * const d2 = (mirror ? d2_bottom_line : d2_data); \
\
for (y = 0; y < src_h; y++) { \
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit) + mid; \
const int c1 = FFMIN(c1_data[x >> c1_shift_w], limit) - mid; \
const int c2 = FFMIN(c2_data[x >> c2_shift_w], limit) - mid; \
uint16_t *target; \
\
target = d0 + x + d0_signed_linesize * c0; \
update16(target, max, intensity, limit); \
\
target = d1 + x + d1_signed_linesize * (c0 + c1); \
update_cb(target, max, intensity, limit); \
\
target = d2 + x + d2_signed_linesize * (c0 + c2); \
update_cr(target, max, intensity, limit); \
\
if (!c0_shift_h || (y & c0_shift_h)) \
c0_data += c0_linesize; \
if (!c1_shift_h || (y & c1_shift_h)) \
c1_data += c1_linesize; \
if (!c2_shift_h || (y & c2_shift_h)) \
c2_data += c2_linesize; \
d0_data += d0_linesize; \
d1_data += d1_linesize; \
d2_data += d2_linesize; \
} \
} \
} else { \
const uint16_t *c0_data = (uint16_t *)in->data[plane] + (sliceh_start >> c0_shift_h) * c0_linesize; \
const uint16_t *c1_data = (uint16_t *)in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize; \
const uint16_t *c2_data = (uint16_t *)in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize; \
uint16_t *d0_data = (uint16_t *)out->data[plane] + (offset_y + sliceh_start) * d0_linesize + offset_x; \
uint16_t *d1_data = (uint16_t *)out->data[(plane + 1) % s->ncomp] + (offset_y + sliceh_start) * d1_linesize + offset_x; \
uint16_t *d2_data = (uint16_t *)out->data[(plane + 2) % s->ncomp] + (offset_y + sliceh_start) * d2_linesize + offset_x; \
\
if (mirror) { \
d0_data += s->size - 1; \
d1_data += s->size - 1; \
d2_data += s->size - 1; \
} \
\
for (y = sliceh_start; y < sliceh_end; y++) { \
for (x = 0; x < src_w; x++) { \
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit) + mid; \
const int c1 = FFMIN(c1_data[x >> c1_shift_w], limit) - mid; \
const int c2 = FFMIN(c2_data[x >> c2_shift_w], limit) - mid; \
uint16_t *target; \
\
if (mirror) { \
target = d0_data - c0; \
update16(target, max, intensity, limit); \
target = d1_data - (c0 + c1); \
update_cb(target, max, intensity, limit); \
target = d2_data - (c0 + c2); \
update_cr(target, max, intensity, limit); \
} else { \
target = d0_data + c0; \
update16(target, max, intensity, limit); \
target = d1_data + (c0 + c1); \
update_cb(target, max, intensity, limit); \
target = d2_data + (c0 + c2); \
update_cr(target, max, intensity, limit); \
} \
} \
\
if (!c0_shift_h || (y & c0_shift_h)) \
c0_data += c0_linesize; \
if (!c1_shift_h || (y & c1_shift_h)) \
c1_data += c1_linesize; \
if (!c2_shift_h || (y & c2_shift_h)) \
c2_data += c2_linesize; \
d0_data += d0_linesize; \
d1_data += d1_linesize; \
d2_data += d2_linesize; \
} \
} \
return 0; \
}
#define AFLAT(name, update_cb, update_cr, column, mirror) \
static int name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
const int src_h = in->height; \
const int src_w = in->width; \
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0; \
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h; \
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0; \
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w; \
const int intensity = s->intensity; \
const int plane = s->desc->comp[component].plane; \
const int c0_linesize = in->linesize[ plane + 0 ]; \
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp]; \
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp]; \
const int c0_shift_w = s->shift_w[ component + 0 ]; \
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp]; \
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp]; \
const int c0_shift_h = s->shift_h[ component + 0 ]; \
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp]; \
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp]; \
const int d0_linesize = out->linesize[ plane + 0 ]; \
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp]; \
const int d2_linesize = out->linesize[(plane + 2) % s->ncomp]; \
