| /* |
| * Header file for hardcoded Parametric Stereo tables |
| * |
| * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef AVCODEC_AACPS_TABLEGEN_H |
| #define AVCODEC_AACPS_TABLEGEN_H |
| |
| #include <math.h> |
| #include <stdint.h> |
| |
| #if CONFIG_HARDCODED_TABLES |
| #define ps_tableinit() |
| #define TABLE_CONST const |
| #include "libavcodec/aacps_tables.h" |
| #else |
| #include "libavutil/common.h" |
| #include "libavutil/libm.h" |
| #include "libavutil/mathematics.h" |
| #include "libavutil/mem.h" |
| #define NR_ALLPASS_BANDS20 30 |
| #define NR_ALLPASS_BANDS34 50 |
| #define PS_AP_LINKS 3 |
| #define TABLE_CONST |
| static float pd_re_smooth[8*8*8]; |
| static float pd_im_smooth[8*8*8]; |
| static float HA[46][8][4]; |
| static float HB[46][8][4]; |
| static DECLARE_ALIGNED(16, float, f20_0_8) [ 8][8][2]; |
| static DECLARE_ALIGNED(16, float, f34_0_12)[12][8][2]; |
| static DECLARE_ALIGNED(16, float, f34_1_8) [ 8][8][2]; |
| static DECLARE_ALIGNED(16, float, f34_2_4) [ 4][8][2]; |
| static TABLE_CONST DECLARE_ALIGNED(16, float, Q_fract_allpass)[2][50][3][2]; |
| static DECLARE_ALIGNED(16, float, phi_fract)[2][50][2]; |
| |
| static const float g0_Q8[] = { |
| 0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f, |
| 0.09885108575264f, 0.11793710567217f, 0.125f |
| }; |
| |
| static const float g0_Q12[] = { |
| 0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f, |
| 0.07428313801106f, 0.08100347892914f, 0.08333333333333f |
| }; |
| |
| static const float g1_Q8[] = { |
| 0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f, |
| 0.10307344158036f, 0.12222452249753f, 0.125f |
| }; |
| |
| static const float g2_Q4[] = { |
| -0.05908211155639f, -0.04871498374946f, 0.0f, 0.07778723915851f, |
| 0.16486303567403f, 0.23279856662996f, 0.25f |
| }; |
| |
| static av_cold void make_filters_from_proto(float (*filter)[8][2], const float *proto, int bands) |
| { |
| int q, n; |
| for (q = 0; q < bands; q++) { |
| for (n = 0; n < 7; n++) { |
| double theta = 2 * M_PI * (q + 0.5) * (n - 6) / bands; |
| filter[q][n][0] = proto[n] * cos(theta); |
| filter[q][n][1] = proto[n] * -sin(theta); |
| } |
| } |
| } |
| |
| static av_cold void ps_tableinit(void) |
| { |
| static const float ipdopd_sin[] = { 0, M_SQRT1_2, 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2 }; |
| static const float ipdopd_cos[] = { 1, M_SQRT1_2, 0, -M_SQRT1_2, -1, -M_SQRT1_2, 0, M_SQRT1_2 }; |
| int pd0, pd1, pd2; |
| |
| static const float iid_par_dequant[] = { |
| //iid_par_dequant_default |
| 0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684, |
| 0.44668359215096, 0.63095734448019, 0.79432823472428, 1, |
| 1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838, |
| 5.01187233627272, 7.94328234724282, 17.7827941003892, |
| //iid_par_dequant_fine |
| 0.00316227766017, 0.00562341325190, 0.01, 0.01778279410039, |
| 0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020, |
| 0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350, |
| 0.50118723362727, 0.63095734448019, 0.79432823472428, 1, |
| 1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958, |
| 3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745, |
| 12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349, |
| 100, 177.827941003892, 316.227766016837, |
| }; |
| static const float icc_invq[] = { |
| 1, 0.937, 0.84118, 0.60092, 0.36764, 0, -0.589, -1 |
| }; |
| static const float acos_icc_invq[] = { |
| 0, 0.35685527, 0.57133466, 0.92614472, 1.1943263, M_PI/2, 2.2006171, M_PI |
| }; |
| int iid, icc; |
| |
| int k, m; |
| static const int8_t f_center_20[] = { |
