blob: d0b5ae80f09908da84ebaee9e98c881ddc476cb3 [file] [log] [blame]
/*
* mali_kbase_config_devicetree.c
*
* Copyright (C) 2017 Amlogic, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#ifdef CONFIG_DEVFREQ_THERMAL
#include <linux/version.h>
#include <linux/devfreq_cooling.h>
#include <linux/thermal.h>
#define FALLBACK_STATIC_TEMPERATURE 55000
#ifdef CONFIG_MALI_DEVFREQ
static unsigned long t83x_static_power(unsigned long voltage)
{
#if 0
struct thermal_zone_device *tz;
unsigned long temperature, temp;
unsigned long temp_squared, temp_cubed, temp_scaling_factor;
const unsigned long coefficient = (410UL << 20) / (729000000UL >> 10);
const unsigned long voltage_cubed = (voltage * voltage * voltage) >> 10;
tz = thermal_zone_get_zone_by_name("gpu");
if (IS_ERR(tz)) {
pr_warn_ratelimited("Error getting gpu thermal zone (%ld), not yet ready?\n",
PTR_ERR(tz));
temperature = FALLBACK_STATIC_TEMPERATURE;
} else {
int ret;
ret = tz->ops->get_temp(tz, &temperature);
if (ret) {
pr_warn_ratelimited("Error reading temperature for gpu thermal zone: %d\n",
ret);
temperature = FALLBACK_STATIC_TEMPERATURE;
}
}
/* Calculate the temperature scaling factor. To be applied to the
* voltage scaled power.
*/
temp = temperature / 1000;
temp_squared = temp * temp;
temp_cubed = temp_squared * temp;
temp_scaling_factor =
(2 * temp_cubed)
- (80 * temp_squared)
+ (4700 * temp)
+ 32000;
return (((coefficient * voltage_cubed) >> 20)
* temp_scaling_factor)
/ 1000000;
#else
return 0;
#endif
}
static unsigned long t83x_dynamic_power(unsigned long freq,
unsigned long voltage)
{
/* The inputs: freq (f) is in Hz, and voltage (v) in mV.
* The coefficient (c) is in mW/(MHz mV mV).
*
* This function calculates the dynamic power after this formula:
* Pdyn (mW) = c (mW/(MHz*mV*mV)) * v (mV) * v (mV) * f (MHz)
*/
const unsigned long v2 = (voltage * voltage) / 1000; /* m*(V*V) */
const unsigned long f_mhz = freq / 1000000; /* MHz */
const unsigned long coefficient = 3600; /* mW/(MHz*mV*mV) */
return (coefficient * v2 * f_mhz) / 1000000; /* mW */
}
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 4, 16))
struct devfreq_cooling_ops t83x_model_ops = {
#else
struct devfreq_cooling_power t83x_model_ops = {
#endif
#ifdef CONFIG_MALI_DEVFREQ
.get_static_power = t83x_static_power,
.get_dynamic_power = t83x_dynamic_power,
#endif
};
#endif
#include <mali_kbase_config.h>
int kbase_platform_early_init(void)
{
/* Nothing needed at this stage */
return 0;
}
static struct kbase_platform_config dummy_platform_config;
struct kbase_platform_config *kbase_get_platform_config(void)
{
return &dummy_platform_config;
}
#ifndef CONFIG_OF
int kbase_platform_register(void)
{
return 0;
}
void kbase_platform_unregister(void)
{
}
#endif