blob: dd8c68d57d0470dbb55be922d80b3c29c0efd7fc [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*/
/*
* @file
* @brief PFE utility commands
*/
#include <net/pfe_eth/pfe_eth.h>
static inline void pfe_command_help(void)
{
printf("Usage: pfe [pe | status | expt ] <options>\n");
}
static void pfe_command_pe(int argc, char * const argv[])
{
if (argc >= 3 && strcmp(argv[2], "pmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
int id;
u32 addr;
u32 size;
u32 val;
if (argc == 7) {
num = simple_strtoul(argv[6], NULL, 0);
} else if (argc == 6) {
num = 1;
} else {
printf("Usage: pfe pe pmem read <id> <addr> [<num>]\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
addr = simple_strtoul(argv[5], NULL, 16);
size = 4;
for (i = 0; i < num; i++, addr += 4) {
val = pe_pmem_read(id, addr, size);
val = be32_to_cpu(val);
if (!(i & 3))
printf("%08x: ", addr);
printf("%08x%s", val, i == num - 1 || (i & 3)
== 3 ? "\n" : " ");
}
} else {
printf("Usage: pfe pe pmem read <parameters>\n");
}
} else if (argc >= 3 && strcmp(argv[2], "dmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
int id;
u32 addr;
u32 size;
u32 val;
if (argc == 7) {
num = simple_strtoul(argv[6], NULL, 0);
} else if (argc == 6) {
num = 1;
} else {
printf("Usage: pfe pe dmem read <id> <addr> [<num>]\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
addr = simple_strtoul(argv[5], NULL, 16);
size = 4;
for (i = 0; i < num; i++, addr += 4) {
val = pe_dmem_read(id, addr, size);
val = be32_to_cpu(val);
if (!(i & 3))
printf("%08x: ", addr);
printf("%08x%s", val, i == num - 1 || (i & 3)
== 3 ? "\n" : " ");
}
} else if (argc >= 4 && strcmp(argv[3], "write") == 0) {
int id;
u32 val;
u32 addr;
u32 size;
if (argc != 7) {
printf("Usage: pfe pe dmem write <id> <val> <addr>\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
val = simple_strtoul(argv[5], NULL, 16);
val = cpu_to_be32(val);
addr = simple_strtoul(argv[6], NULL, 16);
size = 4;
pe_dmem_write(id, val, addr, size);
} else {
printf("Usage: pfe pe dmem [read | write] <parameters>\n");
}
} else if (argc >= 3 && strcmp(argv[2], "lmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
u32 val;
u32 offset;
if (argc == 6) {
num = simple_strtoul(argv[5], NULL, 0);
} else if (argc == 5) {
num = 1;
} else {
printf("Usage: pfe pe lmem read <offset> [<num>]\n");
return;
}
offset = simple_strtoul(argv[4], NULL, 16);
for (i = 0; i < num; i++, offset += 4) {
pe_lmem_read(&val, 4, offset);
val = be32_to_cpu(val);
printf("%08x%s", val, i == num - 1 || (i & 7)
== 7 ? "\n" : " ");
}
} else if (argc >= 4 && strcmp(argv[3], "write") == 0) {
u32 val;
u32 offset;
if (argc != 6) {
printf("Usage: pfe pe lmem write <val> <offset>\n");
return;
}
val = simple_strtoul(argv[4], NULL, 16);
val = cpu_to_be32(val);
offset = simple_strtoul(argv[5], NULL, 16);
pe_lmem_write(&val, 4, offset);
} else {
printf("Usage: pfe pe lmem [read | write] <parameters>\n");
}
} else {
if (strcmp(argv[2], "help") != 0)
printf("Unknown option: %s\n", argv[2]);
printf("Usage: pfe pe <parameters>\n");
}
}
#define NUM_QUEUES 16
/*
* qm_read_drop_stat
* This function is used to read the drop statistics from the TMU
* hw drop counter. Since the hw counter is always cleared afer
* reading, this function maintains the previous drop count, and
* adds the new value to it. That value can be retrieved by
* passing a pointer to it with the total_drops arg.