const int max = 255 - intensity; \
int x, y; \
\
if (column) { \
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1); \
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1); \
const int d2_signed_linesize = d2_linesize * (mirror == 1 ? -1 : 1); \
\
for (x = slicew_start; x < slicew_end; x++) { \
const uint8_t *c0_data = in->data[plane + 0]; \
const uint8_t *c1_data = in->data[(plane + 1) % s->ncomp]; \
const uint8_t *c2_data = in->data[(plane + 2) % s->ncomp]; \
uint8_t *d0_data = out->data[plane] + offset_y * d0_linesize + offset_x; \
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x; \
uint8_t *d2_data = out->data[(plane + 2) % s->ncomp] + offset_y * d2_linesize + offset_x; \
uint8_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1); \
uint8_t * const d0 = (mirror ? d0_bottom_line : d0_data); \
uint8_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1); \
uint8_t * const d1 = (mirror ? d1_bottom_line : d1_data); \
uint8_t * const d2_bottom_line = d2_data + d2_linesize * (s->size - 1); \
uint8_t * const d2 = (mirror ? d2_bottom_line : d2_data); \
\
for (y = 0; y < src_h; y++) { \
const int c0 = c0_data[x >> c0_shift_w] + 128; \
const int c1 = c1_data[x >> c1_shift_w] - 128; \
const int c2 = c2_data[x >> c2_shift_w] - 128; \
uint8_t *target; \
\
target = d0 + x + d0_signed_linesize * c0; \
update(target, max, intensity); \
\
target = d1 + x + d1_signed_linesize * (c0 + c1); \
update_cb(target, max, intensity); \
\
target = d2 + x + d2_signed_linesize * (c0 + c2); \
update_cr(target, max, intensity); \
\
if (!c0_shift_h || (y & c0_shift_h)) \
c0_data += c0_linesize; \
if (!c1_shift_h || (y & c1_shift_h)) \
c1_data += c1_linesize; \
if (!c2_shift_h || (y & c2_shift_h)) \
c2_data += c2_linesize; \
d0_data += d0_linesize; \
d1_data += d1_linesize; \
d2_data += d2_linesize; \
} \
} \
} else { \
const uint8_t *c0_data = in->data[plane] + (sliceh_start >> c0_shift_h) * c0_linesize; \
const uint8_t *c1_data = in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize; \
const uint8_t *c2_data = in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize; \
uint8_t *d0_data = out->data[plane] + (offset_y + sliceh_start) * d0_linesize + offset_x; \
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + (offset_y + sliceh_start) * d1_linesize + offset_x; \
uint8_t *d2_data = out->data[(plane + 2) % s->ncomp] + (offset_y + sliceh_start) * d2_linesize + offset_x; \
\
if (mirror) { \
d0_data += s->size - 1; \
d1_data += s->size - 1; \
d2_data += s->size - 1; \
} \
\
for (y = sliceh_start; y < sliceh_end; y++) { \
for (x = 0; x < src_w; x++) { \
const int c0 = c0_data[x >> c0_shift_w] + 128; \
const int c1 = c1_data[x >> c1_shift_w] - 128; \
const int c2 = c2_data[x >> c2_shift_w] - 128; \
uint8_t *target; \
\
if (mirror) { \
target = d0_data - c0; \
update(target, max, intensity); \
target = d1_data - (c0 + c1); \
update_cb(target, max, intensity); \
target = d2_data - (c0 + c2); \
update_cr(target, max, intensity); \
} else { \
target = d0_data + c0; \
update(target, max, intensity); \
target = d1_data + (c0 + c1); \
update_cb(target, max, intensity); \
target = d2_data + (c0 + c2); \
update_cr(target, max, intensity); \
} \
} \
\
if (!c0_shift_h || (y & c0_shift_h)) \
c0_data += c0_linesize; \
if (!c1_shift_h || (y & c1_shift_h)) \
c1_data += c1_linesize; \
if (!c2_shift_h || (y & c2_shift_h)) \
c2_data += c2_linesize; \
d0_data += d0_linesize; \
d1_data += d1_linesize; \
d2_data += d2_linesize; \
} \
} \
return 0; \
}
AFLAT16(aflat16_row, update16, update16, 0, 0)
AFLAT16(aflat16_row_mirror, update16, update16, 0, 1)
AFLAT16(aflat16_column, update16, update16, 1, 0)
AFLAT16(aflat16_column_mirror, update16, update16, 1, 1)
AFLAT16(xflat16_row, update16, update16_cr, 0, 0)
AFLAT16(xflat16_row_mirror, update16, update16_cr, 0, 1)
AFLAT16(xflat16_column, update16, update16_cr, 1, 0)
AFLAT16(xflat16_column_mirror, update16, update16_cr, 1, 1)
