blob: 852559e54c707d5831d57d2a6185fc7b849c48cd [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2016-2018 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* SPDX-License-Identifier: GPL-2.0
*
*/
#include <uapi/linux/thermal.h>
#include <linux/thermal.h>
#ifdef CONFIG_DEVFREQ_THERMAL
#include <linux/devfreq_cooling.h>
#endif
#include <linux/of.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include "mali_kbase.h"
#include "mali_kbase_defs.h"
#include "mali_kbase_ipa_simple.h"
#include "mali_kbase_ipa_debugfs.h"
#if MALI_UNIT_TEST
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 3, 0)
static unsigned long dummy_temp;
static int kbase_simple_power_model_get_dummy_temp(
struct thermal_zone_device *tz,
unsigned long *temp)
{
*temp = READ_ONCE(dummy_temp);
return 0;
}
#else
static int dummy_temp;
static int kbase_simple_power_model_get_dummy_temp(
struct thermal_zone_device *tz,
int *temp)
{
*temp = READ_ONCE(dummy_temp);
return 0;
}
#endif
/* Intercept calls to the kernel function using a macro */
#ifdef thermal_zone_get_temp
#undef thermal_zone_get_temp
#endif
#define thermal_zone_get_temp(tz, temp) \
kbase_simple_power_model_get_dummy_temp(tz, temp)
void kbase_simple_power_model_set_dummy_temp(int temp)
{
WRITE_ONCE(dummy_temp, temp);
}
KBASE_EXPORT_TEST_API(kbase_simple_power_model_set_dummy_temp);
#endif /* MALI_UNIT_TEST */
/*
* This model is primarily designed for the Juno platform. It may not be
* suitable for other platforms. The additional resources in this model
* should preferably be minimal, as this model is rarely used when a dynamic
* model is available.
*/
/**
* struct kbase_ipa_model_simple_data - IPA context per device
* @dynamic_coefficient: dynamic coefficient of the model
* @static_coefficient: static coefficient of the model
* @ts: Thermal scaling coefficients of the model
* @tz_name: Thermal zone name
* @gpu_tz: thermal zone device
* @poll_temperature_thread: Handle for temperature polling thread
* @current_temperature: Most recent value of polled temperature
* @temperature_poll_interval_ms: How often temperature should be checked, in ms
*/
struct kbase_ipa_model_simple_data {
u32 dynamic_coefficient;
u32 static_coefficient;
s32 ts[4];
char tz_name[THERMAL_NAME_LENGTH];
struct thermal_zone_device *gpu_tz;
struct task_struct *poll_temperature_thread;
int current_temperature;
int temperature_poll_interval_ms;
};
#define FALLBACK_STATIC_TEMPERATURE 55000
/**
* calculate_temp_scaling_factor() - Calculate temperature scaling coefficient
* @ts: Signed coefficients, in order t^0 to t^3, with units Deg^-N
* @t: Temperature, in mDeg C. Range: -2^17 < t < 2^17
*
* Scale the temperature according to a cubic polynomial whose coefficients are
* provided in the device tree. The result is used to scale the static power
* coefficient, where 1000000 means no change.
*
* Return: Temperature scaling factor. Range 0 <= ret <= 10,000,000.
*/
static u32 calculate_temp_scaling_factor(s32 ts[4], s64 t)
{
/* Range: -2^24 < t2 < 2^24 m(Deg^2) */
const s64 t2 = div_s64((t * t), 1000);
/* Range: -2^31 < t3 < 2^31 m(Deg^3) */
const s64 t3 = div_s64((t * t2), 1000);
/*
* Sum the parts. t^[1-3] are in m(Deg^N), but the coefficients are in
* Deg^-N, so we need to multiply the last coefficient by 1000.
* Range: -2^63 < res_big < 2^63
*/
const s64 res_big = ts[3] * t3 /* +/- 2^62 */
+ ts[2] * t2 /* +/- 2^55 */
+ ts[1] * t /* +/- 2^48 */
+ ts[0] * (s64)1000; /* +/- 2^41 */
/* Range: -2^60 < res_unclamped < 2^60 */
s64 res_unclamped = div_s64(res_big, 1000);
/* Clamp to range of 0x to 10x the static power */
return clamp(res_unclamped, (s64) 0, (s64) 10000000);
}
/* We can't call thermal_zone_get_temp() directly in model_static_coeff(),
* because we don't know if tz->lock is held in the same thread. So poll it in
* a separate thread to get around this. */
static int poll_temperature(void *data)
{
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *) data;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 3, 0)
unsigned long temp;
#else
int temp;
#endif
while (!kthread_should_stop()) {
struct thermal_zone_device *tz = READ_ONCE(model_data->gpu_tz);
if (tz) {
int ret;
ret = thermal_zone_get_temp(tz, &temp);
if (ret) {
pr_warn_ratelimited("Error reading temperature for gpu thermal zone: %d\n",
ret);
temp = FALLBACK_STATIC_TEMPERATURE;
}
} else {
temp = FALLBACK_STATIC_TEMPERATURE;
}
WRITE_ONCE(model_data->current_temperature, temp);
msleep_interruptible(READ_ONCE(model_data->temperature_poll_interval_ms));
}
return 0;
}
static int model_static_coeff(struct kbase_ipa_model *model, u32 *coeffp)
{
u32 temp_scaling_factor;
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *) model->model_data;
u64 coeff_big;
int temp;
temp = READ_ONCE(model_data->current_temperature);
/* Range: 0 <= temp_scaling_factor < 2^24 */
temp_scaling_factor = calculate_temp_scaling_factor(model_data->ts,
temp);
/*
* Range: 0 <= coeff_big < 2^52 to avoid overflowing *coeffp. This
* means static_coefficient must be in range
* 0 <= static_coefficient < 2^28.
