| /* |
| * AAC encoder psychoacoustic model |
| * Copyright (C) 2008 Konstantin Shishkov |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * AAC encoder psychoacoustic model |
| */ |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/libm.h" |
| |
| #include "avcodec.h" |
| #include "aactab.h" |
| #include "psymodel.h" |
| |
| /*********************************** |
| * TODOs: |
| * try other bitrate controlling mechanism (maybe use ratecontrol.c?) |
| * control quality for quality-based output |
| **********************************/ |
| |
| /** |
| * constants for 3GPP AAC psychoacoustic model |
| * @{ |
| */ |
| #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) |
| #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) |
| /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ |
| #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f |
| /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ |
| #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f |
| /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ |
| #define PSY_3GPP_EN_SPREAD_HI_S 1.5f |
| /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ |
| #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f |
| /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ |
| #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f |
| |
| #define PSY_3GPP_RPEMIN 0.01f |
| #define PSY_3GPP_RPELEV 2.0f |
| |
| #define PSY_3GPP_C1 3.0f /* log2(8) */ |
| #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ |
| #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ |
| |
| #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ |
| #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ |
| |
| #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f |
| #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f |
| #define PSY_3GPP_SAVE_ADD_L -0.84285712f |
| #define PSY_3GPP_SAVE_ADD_S -0.75f |
| #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f |
| #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f |
| #define PSY_3GPP_SPEND_ADD_L -0.35f |
| #define PSY_3GPP_SPEND_ADD_S -0.26111111f |
| #define PSY_3GPP_CLIP_LO_L 0.2f |
| #define PSY_3GPP_CLIP_LO_S 0.2f |
| #define PSY_3GPP_CLIP_HI_L 0.95f |
| #define PSY_3GPP_CLIP_HI_S 0.75f |
| |
| #define PSY_3GPP_AH_THR_LONG 0.5f |
| #define PSY_3GPP_AH_THR_SHORT 0.63f |
| |
| #define PSY_PE_FORGET_SLOPE 511 |
| |
| enum { |
| PSY_3GPP_AH_NONE, |
| PSY_3GPP_AH_INACTIVE, |
| PSY_3GPP_AH_ACTIVE |
| }; |
| |
| #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) |
| #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) |
| |
| /* LAME psy model constants */ |
| #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order |
| #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size |
| #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size |
| #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence |
| #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * information for single band used by 3GPP TS26.403-inspired psychoacoustic model |
| */ |
| typedef struct AacPsyBand{ |
| float energy; ///< band energy |
| float thr; ///< energy threshold |
| float thr_quiet; ///< threshold in quiet |
| float nz_lines; ///< number of non-zero spectral lines |
| float active_lines; ///< number of active spectral lines |
| float pe; ///< perceptual entropy |
| float pe_const; ///< constant part of the PE calculation |
| float norm_fac; ///< normalization factor for linearization |
| int avoid_holes; ///< hole avoidance flag |
| }AacPsyBand; |
| |
| /** |
| * single/pair channel context for psychoacoustic model |
| */ |
| typedef struct AacPsyChannel{ |
| AacPsyBand band[128]; ///< bands information |
| AacPsyBand prev_band[128]; ///< bands information from the previous frame |
| |
| float win_energy; ///< sliding average of channel energy |
| float iir_state[2]; ///< hi-pass IIR filter state |
| uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) |
| enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame |
| /* LAME psy model specific members */ |
| float attack_threshold; ///< attack threshold for this channel |
| float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; |
| int prev_attack; ///< attack value for the last short block in the previous sequence |