*
* @param tmu TMU number (0 - 3)
* @param queue queue number (0 - 15)
* @param total_drops pointer to location to store total drops (or NULL)
* @param do_reset if TRUE, clear total drops after updating
*
*/
u32 qm_read_drop_stat(u32 tmu, u32 queue, u32 *total_drops, int do_reset)
{
static u32 qtotal[TMU_MAX_ID + 1][NUM_QUEUES];
u32 val;
writel((tmu << 8) | queue, TMU_TEQ_CTRL);
writel((tmu << 8) | queue, TMU_LLM_CTRL);
val = readl(TMU_TEQ_DROP_STAT);
qtotal[tmu][queue] += val;
if (total_drops)
*total_drops = qtotal[tmu][queue];
if (do_reset)
qtotal[tmu][queue] = 0;
return val;
}
static ssize_t tmu_queue_stats(char *buf, int tmu, int queue)
{
ssize_t len = 0;
u32 drops;
printf("%d-%02d, ", tmu, queue);
drops = qm_read_drop_stat(tmu, queue, NULL, 0);
/* Select queue */
writel((tmu << 8) | queue, TMU_TEQ_CTRL);
writel((tmu << 8) | queue, TMU_LLM_CTRL);
printf("(teq) drop: %10u, tx: %10u (llm) head: %08x, tail: %08x, drop: %10u\n",
drops, readl(TMU_TEQ_TRANS_STAT),
readl(TMU_LLM_QUE_HEADPTR), readl(TMU_LLM_QUE_TAILPTR),
readl(TMU_LLM_QUE_DROPCNT));
return len;
}
static ssize_t tmu_queues(char *buf, int tmu)
{
ssize_t len = 0;
int queue;
for (queue = 0; queue < 16; queue++)
len += tmu_queue_stats(buf + len, tmu, queue);
return len;
}
static inline void hif_status(void)
{
printf("hif:\n");
printf(" tx curr bd: %x\n", readl(HIF_TX_CURR_BD_ADDR));
printf(" tx status: %x\n", readl(HIF_TX_STATUS));
printf(" tx dma status: %x\n", readl(HIF_TX_DMA_STATUS));
printf(" rx curr bd: %x\n", readl(HIF_RX_CURR_BD_ADDR));
printf(" rx status: %x\n", readl(HIF_RX_STATUS));
printf(" rx dma status: %x\n", readl(HIF_RX_DMA_STATUS));
printf("hif nocopy:\n");
printf(" tx curr bd: %x\n", readl(HIF_NOCPY_TX_CURR_BD_ADDR));
printf(" tx status: %x\n", readl(HIF_NOCPY_TX_STATUS));
printf(" tx dma status: %x\n", readl(HIF_NOCPY_TX_DMA_STATUS));
printf(" rx curr bd: %x\n", readl(HIF_NOCPY_RX_CURR_BD_ADDR));
printf(" rx status: %x\n", readl(HIF_NOCPY_RX_STATUS));
printf(" rx dma status: %x\n", readl(HIF_NOCPY_RX_DMA_STATUS));
}
static void gpi(int id, void *base)
{
u32 val;
printf("%s%d:\n", __func__, id);
printf(" tx under stick: %x\n", readl(base + GPI_FIFO_STATUS));
val = readl(base + GPI_FIFO_DEBUG);
printf(" tx pkts: %x\n", (val >> 23) & 0x3f);
printf(" rx pkts: %x\n", (val >> 18) & 0x3f);
printf(" tx bytes: %x\n", (val >> 9) & 0x1ff);
printf(" rx bytes: %x\n", (val >> 0) & 0x1ff);
printf(" overrun: %x\n", readl(base + GPI_OVERRUN_DROPCNT));
}
static void bmu(int id, void *base)
{
printf("%s%d:\n", __func__, id);
printf(" buf size: %x\n", (1 << readl(base + BMU_BUF_SIZE)));
printf(" buf count: %x\n", readl(base + BMU_BUF_CNT));
printf(" buf rem: %x\n", readl(base + BMU_REM_BUF_CNT));
printf(" buf curr: %x\n", readl(base + BMU_CURR_BUF_CNT));