*/
coeff_big = (u64) model_data->static_coefficient * (u64) temp_scaling_factor;
*coeffp = div_u64(coeff_big, 1000000);
return 0;
}
static int model_dynamic_coeff(struct kbase_ipa_model *model, u32 *coeffp)
{
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *) model->model_data;
*coeffp = model_data->dynamic_coefficient;
return 0;
}
static int add_params(struct kbase_ipa_model *model)
{
int err = 0;
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *)model->model_data;
err = kbase_ipa_model_add_param_s32(model, "static-coefficient",
&model_data->static_coefficient,
1, true);
if (err)
goto end;
err = kbase_ipa_model_add_param_s32(model, "dynamic-coefficient",
&model_data->dynamic_coefficient,
1, true);
if (err)
goto end;
err = kbase_ipa_model_add_param_s32(model, "ts",
model_data->ts, 4, true);
if (err)
goto end;
err = kbase_ipa_model_add_param_string(model, "thermal-zone",
model_data->tz_name,
sizeof(model_data->tz_name), true);
if (err)
goto end;
model_data->temperature_poll_interval_ms = 200;
err = kbase_ipa_model_add_param_s32(model, "temp-poll-interval-ms",
&model_data->temperature_poll_interval_ms,
1, false);
end:
return err;
}
static int kbase_simple_power_model_init(struct kbase_ipa_model *model)
{
int err;
struct kbase_ipa_model_simple_data *model_data;
model_data = kzalloc(sizeof(struct kbase_ipa_model_simple_data),
GFP_KERNEL);
if (!model_data)
return -ENOMEM;
model->model_data = (void *) model_data;
model_data->current_temperature = FALLBACK_STATIC_TEMPERATURE;
model_data->poll_temperature_thread = kthread_run(poll_temperature,
(void *) model_data,
"mali-simple-power-model-temp-poll");
if (IS_ERR(model_data->poll_temperature_thread)) {
err = PTR_ERR(model_data->poll_temperature_thread);
kfree(model_data);
return err;
}
err = add_params(model);
if (err) {
kbase_ipa_model_param_free_all(model);
kthread_stop(model_data->poll_temperature_thread);
kfree(model_data);
}
return err;
}
static int kbase_simple_power_model_recalculate(struct kbase_ipa_model *model)
{
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *)model->model_data;
struct thermal_zone_device *tz;
lockdep_assert_held(&model->kbdev->ipa.lock);
if (!strnlen(model_data->tz_name, sizeof(model_data->tz_name))) {
model_data->gpu_tz = NULL;
} else {
char tz_name[THERMAL_NAME_LENGTH];
strlcpy(tz_name, model_data->tz_name, sizeof(tz_name));
/* Release ipa.lock so that thermal_list_lock is not acquired
* with ipa.lock held, thereby avoid lock ordering violation
* lockdep warning. The warning comes as a chain of locks
* ipa.lock --> thermal_list_lock --> tz->lock gets formed
* on registering devfreq cooling device when probe method
* of mali platform driver is invoked.
*/
mutex_unlock(&model->kbdev->ipa.lock);
tz = thermal_zone_get_zone_by_name(tz_name);
mutex_lock(&model->kbdev->ipa.lock);
if (IS_ERR_OR_NULL(tz)) {
pr_warn_ratelimited("Error %ld getting thermal zone \'%s\', not yet ready?\n",
PTR_ERR(tz), tz_name);
return -EPROBE_DEFER;
}
/* Check if another thread raced against us & updated the
* thermal zone name string. Update the gpu_tz pointer only if
* the name string did not change whilst we retrieved the new
* thermal_zone_device pointer, otherwise model_data->tz_name &
* model_data->gpu_tz would become inconsistent with each other.
* The below check will succeed only for the thread which last
* updated the name string.
*/
if (strncmp(tz_name, model_data->tz_name, sizeof(tz_name)) == 0)
model_data->gpu_tz = tz;
}
return 0;
}
static void kbase_simple_power_model_term(struct kbase_ipa_model *model)
{
struct kbase_ipa_model_simple_data *model_data =
(struct kbase_ipa_model_simple_data *)model->model_data;
kthread_stop(model_data->poll_temperature_thread);
kfree(model_data);
}
struct kbase_ipa_model_ops kbase_simple_ipa_model_ops = {
.name = "mali-simple-power-model",
.init = &kbase_simple_power_model_init,
.recalculate = &kbase_simple_power_model_recalculate,
.term = &kbase_simple_power_model_term,
.get_dynamic_coeff = &model_dynamic_coeff,
.get_static_coeff = &model_static_coeff,
};
KBASE_EXPORT_TEST_API(kbase_simple_ipa_model_ops);