| }AacPsyChannel; |
| |
| /** |
| * psychoacoustic model frame type-dependent coefficients |
| */ |
| typedef struct AacPsyCoeffs{ |
| float ath; ///< absolute threshold of hearing per bands |
| float barks; ///< Bark value for each spectral band in long frame |
| float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame |
| float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame |
| float min_snr; ///< minimal SNR |
| }AacPsyCoeffs; |
| |
| /** |
| * 3GPP TS26.403-inspired psychoacoustic model specific data |
| */ |
| typedef struct AacPsyContext{ |
| int chan_bitrate; ///< bitrate per channel |
| int frame_bits; ///< average bits per frame |
| int fill_level; ///< bit reservoir fill level |
| struct { |
| float min; ///< minimum allowed PE for bit factor calculation |
| float max; ///< maximum allowed PE for bit factor calculation |
| float previous; ///< allowed PE of the previous frame |
| float correction; ///< PE correction factor |
| } pe; |
| AacPsyCoeffs psy_coef[2][64]; |
| AacPsyChannel *ch; |
| float global_quality; ///< normalized global quality taken from avctx |
| }AacPsyContext; |
| |
| /** |
| * LAME psy model preset struct |
| */ |
| typedef struct PsyLamePreset { |
| int quality; ///< Quality to map the rest of the vaules to. |
| /* This is overloaded to be both kbps per channel in ABR mode, and |
| * requested quality in constant quality mode. |
| */ |
| float st_lrm; ///< short threshold for L, R, and M channels |
| } PsyLamePreset; |
| |
| /** |
| * LAME psy model preset table for ABR |
| */ |
| static const PsyLamePreset psy_abr_map[] = { |
| /* TODO: Tuning. These were taken from LAME. */ |
| /* kbps/ch st_lrm */ |
| { 8, 6.60}, |
| { 16, 6.60}, |
| { 24, 6.60}, |
| { 32, 6.60}, |
| { 40, 6.60}, |
| { 48, 6.60}, |
| { 56, 6.60}, |
| { 64, 6.40}, |
| { 80, 6.00}, |
| { 96, 5.60}, |
| {112, 5.20}, |
| {128, 5.20}, |
| {160, 5.20} |
| }; |
| |
| /** |
| * LAME psy model preset table for constant quality |
| */ |
| static const PsyLamePreset psy_vbr_map[] = { |
| /* vbr_q st_lrm */ |
| { 0, 4.20}, |
| { 1, 4.20}, |
| { 2, 4.20}, |
| { 3, 4.20}, |
| { 4, 4.20}, |
| { 5, 4.20}, |
| { 6, 4.20}, |
| { 7, 4.20}, |
| { 8, 4.20}, |
| { 9, 4.20}, |
| {10, 4.20} |
| }; |
| |
| /** |
| * LAME psy model FIR coefficient table |
| */ |
| static const float psy_fir_coeffs[] = { |
| -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, |
| -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, |
| -5.52212e-17 * 2, -0.313819 * 2 |
| }; |
| |
| #if ARCH_MIPS |
| # include "mips/aacpsy_mips.h" |
| #endif /* ARCH_MIPS */ |
| |
| /** |
| * Calculate the ABR attack threshold from the above LAME psymodel table. |
| */ |
| static float lame_calc_attack_threshold(int bitrate) |
| { |
| /* Assume max bitrate to start with */ |
| int lower_range = 12, upper_range = 12; |
| int lower_range_kbps = psy_abr_map[12].quality; |
| int upper_range_kbps = psy_abr_map[12].quality; |
| int i; |
| |
| /* Determine which bitrates the value specified falls between. |
| * If the loop ends without breaking our above assumption of 320kbps was correct. |
| */ |
| for (i = 1; i < 13; i++) { |
| if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
| upper_range = i; |
| upper_range_kbps = psy_abr_map[i ].quality; |
| lower_range = i - 1; |
| lower_range_kbps = psy_abr_map[i - 1].quality; |
| break; /* Upper range found */ |
| } |
| } |
| |
| /* Determine which range the value specified is closer to */ |
| if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
| return psy_abr_map[lower_range].st_lrm; |
| return psy_abr_map[upper_range].st_lrm; |
| } |
| |
| /** |
| * LAME psy model specific initialization |
| */ |
| static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) |
| { |
| int i, j; |
| |
| for (i = 0; i < avctx->channels; i++) { |
| AacPsyChannel *pch = &ctx->ch[i]; |
| |
| if (avctx->flags & AV_CODEC_FLAG_QSCALE) |
| pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; |
| else |
| pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); |
| |
| for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
| pch->prev_energy_subshort[j] = 10.0f; |
| } |
| } |
| |
| /** |
| * Calculate Bark value for given line. |
| */ |