AFLAT16(yflat16_row, update16_cr, update16_cr, 0, 0)
AFLAT16(yflat16_row_mirror, update16_cr, update16_cr, 0, 1)
AFLAT16(yflat16_column, update16_cr, update16_cr, 1, 0)
AFLAT16(yflat16_column_mirror, update16_cr, update16_cr, 1, 1)
AFLAT(aflat_row, update, update, 0, 0)
AFLAT(aflat_row_mirror, update, update, 0, 1)
AFLAT(aflat_column, update, update, 1, 0)
AFLAT(aflat_column_mirror, update, update, 1, 1)
AFLAT(xflat_row, update, update_cr, 0, 0)
AFLAT(xflat_row_mirror, update, update_cr, 0, 1)
AFLAT(xflat_column, update, update_cr, 1, 0)
AFLAT(xflat_column_mirror, update, update_cr, 1, 1)
AFLAT(yflat_row, update_cr, update_cr, 0, 0)
AFLAT(yflat_row_mirror, update_cr, update_cr, 0, 1)
AFLAT(yflat_column, update_cr, update_cr, 1, 0)
AFLAT(yflat_column_mirror, update_cr, update_cr, 1, 1)
static av_always_inline void chroma16(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int c0_linesize = in->linesize[(plane + 1) % s->ncomp] / 2;
const int c1_linesize = in->linesize[(plane + 2) % s->ncomp] / 2;
const int dst_linesize = out->linesize[plane] / 2;
const int limit = s->max - 1;
const int max = limit - intensity;
const int mid = s->max / 2;
const int c0_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c1_shift_w = s->shift_w[(component + 2) % s->ncomp];
const int c0_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c1_shift_h = s->shift_h[(component + 2) % s->ncomp];
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
int x, y;
if (column) {
const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1);
for (x = slicew_start; x < slicew_end; x++) {
const uint16_t *c0_data = (uint16_t *)in->data[(plane + 1) % s->ncomp];
const uint16_t *c1_data = (uint16_t *)in->data[(plane + 2) % s->ncomp];
uint16_t *dst_data = (uint16_t *)out->data[plane] + offset_y * dst_linesize + offset_x;
uint16_t * const dst_bottom_line = dst_data + dst_linesize * (s->size - 1);
uint16_t * const dst_line = (mirror ? dst_bottom_line : dst_data);
uint16_t *dst = dst_line;
for (y = 0; y < src_h; y++) {
const int sum = FFMIN(FFABS(c0_data[x >> c0_shift_w] - mid) + FFABS(c1_data[x >> c1_shift_w] - mid - 1), limit);
uint16_t *target;
target = dst + x + dst_signed_linesize * sum;
update16(target, max, intensity, limit);
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
dst_data += dst_linesize;
}
}
} else {
const uint16_t *c0_data = (uint16_t *)in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint16_t *c1_data = (uint16_t *)in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
uint16_t *dst_data = (uint16_t *)out->data[plane] + (offset_y + sliceh_start) * dst_linesize + offset_x;
if (mirror)
dst_data += s->size - 1;
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int sum = FFMIN(FFABS(c0_data[x >> c0_shift_w] - mid) + FFABS(c1_data[x >> c1_shift_w] - mid - 1), limit);
uint16_t *target;
if (mirror) {
target = dst_data - sum;
update16(target, max, intensity, limit);
} else {
target = dst_data + sum;
update16(target, max, intensity, limit);
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
dst_data += dst_linesize;
}
}
}
#define CHROMA16_FUNC(name, column, mirror) \
static int chroma16_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
chroma16(s, in, out, component, s->intensity,\
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
CHROMA16_FUNC(column_mirror, 1, 1)
CHROMA16_FUNC(column, 1, 0)
CHROMA16_FUNC(row_mirror, 0, 1)
CHROMA16_FUNC(row, 0, 0)
static av_always_inline void chroma(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int c0_linesize = in->linesize[(plane + 1) % s->ncomp];
const int c1_linesize = in->linesize[(plane + 2) % s->ncomp];
const int dst_linesize = out->linesize[plane];
const int max = 255 - intensity;
const int c0_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c1_shift_w = s->shift_w[(component + 2) % s->ncomp];
const int c0_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c1_shift_h = s->shift_h[(component + 2) % s->ncomp];