printf(" free err: %x\n", readl(base + BMU_FREE_ERR_ADDR));
}
#define PESTATUS_ADDR_CLASS 0x800
#define PEMBOX_ADDR_CLASS 0x890
#define PESTATUS_ADDR_TMU 0x80
#define PEMBOX_ADDR_TMU 0x290
#define PESTATUS_ADDR_UTIL 0x0
static void pfe_pe_status(int argc, char * const argv[])
{
int do_clear = 0;
u32 id;
u32 dmem_addr;
u32 cpu_state;
u32 activity_counter;
u32 rx;
u32 tx;
u32 drop;
char statebuf[5];
u32 class_debug_reg = 0;
if (argc == 4 && strcmp(argv[3], "clear") == 0)
do_clear = 1;
for (id = CLASS0_ID; id < MAX_PE; id++) {
if (id >= TMU0_ID) {
if (id == TMU2_ID)
continue;
if (id == TMU0_ID)
printf("tmu:\n");
dmem_addr = PESTATUS_ADDR_TMU;
} else {
if (id == CLASS0_ID)
printf("class:\n");
dmem_addr = PESTATUS_ADDR_CLASS;
class_debug_reg = readl(CLASS_PE0_DEBUG + id * 4);
}
cpu_state = pe_dmem_read(id, dmem_addr, 4);
dmem_addr += 4;
memcpy(statebuf, (char *)&cpu_state, 4);
statebuf[4] = '\0';
activity_counter = pe_dmem_read(id, dmem_addr, 4);
dmem_addr += 4;
rx = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
tx = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
drop = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
if (id >= TMU0_ID) {
printf("%d: state=%4s ctr=%08x rx=%x qstatus=%x\n",
id - TMU0_ID, statebuf,
cpu_to_be32(activity_counter),
cpu_to_be32(rx), cpu_to_be32(tx));
} else {
printf("%d: pc=1%04x ldst=%04x state=%4s ctr=%08x rx=%x tx=%x drop=%x\n",
id - CLASS0_ID, class_debug_reg & 0xFFFF,
class_debug_reg >> 16,
statebuf, cpu_to_be32(activity_counter),
cpu_to_be32(rx), cpu_to_be32(tx),
cpu_to_be32(drop));
}
}
}
static void pfe_command_status(int argc, char * const argv[])
{
if (argc >= 3 && strcmp(argv[2], "pe") == 0) {
pfe_pe_status(argc, argv);
} else if (argc == 3 && strcmp(argv[2], "bmu") == 0) {
bmu(1, BMU1_BASE_ADDR);
bmu(2, BMU2_BASE_ADDR);
} else if (argc == 3 && strcmp(argv[2], "hif") == 0) {
hif_status();
} else if (argc == 3 && strcmp(argv[2], "gpi") == 0) {
gpi(0, EGPI1_BASE_ADDR);
gpi(1, EGPI2_BASE_ADDR);
gpi(3, HGPI_BASE_ADDR);
} else if (argc == 3 && strcmp(argv[2], "tmu0_queues") == 0) {
tmu_queues(NULL, 0);
} else if (argc == 3 && strcmp(argv[2], "tmu1_queues") == 0) {
tmu_queues(NULL, 1);
} else if (argc == 3 && strcmp(argv[2], "tmu3_queues") == 0) {
tmu_queues(NULL, 3);
} else {
printf("Usage: pfe status [pe <clear> | bmu | gpi | hif | tmuX_queues ]\n");
}
}
#define EXPT_DUMP_ADDR 0x1fa8
#define EXPT_REG_COUNT 20
static const char *register_names[EXPT_REG_COUNT] = {
" pc", "ECAS", " EID", " ED",
" sp", " r1", " r2", " r3",
" r4", " r5", " r6", " r7",
" r8", " r9", " r10", " r11",
" r12", " r13", " r14", " r15"
};
static void pfe_command_expt(int argc, char * const argv[])
{
unsigned int id, i, val, addr;
if (argc == 3) {
id = simple_strtoul(argv[2], NULL, 0);
addr = EXPT_DUMP_ADDR;