| static av_cold float calc_bark(float f) |
| { |
| return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); |
| } |
| |
| #define ATH_ADD 4 |
| /** |
| * Calculate ATH value for given frequency. |
| * Borrowed from Lame. |
| */ |
| static av_cold float ath(float f, float add) |
| { |
| f /= 1000.0f; |
| return 3.64 * pow(f, -0.8) |
| - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) |
| + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) |
| + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; |
| } |
| |
| static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
| AacPsyContext *pctx; |
| float bark; |
| int i, j, g, start; |
| float prev, minscale, minath, minsnr, pe_min; |
| int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels); |
| |
| const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
| const float num_bark = calc_bark((float)bandwidth); |
| |
| ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); |
| if (!ctx->model_priv_data) |
| return AVERROR(ENOMEM); |
| pctx = (AacPsyContext*) ctx->model_priv_data; |
| pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f; |
| |
| if (ctx->avctx->flags & CODEC_FLAG_QSCALE) { |
| /* Use the target average bitrate to compute spread parameters */ |
| chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120)); |
| } |
| |
| pctx->chan_bitrate = chan_bitrate; |
| pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate); |
| pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
| pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
| ctx->bitres.size = 6144 - pctx->frame_bits; |
| ctx->bitres.size -= ctx->bitres.size % 8; |
| pctx->fill_level = ctx->bitres.size; |
| minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD); |
| for (j = 0; j < 2; j++) { |
| AacPsyCoeffs *coeffs = pctx->psy_coef[j]; |
| const uint8_t *band_sizes = ctx->bands[j]; |
| float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
| float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate; |
| /* reference encoder uses 2.4% here instead of 60% like the spec says */ |
| float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; |
| float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
| /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ |
| float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
| |
| i = 0; |
| prev = 0.0; |
| for (g = 0; g < ctx->num_bands[j]; g++) { |
| i += band_sizes[g]; |
| bark = calc_bark((i-1) * line_to_frequency); |
| coeffs[g].barks = (bark + prev) / 2.0; |
| prev = bark; |
| } |
| for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
| AacPsyCoeffs *coeff = &coeffs[g]; |
| float bark_width = coeffs[g+1].barks - coeffs->barks; |
| coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW); |
| coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI); |
| coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low); |
| coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi); |
| pe_min = bark_pe * bark_width; |
| minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; |
| coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); |
| } |
| start = 0; |
| for (g = 0; g < ctx->num_bands[j]; g++) { |
| minscale = ath(start * line_to_frequency, ATH_ADD); |
| for (i = 1; i < band_sizes[g]; i++) |
| minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
| coeffs[g].ath = minscale - minath; |
| start += band_sizes[g]; |
| } |
| } |
| |
| pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel)); |
| if (!pctx->ch) { |
| av_freep(&ctx->model_priv_data); |
| return AVERROR(ENOMEM); |
| } |
| |
| lame_window_init(pctx, ctx->avctx); |
| |
| return 0; |
| } |
| |
| /** |
| * IIR filter used in block switching decision |
| */ |
| static float iir_filter(int in, float state[2]) |
| { |
| float ret; |
| |
| ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; |
| state[0] = in; |
| state[1] = ret; |
| return ret; |
| } |
| |
| /** |
| * window grouping information stored as bits (0 - new group, 1 - group continues) |
| */ |
| static const uint8_t window_grouping[9] = { |
| 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 |
| }; |
| |
| /** |
| * Tell encoder which window types to use. |
| * @see 3GPP TS26.403 5.4.1 "Blockswitching" |
| */ |