int x, y;
if (column) {
const int dst_signed_linesize = dst_linesize * (mirror == 1 ? -1 : 1);
for (x = slicew_start; x < slicew_end; x++) {
const uint8_t *c0_data = in->data[(plane + 1) % s->ncomp];
const uint8_t *c1_data = in->data[(plane + 2) % s->ncomp];
uint8_t *dst_data = out->data[plane] + offset_y * dst_linesize + offset_x;
uint8_t * const dst_bottom_line = dst_data + dst_linesize * (s->size - 1);
uint8_t * const dst_line = (mirror ? dst_bottom_line : dst_data);
uint8_t *dst = dst_line;
for (y = 0; y < src_h; y++) {
const int sum = FFABS(c0_data[x >> c0_shift_w] - 128) + FFABS(c1_data[x >> c1_shift_w] - 127);
uint8_t *target;
target = dst + x + dst_signed_linesize * sum;
update(target, max, intensity);
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
dst_data += dst_linesize;
}
}
} else {
const uint8_t *c0_data = in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint8_t *c1_data = in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
uint8_t *dst_data = out->data[plane] + (offset_y + sliceh_start) * dst_linesize + offset_x;
if (mirror)
dst_data += s->size - 1;
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int sum = FFABS(c0_data[x >> c0_shift_w] - 128) + FFABS(c1_data[x >> c1_shift_w] - 127);
uint8_t *target;
if (mirror) {
target = dst_data - sum;
update(target, max, intensity);
} else {
target = dst_data + sum;
update(target, max, intensity);
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
dst_data += dst_linesize;
}
}
}
#define CHROMA_FUNC(name, column, mirror) \
static int chroma_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
chroma(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
CHROMA_FUNC(column_mirror, 1, 1)
CHROMA_FUNC(column, 1, 0)
CHROMA_FUNC(row_mirror, 0, 1)
CHROMA_FUNC(row, 0, 0)
static av_always_inline void color16(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int limit = s->max - 1;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int c0_linesize = in->linesize[ plane + 0 ] / 2;
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp] / 2;
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp] / 2;
const int c0_shift_h = s->shift_h[ component + 0 ];
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp];
const uint16_t *c0_data = (const uint16_t *)in->data[plane + 0] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint16_t *c1_data = (const uint16_t *)in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
const uint16_t *c2_data = (const uint16_t *)in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize;
const int d0_linesize = out->linesize[ plane + 0 ] / 2;
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp] / 2;
const int d2_linesize = out->linesize[(plane + 2) % s->ncomp] / 2;
const int c0_shift_w = s->shift_w[ component + 0 ];
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp];
int x, y;
if (column) {
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1);
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1);
const int d2_signed_linesize = d2_linesize * (mirror == 1 ? -1 : 1);
uint16_t *d0_data = (uint16_t *)out->data[plane] + offset_y * d0_linesize + offset_x;
uint16_t *d1_data = (uint16_t *)out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x;
uint16_t *d2_data = (uint16_t *)out->data[(plane + 2) % s->ncomp] + offset_y * d2_linesize + offset_x;
uint16_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1);
uint16_t * const d0 = (mirror ? d0_bottom_line : d0_data);
uint16_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1);
uint16_t * const d1 = (mirror ? d1_bottom_line : d1_data);
uint16_t * const d2_bottom_line = d2_data + d2_linesize * (s->size - 1);
uint16_t * const d2 = (mirror ? d2_bottom_line : d2_data);
for (y = 0; y < src_h; y++) {
for (x = slicew_start; x < slicew_end; x++) {
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit);
const int c1 = c1_data[x >> c1_shift_w];
const int c2 = c2_data[x >> c2_shift_w];