| -3, -1, 1, 3, 5, 7, 10, 14, 18, 22, |
| }; |
| static const int8_t f_center_34[] = { |
| 2, 6, 10, 14, 18, 22, 26, 30, |
| 34,-10, -6, -2, 51, 57, 15, 21, |
| 27, 33, 39, 45, 54, 66, 78, 42, |
| 102, 66, 78, 90,102,114,126, 90, |
| }; |
| static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f }; |
| const float fractional_delay_gain = 0.39f; |
| |
| for (pd0 = 0; pd0 < 8; pd0++) { |
| float pd0_re = ipdopd_cos[pd0]; |
| float pd0_im = ipdopd_sin[pd0]; |
| for (pd1 = 0; pd1 < 8; pd1++) { |
| float pd1_re = ipdopd_cos[pd1]; |
| float pd1_im = ipdopd_sin[pd1]; |
| for (pd2 = 0; pd2 < 8; pd2++) { |
| float pd2_re = ipdopd_cos[pd2]; |
| float pd2_im = ipdopd_sin[pd2]; |
| float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re; |
| float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im; |
| float pd_mag = 1 / hypot(im_smooth, re_smooth); |
| pd_re_smooth[pd0*64+pd1*8+pd2] = re_smooth * pd_mag; |
| pd_im_smooth[pd0*64+pd1*8+pd2] = im_smooth * pd_mag; |
| } |
| } |
| } |
| |
| for (iid = 0; iid < 46; iid++) { |
| float c = iid_par_dequant[iid]; ///< Linear Inter-channel Intensity Difference |
| float c1 = (float)M_SQRT2 / sqrtf(1.0f + c*c); |
| float c2 = c * c1; |
| for (icc = 0; icc < 8; icc++) { |
| /*if (PS_BASELINE || ps->icc_mode < 3)*/ { |
| float alpha = 0.5f * acos_icc_invq[icc]; |
| float beta = alpha * (c1 - c2) * (float)M_SQRT1_2; |
| HA[iid][icc][0] = c2 * cosf(beta + alpha); |
| HA[iid][icc][1] = c1 * cosf(beta - alpha); |
| HA[iid][icc][2] = c2 * sinf(beta + alpha); |
| HA[iid][icc][3] = c1 * sinf(beta - alpha); |
| } /* else */ { |
| float alpha, gamma, mu, rho; |
| float alpha_c, alpha_s, gamma_c, gamma_s; |
| rho = FFMAX(icc_invq[icc], 0.05f); |
| alpha = 0.5f * atan2f(2.0f * c * rho, c*c - 1.0f); |
| mu = c + 1.0f / c; |
| mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu)); |
| gamma = atanf(sqrtf((1.0f - mu)/(1.0f + mu))); |
| if (alpha < 0) alpha += M_PI/2; |
| alpha_c = cosf(alpha); |
| alpha_s = sinf(alpha); |
| gamma_c = cosf(gamma); |
| gamma_s = sinf(gamma); |
| HB[iid][icc][0] = M_SQRT2 * alpha_c * gamma_c; |
| HB[iid][icc][1] = M_SQRT2 * alpha_s * gamma_c; |
| HB[iid][icc][2] = -M_SQRT2 * alpha_s * gamma_s; |
| HB[iid][icc][3] = M_SQRT2 * alpha_c * gamma_s; |
| } |
| } |
| } |
| |
| for (k = 0; k < NR_ALLPASS_BANDS20; k++) { |
| double f_center, theta; |
| if (k < FF_ARRAY_ELEMS(f_center_20)) |
| f_center = f_center_20[k] * 0.125; |
| else |
| f_center = k - 6.5f; |
| for (m = 0; m < PS_AP_LINKS; m++) { |
| theta = -M_PI * fractional_delay_links[m] * f_center; |
| Q_fract_allpass[0][k][m][0] = cos(theta); |
| Q_fract_allpass[0][k][m][1] = sin(theta); |
| } |
| theta = -M_PI*fractional_delay_gain*f_center; |
| phi_fract[0][k][0] = cos(theta); |
| phi_fract[0][k][1] = sin(theta); |
| } |
| for (k = 0; k < NR_ALLPASS_BANDS34; k++) { |
| double f_center, theta; |
| if (k < FF_ARRAY_ELEMS(f_center_34)) |
| f_center = f_center_34[k] / 24.0; |
| else |
| f_center = k - 26.5f; |
| for (m = 0; m < PS_AP_LINKS; m++) { |
| theta = -M_PI * fractional_delay_links[m] * f_center; |
| Q_fract_allpass[1][k][m][0] = cos(theta); |
| Q_fract_allpass[1][k][m][1] = sin(theta); |
| } |
| theta = -M_PI*fractional_delay_gain*f_center; |
| phi_fract[1][k][0] = cos(theta); |
| phi_fract[1][k][1] = sin(theta); |
| } |
| |
| make_filters_from_proto(f20_0_8, g0_Q8, 8); |
| make_filters_from_proto(f34_0_12, g0_Q12, 12); |
| make_filters_from_proto(f34_1_8, g1_Q8, 8); |
| make_filters_from_proto(f34_2_4, g2_Q4, 4); |
| } |
| #endif /* CONFIG_HARDCODED_TABLES */ |
| |
| #endif /* AVCODEC_AACPS_TABLEGEN_H */ |