| static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, |
| const int16_t *audio, |
| const int16_t *la, |
| int channel, int prev_type) |
| { |
| int i, j; |
| int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate; |
| int attack_ratio = br <= 16000 ? 18 : 10; |
| AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
| AacPsyChannel *pch = &pctx->ch[channel]; |
| uint8_t grouping = 0; |
| int next_type = pch->next_window_seq; |
| FFPsyWindowInfo wi = { { 0 } }; |
| |
| if (la) { |
| float s[8], v; |
| int switch_to_eight = 0; |
| float sum = 0.0, sum2 = 0.0; |
| int attack_n = 0; |
| int stay_short = 0; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 128; j++) { |
| v = iir_filter(la[i*128+j], pch->iir_state); |
| sum += v*v; |
| } |
| s[i] = sum; |
| sum2 += sum; |
| } |
| for (i = 0; i < 8; i++) { |
| if (s[i] > pch->win_energy * attack_ratio) { |
| attack_n = i + 1; |
| switch_to_eight = 1; |
| break; |
| } |
| } |
| pch->win_energy = pch->win_energy*7/8 + sum2/64; |
| |
| wi.window_type[1] = prev_type; |
| switch (prev_type) { |
| case ONLY_LONG_SEQUENCE: |
| wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
| next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
| break; |
| case LONG_START_SEQUENCE: |
| wi.window_type[0] = EIGHT_SHORT_SEQUENCE; |
| grouping = pch->next_grouping; |
| next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
| break; |
| case LONG_STOP_SEQUENCE: |
| wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
| next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
| break; |
| case EIGHT_SHORT_SEQUENCE: |
| stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; |
| wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
| grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; |
| next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
| break; |
| } |
| |
| pch->next_grouping = window_grouping[attack_n]; |
| pch->next_window_seq = next_type; |
| } else { |
| for (i = 0; i < 3; i++) |
| wi.window_type[i] = prev_type; |
| grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; |
| } |
| |
| wi.window_shape = 1; |
| if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
| wi.num_windows = 1; |
| wi.grouping[0] = 1; |
| } else { |
| int lastgrp = 0; |
| wi.num_windows = 8; |
| for (i = 0; i < 8; i++) { |
| if (!((grouping >> i) & 1)) |
| lastgrp = i; |
| wi.grouping[lastgrp]++; |
| } |
| } |
| |
| return wi; |
| } |
| |
| /* 5.6.1.2 "Calculation of Bit Demand" */ |
| static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, |
| int short_window) |
| { |
| const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
| const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
| const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
| const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
| const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; |
| const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
| float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe; |
| |
| ctx->fill_level += ctx->frame_bits - bits; |
| ctx->fill_level = av_clip(ctx->fill_level, 0, size); |
| fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); |
| clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); |
| bit_save = (fill_level + bitsave_add) * bitsave_slope; |
| assert(bit_save <= 0.3f && bit_save >= -0.05000001f); |
| bit_spend = (fill_level + bitspend_add) * bitspend_slope; |
| assert(bit_spend <= 0.5f && bit_spend >= -0.1f); |
| /* The bit factor graph in the spec is obviously incorrect. |
| * bit_spend + ((bit_spend - bit_spend))... |
| * The reference encoder subtracts everything from 1, but also seems incorrect. |
| * 1 - bit_save + ((bit_spend + bit_save))... |
| * Hopefully below is correct. |
| */ |
| bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); |
| /* NOTE: The reference encoder attempts to center pe max/min around the current pe. |
| * Here we do that by slowly forgetting pe.min when pe stays in a range that makes |
| * it unlikely (ie: above the mean) |
| */ |
| ctx->pe.max = FFMAX(pe, ctx->pe.max); |
| forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE) |
| + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1); |
| ctx->pe.min = FFMIN(pe, forgetful_min_pe); |
| |