*(d0 + d0_signed_linesize * c0 + x) = c0;
*(d1 + d1_signed_linesize * c0 + x) = c1;
*(d2 + d2_signed_linesize * c0 + x) = c2;
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
d2_data += d2_linesize;
}
} else {
uint16_t *d0_data = (uint16_t *)out->data[plane] + (offset_y + sliceh_start) * d0_linesize + offset_x;
uint16_t *d1_data = (uint16_t *)out->data[(plane + 1) % s->ncomp] + (offset_y + sliceh_start) * d1_linesize + offset_x;
uint16_t *d2_data = (uint16_t *)out->data[(plane + 2) % s->ncomp] + (offset_y + sliceh_start) * d2_linesize + offset_x;
if (mirror) {
d0_data += s->size - 1;
d1_data += s->size - 1;
d2_data += s->size - 1;
}
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit);
const int c1 = c1_data[x >> c1_shift_w];
const int c2 = c2_data[x >> c2_shift_w];
if (mirror) {
*(d0_data - c0) = c0;
*(d1_data - c0) = c1;
*(d2_data - c0) = c2;
} else {
*(d0_data + c0) = c0;
*(d1_data + c0) = c1;
*(d2_data + c0) = c2;
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
d2_data += d2_linesize;
}
}
}
#define COLOR16_FUNC(name, column, mirror) \
static int color16_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
color16(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
COLOR16_FUNC(column_mirror, 1, 1)
COLOR16_FUNC(column, 1, 0)
COLOR16_FUNC(row_mirror, 0, 1)
COLOR16_FUNC(row, 0, 0)
static av_always_inline void color(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int c0_linesize = in->linesize[ plane + 0 ];
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp];
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp];
const int c0_shift_h = s->shift_h[ component + 0 ];
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp];
const uint8_t *c0_data = in->data[plane] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint8_t *c1_data = in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
const uint8_t *c2_data = in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize;
const int d0_linesize = out->linesize[ plane + 0 ];
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp];
const int d2_linesize = out->linesize[(plane + 2) % s->ncomp];
const int c0_shift_w = s->shift_w[ component + 0 ];
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp];
int x, y;
if (column) {
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1);
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1);
const int d2_signed_linesize = d2_linesize * (mirror == 1 ? -1 : 1);
uint8_t *d0_data = out->data[plane] + offset_y * d0_linesize + offset_x;
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x;
uint8_t *d2_data = out->data[(plane + 2) % s->ncomp] + offset_y * d2_linesize + offset_x;
uint8_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1);
uint8_t * const d0 = (mirror ? d0_bottom_line : d0_data);
uint8_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1);
uint8_t * const d1 = (mirror ? d1_bottom_line : d1_data);
uint8_t * const d2_bottom_line = d2_data + d2_linesize * (s->size - 1);
uint8_t * const d2 = (mirror ? d2_bottom_line : d2_data);
for (y = 0; y < src_h; y++) {
for (x = slicew_start; x < slicew_end; x++) {
const int c0 = c0_data[x >> c0_shift_w];
const int c1 = c1_data[x >> c1_shift_w];
const int c2 = c2_data[x >> c2_shift_w];
*(d0 + d0_signed_linesize * c0 + x) = c0;
*(d1 + d1_signed_linesize * c0 + x) = c1;
*(d2 + d2_signed_linesize * c0 + x) = c2;
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
d2_data += d2_linesize;
}
} else {
uint8_t *d0_data = out->data[plane] + (offset_y + sliceh_start) * d0_linesize + offset_x;
uint8_t *d1_data = out->data[(plane + 1) % s->ncomp] + (offset_y + sliceh_start) * d1_linesize + offset_x;
uint8_t *d2_data = out->data[(plane + 2) % s->ncomp] + (offset_y + sliceh_start) * d2_linesize + offset_x;
if (mirror) {
d0_data += s->size - 1;
d1_data += s->size - 1;
d2_data += s->size - 1;
}
for (y = sliceh_start; y < sliceh_end; y++) {
for (x = 0; x < src_w; x++) {
const int c0 = c0_data[x >> c0_shift_w];