printf("Exception information for PE %d:\n", id);
for (i = 0; i < EXPT_REG_COUNT; i++) {
val = pe_dmem_read(id, addr, 4);
val = be32_to_cpu(val);
printf("%s:%08x%s", register_names[i], val,
(i & 3) == 3 ? "\n" : " ");
addr += 4;
}
} else {
printf("Usage: pfe expt <id>\n");
}
}
#ifdef PFE_RESET_WA
/*This function sends a dummy packet to HIF through TMU3 */
static void send_dummy_pkt_to_hif(void)
{
u32 buf;
static u32 dummy_pkt[] = {
0x4200800a, 0x01000003, 0x00018100, 0x00000000,
0x33221100, 0x2b785544, 0xd73093cb, 0x01000608,
0x04060008, 0x2b780200, 0xd73093cb, 0x0a01a8c0,
0x33221100, 0xa8c05544, 0x00000301, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xbe86c51f };
/*Allocate BMU2 buffer */
buf = readl(BMU2_BASE_ADDR + BMU_ALLOC_CTRL);
debug("Sending a dummy pkt to HIF %x\n", buf);
buf += 0x80;
memcpy((void *)DDR_PFE_TO_VIRT(buf), dummy_pkt, sizeof(dummy_pkt));
/*Write length and pkt to TMU*/
writel(0x03000042, TMU_PHY_INQ_PKTPTR);
writel(buf, TMU_PHY_INQ_PKTINFO);
}
static void pfe_command_stop(int argc, char * const argv[])
{
int pfe_pe_id, hif_stop_loop = 10;
u32 rx_status;
printf("Stopping PFE...\n");
/*Mark all descriptors as LAST_BD */
hif_rx_desc_disable();
/*If HIF Rx BDP is busy send a dummy packet */
do {
rx_status = readl(HIF_RX_STATUS);
if (rx_status & BDP_CSR_RX_DMA_ACTV)
send_dummy_pkt_to_hif();
udelay(10);
} while (hif_stop_loop--);
if (readl(HIF_RX_STATUS) & BDP_CSR_RX_DMA_ACTV)
printf("Unable to stop HIF\n");
/*Disable Class PEs */
for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
/*Inform PE to stop */
pe_dmem_write(pfe_pe_id, cpu_to_be32(1), PEMBOX_ADDR_CLASS, 4);
udelay(10);
/*Read status */
if (!pe_dmem_read(pfe_pe_id, PEMBOX_ADDR_CLASS + 4, 4))
printf("Failed to stop PE%d\n", pfe_pe_id);
}
/*Disable TMU PEs */
for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
if (pfe_pe_id == TMU2_ID)
continue;
/*Inform PE to stop */
pe_dmem_write(pfe_pe_id, 1, PEMBOX_ADDR_TMU, 4);
udelay(10);
/*Read status */
if (!pe_dmem_read(pfe_pe_id, PEMBOX_ADDR_TMU + 4, 4))
printf("Failed to stop PE%d\n", pfe_pe_id);
}
}
#endif
static int pfe_command(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
if (argc == 1 || strcmp(argv[1], "help") == 0) {
pfe_command_help();
return CMD_RET_SUCCESS;
}
if (strcmp(argv[1], "pe") == 0) {
pfe_command_pe(argc, argv);
} else if (strcmp(argv[1], "status") == 0) {
pfe_command_status(argc, argv);
} else if (strcmp(argv[1], "expt") == 0) {
pfe_command_expt(argc, argv);
#ifdef PFE_RESET_WA
} else if (strcmp(argv[1], "stop") == 0) {
pfe_command_stop(argc, argv);
#endif
} else {
printf("Unknown option: %s\n", argv[1]);
pfe_command_help();
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
U_BOOT_CMD(
pfe, 7, 1, pfe_command,
"Performs PFE lib utility functions",
"Usage:\n"
"pfe <options>"
);