| /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid |
| * reservoir starvation from producing zero-bit frames |
| */ |
| return FFMIN( |
| ctx->frame_bits * bit_factor, |
| FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8)); |
| } |
| |
| static float calc_pe_3gpp(AacPsyBand *band) |
| { |
| float pe, a; |
| |
| band->pe = 0.0f; |
| band->pe_const = 0.0f; |
| band->active_lines = 0.0f; |
| if (band->energy > band->thr) { |
| a = log2f(band->energy); |
| pe = a - log2f(band->thr); |
| band->active_lines = band->nz_lines; |
| if (pe < PSY_3GPP_C1) { |
| pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; |
| a = a * PSY_3GPP_C3 + PSY_3GPP_C2; |
| band->active_lines *= PSY_3GPP_C3; |
| } |
| band->pe = pe * band->nz_lines; |
| band->pe_const = a * band->nz_lines; |
| } |
| |
| return band->pe; |
| } |
| |
| static float calc_reduction_3gpp(float a, float desired_pe, float pe, |
| float active_lines) |
| { |
| float thr_avg, reduction; |
| |
| if(active_lines == 0.0) |
| return 0; |
| |
| thr_avg = exp2f((a - pe) / (4.0f * active_lines)); |
| reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; |
| |
| return FFMAX(reduction, 0.0f); |
| } |
| |
| static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, |
| float reduction) |
| { |
| float thr = band->thr; |
| |
| if (band->energy > thr) { |
| thr = sqrtf(thr); |
| thr = sqrtf(thr) + reduction; |
| thr *= thr; |
| thr *= thr; |
| |
| /* This deviates from the 3GPP spec to match the reference encoder. |
| * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands |
| * that have hole avoidance on (active or inactive). It always reduces the |
| * threshold of bands with hole avoidance off. |
| */ |
| if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
| thr = FFMAX(band->thr, band->energy * min_snr); |
| band->avoid_holes = PSY_3GPP_AH_ACTIVE; |
| } |
| } |
| |
| return thr; |
| } |
| |
| #ifndef calc_thr_3gpp |
| static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, |
| const uint8_t *band_sizes, const float *coefs, const int cutoff) |
| { |
| int i, w, g; |
| int start = 0, wstart = 0; |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| wstart = 0; |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| |
| float form_factor = 0.0f; |
| float Temp; |
| band->energy = 0.0f; |
| if (wstart < cutoff) { |
| for (i = 0; i < band_sizes[g]; i++) { |
| band->energy += coefs[start+i] * coefs[start+i]; |
| form_factor += sqrtf(fabs(coefs[start+i])); |
| } |
| } |
| Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; |
| band->thr = band->energy * 0.001258925f; |
| band->nz_lines = form_factor * sqrtf(Temp); |
| |
| start += band_sizes[g]; |
| wstart += band_sizes[g]; |
| } |
| } |
| } |
| #endif /* calc_thr_3gpp */ |
| |
| #ifndef psy_hp_filter |
| static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) |
| { |
| int i, j; |
| for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
| float sum1, sum2; |
| sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; |
| sum2 = 0.0; |
| for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
| sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); |
| sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); |
| } |
| /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. |
| * Tuning this for normalized floats would be difficult. */ |
| hpfsmpl[i] = (sum1 + sum2) * 32768.0f; |
| } |
| } |
| #endif /* psy_hp_filter */ |
| |
| /** |
| * Calculate band thresholds as suggested in 3GPP TS26.403 |
| */ |
| static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, |
| const float *coefs, const FFPsyWindowInfo *wi) |
| { |
| AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
| AacPsyChannel *pch = &pctx->ch[channel]; |
| int i, w, g; |
| float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; |
| float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; |
| float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
| const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
| const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
| AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; |
| const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
| const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
