blob: 5efdbf023e7327d7397e80caaaed8250d151b55b [file] [log] [blame]
/*
*
* (C) COPYRIGHT 2014-2016, 2018-2019 ARM Limited. All rights reserved.
*
* This program is free software and is provided to you under the terms of the
* GNU General Public License version 2 as published by the Free Software
* Foundation, and any use by you of this program is subject to the terms
* of such GNU licence.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* SPDX-License-Identifier: GPL-2.0
*
*/
/*
*
*/
#include <mali_kbase.h>
#include <backend/gpu/mali_kbase_instr_internal.h>
#include <backend/gpu/mali_kbase_pm_internal.h>
#include <backend/gpu/mali_kbase_device_internal.h>
#include <backend/gpu/mali_kbase_mmu_hw_direct.h>
#include <mali_kbase_reset_gpu.h>
#if !defined(CONFIG_MALI_NO_MALI)
#ifdef CONFIG_DEBUG_FS
int kbase_io_history_resize(struct kbase_io_history *h, u16 new_size)
{
struct kbase_io_access *old_buf;
struct kbase_io_access *new_buf;
unsigned long flags;
if (!new_size)
goto out_err; /* The new size must not be 0 */
new_buf = vmalloc(new_size * sizeof(*h->buf));
if (!new_buf)
goto out_err;
spin_lock_irqsave(&h->lock, flags);
old_buf = h->buf;
/* Note: we won't bother with copying the old data over. The dumping
* logic wouldn't work properly as it relies on 'count' both as a
* counter and as an index to the buffer which would have changed with
* the new array. This is a corner case that we don't need to support.
*/
h->count = 0;
h->size = new_size;
h->buf = new_buf;
spin_unlock_irqrestore(&h->lock, flags);
vfree(old_buf);
return 0;
out_err:
return -1;
}
int kbase_io_history_init(struct kbase_io_history *h, u16 n)
{
h->enabled = false;
spin_lock_init(&h->lock);
h->count = 0;
h->size = 0;
h->buf = NULL;
if (kbase_io_history_resize(h, n))
return -1;
return 0;
}
void kbase_io_history_term(struct kbase_io_history *h)
{
vfree(h->buf);
h->buf = NULL;
}
/* kbase_io_history_add - add new entry to the register access history
*
* @h: Pointer to the history data structure
* @addr: Register address
* @value: The value that is either read from or written to the register
* @write: 1 if it's a register write, 0 if it's a read
*/
static void kbase_io_history_add(struct kbase_io_history *h,
void __iomem const *addr, u32 value, u8 write)
{
struct kbase_io_access *io;
unsigned long flags;
spin_lock_irqsave(&h->lock, flags);
io = &h->buf[h->count % h->size];
io->addr = (uintptr_t)addr | write;
io->value = value;
++h->count;
/* If count overflows, move the index by the buffer size so the entire
* buffer will still be dumped later */
if (unlikely(!h->count))
h->count = h->size;
spin_unlock_irqrestore(&h->lock, flags);
}
void kbase_io_history_dump(struct kbase_device *kbdev)
{
struct kbase_io_history *const h = &kbdev->io_history;
u16 i;
size_t iters;
unsigned long flags;
if (!unlikely(h->enabled))
return;
spin_lock_irqsave(&h->lock, flags);
dev_err(kbdev->dev, "Register IO History:");
iters = (h->size > h->count) ? h->count : h->size;
dev_err(kbdev->dev, "Last %zu register accesses of %zu total:\n", iters,
h->count);
for (i = 0; i < iters; ++i) {
struct kbase_io_access *io =
&h->buf[(h->count - iters + i) % h->size];
char const access = (io->addr & 1) ? 'w' : 'r';
dev_err(kbdev->dev, "%6i: %c: reg 0x%p val %08x\n", i, access,
(void *)(io->addr & ~0x1), io->value);
}
spin_unlock_irqrestore(&h->lock, flags);
}
#endif /* CONFIG_DEBUG_FS */
void kbase_reg_write(struct kbase_device *kbdev, u32 offset, u32 value)
{
KBASE_DEBUG_ASSERT(kbdev->pm.backend.gpu_powered);
KBASE_DEBUG_ASSERT(kbdev->dev != NULL);
writel(value, kbdev->reg + offset);
#ifdef CONFIG_DEBUG_FS
if (unlikely(kbdev->io_history.enabled))
kbase_io_history_add(&kbdev->io_history, kbdev->reg + offset,
value, 1);
#endif /* CONFIG_DEBUG_FS */
dev_dbg(kbdev->dev, "w: reg %08x val %08x", offset, value);
}
KBASE_EXPORT_TEST_API(kbase_reg_write);
u32 kbase_reg_read(struct kbase_device *kbdev, u32 offset)
{
u32 val;
KBASE_DEBUG_ASSERT(kbdev->pm.backend.gpu_powered);
KBASE_DEBUG_ASSERT(kbdev->dev != NULL);
val = readl(kbdev->reg + offset);
#ifdef CONFIG_DEBUG_FS
if (unlikely(kbdev->io_history.enabled))
kbase_io_history_add(&kbdev->io_history, kbdev->reg + offset,
val, 0);
#endif /* CONFIG_DEBUG_FS */
dev_dbg(kbdev->dev, "r: reg %08x val %08x", offset, val);
return val;
}
KBASE_EXPORT_TEST_API(kbase_reg_read);
#endif /* !defined(CONFIG_MALI_NO_MALI) */
/**
* kbase_report_gpu_fault - Report a GPU fault.
* @kbdev: Kbase device pointer
* @multiple: Zero if only GPU_FAULT was raised, non-zero if MULTIPLE_GPU_FAULTS
* was also set
*
* This function is called from the interrupt handler when a GPU fault occurs.