const int c1 = c1_data[x >> c1_shift_w];
const int c2 = c2_data[x >> c2_shift_w];
if (mirror) {
*(d0_data - c0) = c0;
*(d1_data - c0) = c1;
*(d2_data - c0) = c2;
} else {
*(d0_data + c0) = c0;
*(d1_data + c0) = c1;
*(d2_data + c0) = c2;
}
}
if (!c0_shift_h || (y & c0_shift_h))
c0_data += c0_linesize;
if (!c1_shift_h || (y & c1_shift_h))
c1_data += c1_linesize;
if (!c2_shift_h || (y & c2_shift_h))
c2_data += c2_linesize;
d0_data += d0_linesize;
d1_data += d1_linesize;
d2_data += d2_linesize;
}
}
}
#define COLOR_FUNC(name, column, mirror) \
static int color_##name(AVFilterContext *ctx, \
void *arg, int jobnr, \
int nb_jobs) \
{ \
WaveformContext *s = ctx->priv; \
ThreadData *td = arg; \
AVFrame *in = td->in; \
AVFrame *out = td->out; \
int component = td->component; \
int offset_y = td->offset_y; \
int offset_x = td->offset_x; \
\
color(s, in, out, component, s->intensity, \
offset_y, offset_x, column, mirror, \
jobnr, nb_jobs); \
\
return 0; \
}
COLOR_FUNC(column_mirror, 1, 1)
COLOR_FUNC(column, 1, 0)
COLOR_FUNC(row_mirror, 0, 1)
COLOR_FUNC(row, 0, 0)
static av_always_inline void acolor16(WaveformContext *s,
AVFrame *in, AVFrame *out,
int component, int intensity,
int offset_y, int offset_x,
int column, int mirror,
int jobnr, int nb_jobs)
{
const int plane = s->desc->comp[component].plane;
const int limit = s->max - 1;
const int max = limit - intensity;
const int src_h = in->height;
const int src_w = in->width;
const int sliceh_start = !column ? (src_h * jobnr) / nb_jobs : 0;
const int sliceh_end = !column ? (src_h * (jobnr+1)) / nb_jobs : src_h;
const int slicew_start = column ? (src_w * jobnr) / nb_jobs : 0;
const int slicew_end = column ? (src_w * (jobnr+1)) / nb_jobs : src_w;
const int c0_shift_h = s->shift_h[ component + 0 ];
const int c1_shift_h = s->shift_h[(component + 1) % s->ncomp];
const int c2_shift_h = s->shift_h[(component + 2) % s->ncomp];
const int c0_linesize = in->linesize[ plane + 0 ] / 2;
const int c1_linesize = in->linesize[(plane + 1) % s->ncomp] / 2;
const int c2_linesize = in->linesize[(plane + 2) % s->ncomp] / 2;
const uint16_t *c0_data = (const uint16_t *)in->data[plane + 0] + (sliceh_start >> c0_shift_h) * c0_linesize;
const uint16_t *c1_data = (const uint16_t *)in->data[(plane + 1) % s->ncomp] + (sliceh_start >> c1_shift_h) * c1_linesize;
const uint16_t *c2_data = (const uint16_t *)in->data[(plane + 2) % s->ncomp] + (sliceh_start >> c2_shift_h) * c2_linesize;
const int d0_linesize = out->linesize[ plane + 0 ] / 2;
const int d1_linesize = out->linesize[(plane + 1) % s->ncomp] / 2;
const int d2_linesize = out->linesize[(plane + 2) % s->ncomp] / 2;
const int c0_shift_w = s->shift_w[ component + 0 ];
const int c1_shift_w = s->shift_w[(component + 1) % s->ncomp];
const int c2_shift_w = s->shift_w[(component + 2) % s->ncomp];
int x, y;
if (column) {
const int d0_signed_linesize = d0_linesize * (mirror == 1 ? -1 : 1);
const int d1_signed_linesize = d1_linesize * (mirror == 1 ? -1 : 1);
const int d2_signed_linesize = d2_linesize * (mirror == 1 ? -1 : 1);
uint16_t *d0_data = (uint16_t *)out->data[plane] + offset_y * d0_linesize + offset_x;
uint16_t *d1_data = (uint16_t *)out->data[(plane + 1) % s->ncomp] + offset_y * d1_linesize + offset_x;
uint16_t *d2_data = (uint16_t *)out->data[(plane + 2) % s->ncomp] + offset_y * d2_linesize + offset_x;
uint16_t * const d0_bottom_line = d0_data + d0_linesize * (s->size - 1);
uint16_t * const d0 = (mirror ? d0_bottom_line : d0_data);
uint16_t * const d1_bottom_line = d1_data + d1_linesize * (s->size - 1);
uint16_t * const d1 = (mirror ? d1_bottom_line : d1_data);
uint16_t * const d2_bottom_line = d2_data + d2_linesize * (s->size - 1);
uint16_t * const d2 = (mirror ? d2_bottom_line : d2_data);
for (y = 0; y < src_h; y++) {
for (x = slicew_start; x < slicew_end; x++) {
const int c0 = FFMIN(c0_data[x >> c0_shift_w], limit);
const int c1 = c1_data[x >> c1_shift_w];
const int c2 = c2_data[x >>