| const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate; |
| |
| //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" |
| calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff); |
| |
| //modify thresholds and energies - spread, threshold in quiet, pre-echo control |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| AacPsyBand *bands = &pch->band[w]; |
| |
| /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ |
| spread_en[0] = bands[0].energy; |
| for (g = 1; g < num_bands; g++) { |
| bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
| spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
| } |
| for (g = num_bands - 2; g >= 0; g--) { |
| bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
| spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
| } |
| //5.4.2.4 "Threshold in quiet" |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &bands[g]; |
| |
| band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
| //5.4.2.5 "Pre-echo control" |
| if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (wi->window_type[1] == LONG_START_SEQUENCE && !w))) |
| band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
| PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); |
| |
| /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ |
| pe += calc_pe_3gpp(band); |
| a += band->pe_const; |
| active_lines += band->active_lines; |
| |
| /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ |
| if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
| band->avoid_holes = PSY_3GPP_AH_NONE; |
| else |
| band->avoid_holes = PSY_3GPP_AH_INACTIVE; |
| } |
| } |
| |
| /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ |
| ctx->ch[channel].entropy = pe; |
| if (ctx->avctx->flags & CODEC_FLAG_QSCALE) { |
| /* (2.5 * 120) achieves almost transparent rate, and we want to give |
| * ample room downwards, so we make that equivalent to QSCALE=2.4 |
| */ |
| desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f); |
| desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); |
| desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping |
| |
| /* PE slope smoothing */ |
| if (ctx->bitres.bits > 0) { |
| desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); |
| desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping |
| } |
| |
| pctx->pe.max = FFMAX(pe, pctx->pe.max); |
| pctx->pe.min = FFMIN(pe, pctx->pe.min); |
| } else { |
| desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); |
| desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); |
| |
| /* NOTE: PE correction is kept simple. During initial testing it had very |
| * little effect on the final bitrate. Probably a good idea to come |
| * back and do more testing later. |
| */ |
| if (ctx->bitres.bits > 0) |
| desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), |
| 0.85f, 1.15f); |
| } |
| pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); |
| ctx->bitres.alloc = desired_bits; |
| |
| if (desired_pe < pe) { |
| /* 5.6.1.3.4 "First Estimation of the reduction value" */ |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); |
| pe = 0.0f; |
| a = 0.0f; |
| active_lines = 0.0f; |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| |
| band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
| /* recalculate PE */ |
| pe += calc_pe_3gpp(band); |
| a += band->pe_const; |
| active_lines += band->active_lines; |
| } |
| } |
| |
| /* 5.6.1.3.5 "Second Estimation of the reduction value" */ |
| for (i = 0; i < 2; i++) { |
| float pe_no_ah = 0.0f, desired_pe_no_ah; |
| active_lines = a = 0.0f; |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| |
| if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
| pe_no_ah += band->pe; |
| a += band->pe_const; |
| active_lines += band->active_lines; |
| } |
| } |
| } |
| desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
| if (active_lines > 0.0f) |
| reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); |
| |
| pe = 0.0f; |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| |
| if (active_lines > 0.0f) |
| band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
| pe += calc_pe_3gpp(band); |
| if (band->thr > 0.0f) |
| band->norm_fac = band->active_lines / band->thr; |
| else |