* It reports the details of the fault using dev_warn().
*/
static void kbase_report_gpu_fault(struct kbase_device *kbdev, int multiple)
{
u32 gpu_id = kbdev->gpu_props.props.raw_props.gpu_id;
u32 status = kbase_reg_read(kbdev,
GPU_CONTROL_REG(GPU_FAULTSTATUS));
u64 address = (u64) kbase_reg_read(kbdev,
GPU_CONTROL_REG(GPU_FAULTADDRESS_HI)) << 32;
address |= kbase_reg_read(kbdev,
GPU_CONTROL_REG(GPU_FAULTADDRESS_LO));
if ((gpu_id & GPU_ID2_PRODUCT_MODEL) != GPU_ID2_PRODUCT_TULX) {
meson_gpu_fault ++;
dev_warn(kbdev->dev, "GPU Fault 0x%08x (%s) at 0x%016llx",
status,
kbase_exception_name(kbdev, status & 0xFF),
address);
if (multiple)
dev_warn(kbdev->dev, "There were multiple GPU faults - some have not been reported\n");
}
}
static bool kbase_gpu_fault_interrupt(struct kbase_device *kbdev, int multiple)
{
kbase_report_gpu_fault(kbdev, multiple);
return false;
}
void kbase_gpu_start_cache_clean_nolock(struct kbase_device *kbdev)
{
u32 irq_mask;
lockdep_assert_held(&kbdev->hwaccess_lock);
if (kbdev->cache_clean_in_progress) {
/* If this is called while another clean is in progress, we
* can't rely on the current one to flush any new changes in
* the cache. Instead, trigger another cache clean immediately
* after this one finishes.
*/
kbdev->cache_clean_queued = true;
return;
}
/* Enable interrupt */
irq_mask = kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK));
kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK),
irq_mask | CLEAN_CACHES_COMPLETED);
KBASE_TRACE_ADD(kbdev, CORE_GPU_CLEAN_INV_CACHES, NULL, NULL, 0u, 0);
kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND),
GPU_COMMAND_CLEAN_INV_CACHES);
kbdev->cache_clean_in_progress = true;
}
void kbase_gpu_start_cache_clean(struct kbase_device *kbdev)
{
unsigned long flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
kbase_gpu_start_cache_clean_nolock(kbdev);
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
void kbase_gpu_cache_clean_wait_complete(struct kbase_device *kbdev)
{
lockdep_assert_held(&kbdev->hwaccess_lock);
kbdev->cache_clean_queued = false;
kbdev->cache_clean_in_progress = false;
wake_up(&kbdev->cache_clean_wait);
}
static void kbase_clean_caches_done(struct kbase_device *kbdev)
{
u32 irq_mask;
unsigned long flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
if (kbdev->cache_clean_queued) {
kbdev->cache_clean_queued = false;
KBASE_TRACE_ADD(kbdev, CORE_GPU_CLEAN_INV_CACHES, NULL, NULL, 0u, 0);
kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_COMMAND),
GPU_COMMAND_CLEAN_INV_CACHES);
} else {
/* Disable interrupt */
irq_mask = kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK));
kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_MASK),
irq_mask & ~CLEAN_CACHES_COMPLETED);
kbase_gpu_cache_clean_wait_complete(kbdev);
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
void kbase_gpu_wait_cache_clean(struct kbase_device *kbdev)
{
unsigned long flags;
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
while (kbdev->cache_clean_in_progress) {
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
wait_event_interruptible(kbdev->cache_clean_wait,
!kbdev->cache_clean_in_progress);
spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
}
spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
}
void kbase_gpu_interrupt(struct kbase_device *kbdev, u32 val)
{
bool clear_gpu_fault = false;
KBASE_TRACE_ADD(kbdev, CORE_GPU_IRQ, NULL, NULL, 0u, val);
if (val & GPU_FAULT)
clear_gpu_fault = kbase_gpu_fault_interrupt(kbdev,
val & MULTIPLE_GPU_FAULTS);
if (val & RESET_COMPLETED)
kbase_pm_reset_done(kbdev);
if (val & PRFCNT_SAMPLE_COMPLETED)
kbase_instr_hwcnt_sample_done(kbdev);
KBASE_TRACE_ADD(kbdev, CORE_GPU_IRQ_CLEAR, NULL, NULL, 0u, val);
kbase_reg_write(kbdev, GPU_CONTROL_REG(GPU_IRQ_CLEAR), val);
/* kbase_pm_check_transitions (called by kbase_pm_power_changed) must
* be called after the IRQ has been cleared. This is because it might
* trigger further power transitions and we don't want to miss the
* interrupt raised to notify us that these further transitions have
* finished. The same applies to kbase_clean_caches_done() - if another
* clean was queued, it might trigger another clean, which might
* generate another interrupt which shouldn't be missed.
*/
if (val & CLEAN_CACHES_COMPLETED)
kbase_clean_caches_done(kbdev);
if (val & POWER_CHANGED_ALL) {
kbase_pm_power_changed(kbdev);
} else if (val & CLEAN_CACHES_COMPLETED) {
/* If cache line evict messages can be lost when shader cores
* power down then we need to flush the L2 cache before powering
* down cores. When the flush completes, the shaders' state
* machine needs to be re-invoked to proceed with powering down
* cores.
*/
if (kbdev->pm.backend.l2_always_on ||
kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_TTRX_921))
kbase_pm_power_changed(kbdev);
}
KBASE_TRACE_ADD(kbdev, CORE_GPU_IRQ_DONE, NULL, NULL, 0u, val);
}