| band->norm_fac = 0.0f; |
| norm_fac += band->norm_fac; |
| } |
| } |
| delta_pe = desired_pe - pe; |
| if (fabs(delta_pe) > 0.05f * desired_pe) |
| break; |
| } |
| |
| if (pe < 1.15f * desired_pe) { |
| /* 6.6.1.3.6 "Final threshold modification by linearization" */ |
| norm_fac = 1.0f / norm_fac; |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| |
| if (band->active_lines > 0.5f) { |
| float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; |
| float thr = band->thr; |
| |
| thr *= exp2f(delta_sfb_pe / band->active_lines); |
| if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
| thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
| band->thr = thr; |
| } |
| } |
| } |
| } else { |
| /* 5.6.1.3.7 "Further perceptual entropy reduction" */ |
| g = num_bands; |
| while (pe > desired_pe && g--) { |
| for (w = 0; w < wi->num_windows*16; w+= 16) { |
| AacPsyBand *band = &pch->band[w+g]; |
| if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
| coeffs[g].min_snr = PSY_SNR_1DB; |
| band->thr = band->energy * PSY_SNR_1DB; |
| pe += band->active_lines * 1.5f - band->pe; |
| } |
| } |
| } |
| /* TODO: allow more holes (unused without mid/side) */ |
| } |
| } |
| |
| for (w = 0; w < wi->num_windows*16; w += 16) { |
| for (g = 0; g < num_bands; g++) { |
| AacPsyBand *band = &pch->band[w+g]; |
| FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; |
| |
| psy_band->threshold = band->thr; |
| psy_band->energy = band->energy; |
| psy_band->spread = band->active_lines * 2.0f / band_sizes[g]; |
| psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe); |
| } |
| } |
| |
| memcpy(pch->prev_band, pch->band, sizeof(pch->band)); |
| } |
| |
| static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
| const float **coeffs, const FFPsyWindowInfo *wi) |
| { |
| int ch; |
| FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); |
| |
| for (ch = 0; ch < group->num_ch; ch++) |
| psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); |
| } |
| |
| static av_cold void psy_3gpp_end(FFPsyContext *apc) |
| { |
| AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; |
| av_freep(&pctx->ch); |
| av_freep(&apc->model_priv_data); |
| } |
| |
| static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) |
| { |
| int blocktype = ONLY_LONG_SEQUENCE; |
| if (uselongblock) { |
| if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
| blocktype = LONG_STOP_SEQUENCE; |
| } else { |
| blocktype = EIGHT_SHORT_SEQUENCE; |
| if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
| ctx->next_window_seq = LONG_START_SEQUENCE; |
| if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
| ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; |
| } |
| |
| wi->window_type[0] = ctx->next_window_seq; |
| ctx->next_window_seq = blocktype; |
| } |
| |
| static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, |
| const float *la, int channel, int prev_type) |
| { |
| AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
| AacPsyChannel *pch = &pctx->ch[channel]; |
| int grouping = 0; |
| int uselongblock = 1; |
| int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
| float clippings[AAC_NUM_BLOCKS_SHORT]; |
| int i; |
| FFPsyWindowInfo wi = { { 0 } }; |
| |
| if (la) { |
| float hpfsmpl[AAC_BLOCK_SIZE_LONG]; |
| float const *pf = hpfsmpl; |
| float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
| float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
| float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
| const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); |
| int att_sum = 0; |
| |
| /* LAME comment: apply high pass filter of fs/4 */ |
| psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); |
| |
| /* Calculate the energies of each sub-shortblock */ |
| for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
| energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; |
| assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); |
| attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; |
| energy_short[0] += energy_subshort[i]; |
| } |
| |
| for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
| float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); |
| float p = 1.0f; |
| for (; pf < pfe; pf++) |
| p = FFMAX(p, fabsf(*pf)); |
| pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
| energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; |
| /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. |
| * Obviously the 3 and 2 have some significance, or this would be just [i + 1] |
| * (which is what we use here). What the 3 stands for is ambiguous, as it is both |
| * number of short blocks, and the number of sub-short blocks. |
| * It seems that LAME is comparing each sub-block to sub-block + 1 in the |
| * previous block. |
| */ |
| if (p > energy_subshort[i + 1]) |
| p = p / energy_subshort[i + 1]; |
| else if (energy_subshort[i + 1] > p * 10.0f) |
| p = energy_subshort[i + 1] / (p * 10.0f); |
| else |
| p = 0.0; |
| attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
| } |
| |
| /* compare energy between sub-short blocks */ |
| for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
| if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
| if (attack_intensity[i] > pch->attack_threshold) |
| attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; |
| |
| /* should have energy change between short blocks, in order to avoid periodic signals */ |
| /* Good samples to show the effect are Trumpet test songs */ |
| /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ |
| /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ |
| for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
| float const u = energy_short[i - 1]; |
| float const v = energy_short[i]; |
| float const m = FFMAX(u, v); |
| if (m < 40000) { /* (2) */ |
| if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
| if (i == 1 && attacks[0] < attacks[i]) |
| attacks[0] = 0; |
| attacks[i] = 0; |
| } |
| } |
| att_sum += attacks[i]; |
| } |
| |
| if (attacks[0] <= pch->prev_attack) |
| attacks[0] = 0; |
| |
| att_sum += attacks[0]; |
| /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ |
| if (pch->prev_attack == 3 || att_sum) { |
| uselongblock = 0; |
| |
| for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
| if (attacks[i] && attacks[i-1]) |
| attacks[i] = 0; |
| } |
| } else { |
| /* We have no lookahead info, so just use same type as the previous sequence. */ |
| uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); |
| } |
| |
| lame_apply_block_type(pch, &wi, uselongblock); |
| |
| /* Calculate input sample maximums and evaluate clipping risk */ |
| if (audio) { |
| for (i = 0; i < AAC_NUM_BLOCKS_SHORT; i++) { |
| const float *wbuf = audio + i * AAC_BLOCK_SIZE_SHORT; |
| float max = 0; |
| int j; |
| for (j = 0; j < AAC_BLOCK_SIZE_SHORT; j++) |
| max = FFMAX(max, fabsf(wbuf[j])); |
| clippings[i] = max; |
| } |
| } else { |
| for (i = 0; i < 8; i++) |
| clippings[i] = 0; |
| } |
| |
| wi.window_type[1] = prev_type; |
| if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
| float clipping = 0.0f; |
| |
| wi.num_windows = 1; |
| wi.grouping[0] = 1; |
| if (wi.window_type[0] == LONG_START_SEQUENCE) |
| wi.window_shape = 0; |
| else |
| wi.window_shape = 1; |
| |
| for (i = 0; i < 8; i++) |
| clipping = FFMAX(clipping, clippings[i]); |
| wi.clipping[0] = clipping; |
| } else { |
| int lastgrp = 0; |
| |
| wi.num_windows = 8; |
| wi.window_shape = 0; |
| for (i = 0; i < 8; i++) { |
| if (!((pch->next_grouping >> i) & 1)) |
| lastgrp = i; |
| wi.grouping[lastgrp]++; |
| } |
| |
| for (i = 0; i < 8; i += wi.grouping[i]) { |
| int w; |
| float clipping = 0.0f; |
| for (w = 0; w < wi.grouping[i] && !clipping; w++) |
| clipping = FFMAX(clipping, clippings[i+w]); |
| wi.clipping[i] = clipping; |
| } |
| } |
| |
| /* Determine grouping, based on the location of the first attack, and save for |
| * the next frame. |
| * FIXME: Move this to analysis. |
| * TODO: Tune groupings depending on attack location |
| * TODO: Handle more than one attack in a group |
| */ |
| for (i = 0; i < 9; i++) { |
| if (attacks[i]) { |
| grouping = i; |
| break; |
| } |
| } |
| pch->next_grouping = window_grouping[grouping]; |
| |
| pch->prev_attack = attacks[8]; |
| |
| return wi; |
| } |
| |
| const FFPsyModel ff_aac_psy_model = |
| { |
| .name = "3GPP TS 26.403-inspired model", |
| .init = psy_3gpp_init, |
| .window = psy_lame_window, |
| .analyze = psy_3gpp_analyze, |
| .end = psy_3gpp_end, |
| }; |