| /* |
| * Monkey's Audio lossless audio decoder |
| * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org> |
| * based upon libdemac from Dave Chapman. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <inttypes.h> |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/channel_layout.h" |
| #include "libavutil/opt.h" |
| #include "lossless_audiodsp.h" |
| #include "avcodec.h" |
| #include "bswapdsp.h" |
| #include "bytestream.h" |
| #include "internal.h" |
| #include "get_bits.h" |
| #include "unary.h" |
| |
| /** |
| * @file |
| * Monkey's Audio lossless audio decoder |
| */ |
| |
| #define MAX_CHANNELS 2 |
| #define MAX_BYTESPERSAMPLE 3 |
| |
| #define APE_FRAMECODE_MONO_SILENCE 1 |
| #define APE_FRAMECODE_STEREO_SILENCE 3 |
| #define APE_FRAMECODE_PSEUDO_STEREO 4 |
| |
| #define HISTORY_SIZE 512 |
| #define PREDICTOR_ORDER 8 |
| /** Total size of all predictor histories */ |
| #define PREDICTOR_SIZE 50 |
| |
| #define YDELAYA (18 + PREDICTOR_ORDER*4) |
| #define YDELAYB (18 + PREDICTOR_ORDER*3) |
| #define XDELAYA (18 + PREDICTOR_ORDER*2) |
| #define XDELAYB (18 + PREDICTOR_ORDER) |
| |
| #define YADAPTCOEFFSA 18 |
| #define XADAPTCOEFFSA 14 |
| #define YADAPTCOEFFSB 10 |
| #define XADAPTCOEFFSB 5 |
| |
| /** |
| * Possible compression levels |
| * @{ |
| */ |
| enum APECompressionLevel { |
| COMPRESSION_LEVEL_FAST = 1000, |
| COMPRESSION_LEVEL_NORMAL = 2000, |
| COMPRESSION_LEVEL_HIGH = 3000, |
| COMPRESSION_LEVEL_EXTRA_HIGH = 4000, |
| COMPRESSION_LEVEL_INSANE = 5000 |
| }; |
| /** @} */ |
| |
| #define APE_FILTER_LEVELS 3 |
| |
| /** Filter orders depending on compression level */ |
| static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { |
| { 0, 0, 0 }, |
| { 16, 0, 0 }, |
| { 64, 0, 0 }, |
| { 32, 256, 0 }, |
| { 16, 256, 1280 } |
| }; |
| |
| /** Filter fraction bits depending on compression level */ |
| static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { |
| { 0, 0, 0 }, |
| { 11, 0, 0 }, |
| { 11, 0, 0 }, |
| { 10, 13, 0 }, |
| { 11, 13, 15 } |
| }; |
| |
| |
| /** Filters applied to the decoded data */ |
| typedef struct APEFilter { |
| int16_t *coeffs; ///< actual coefficients used in filtering |
| int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients |
| int16_t *historybuffer; ///< filter memory |
| int16_t *delay; ///< filtered values |
| |
| int avg; |
| } APEFilter; |
| |
| typedef struct APERice { |
| uint32_t k; |
| uint32_t ksum; |
| } APERice; |
| |
| typedef struct APERangecoder { |
| uint32_t low; ///< low end of interval |
| uint32_t range; ///< length of interval |
| uint32_t help; ///< bytes_to_follow resp. intermediate value |
| unsigned int buffer; ///< buffer for input/output |
| } APERangecoder; |
| |
| /** Filter histories */ |
| typedef struct APEPredictor { |
| int32_t *buf; |
| |
| int32_t lastA[2]; |
| |
| int32_t filterA[2]; |
| int32_t filterB[2]; |
| |
| int32_t coeffsA[2][4]; ///< adaption coefficients |
| int32_t coeffsB[2][5]; ///< adaption coefficients |
| int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
| |
| unsigned int sample_pos; |
| } APEPredictor; |
| |
| /** Decoder context */ |
| typedef struct APEContext { |
| AVClass *class; ///< class for AVOptions |
| AVCodecContext *avctx; |
| BswapDSPContext bdsp; |
| LLAudDSPContext adsp; |
| int channels; |
| int samples; ///< samples left to decode in current frame |
| int bps; |
| |
| int fileversion; ///< codec version, very important in decoding process |
| int compression_level; ///< compression levels |
| int fset; ///< which filter set to use (calculated from compression level) |
| int flags; ///< global decoder flags |
| |
| uint32_t CRC; ///< frame CRC |
| int frameflags; ///< frame flags |
| APEPredictor predictor; ///< predictor used for final reconstruction |
| |
| int32_t *decoded_buffer; |
| int decoded_size; |
| int32_t *decoded[MAX_CHANNELS]; ///< decoded data for each channel |
| int blocks_per_loop; ///< maximum number of samples to decode for each call |
| |
| int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory |
| |
| APERangecoder rc; ///< rangecoder used to decode actual values |
| APERice riceX; ///< rice code parameters for the second channel |
| APERice riceY; ///< rice code parameters for the first channel |
| APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction |
| GetBitContext gb; |
| |
| uint8_t *data; ///< current frame data |
| uint8_t *data_end; ///< frame data end |
| int data_size; ///< frame data allocated size |
| const uint8_t *ptr; ///< current position in frame data |
| |
| int error; |
| |
| void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode); |
| void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode); |
| void (*predictor_decode_mono)(struct APEContext *ctx, int count); |
| void (*predictor_decode_stereo)(struct APEContext *ctx, int count); |
| } APEContext; |
| |
| static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, |
| int32_t *decoded1, int count); |
| |
| static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode); |
| static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode); |
| |
| static void predictor_decode_mono_3800(APEContext *ctx, int count); |
| static void predictor_decode_stereo_3800(APEContext *ctx, int count); |
| static void predictor_decode_mono_3930(APEContext *ctx, int count); |
| static void predictor_decode_stereo_3930(APEContext *ctx, int count); |
| static void predictor_decode_mono_3950(APEContext *ctx, int count); |
| static void predictor_decode_stereo_3950(APEContext *ctx, int count); |
| |
| static av_cold int ape_decode_close(AVCodecContext *avctx) |
| { |
| APEContext *s = avctx->priv_data; |
| int i; |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) |
| av_freep(&s->filterbuf[i]); |
| |
| av_freep(&s->decoded_buffer); |
| av_freep(&s->data); |
| s->decoded_size = s->data_size = 0; |
| |
| return 0; |
| } |
| |
| static av_cold int ape_decode_init(AVCodecContext *avctx) |
| { |
| APEContext *s = avctx->priv_data; |
| int i; |
| |
| if (avctx->extradata_size != 6) { |
| av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n"); |
| return AVERROR(EINVAL); |
| } |
| if (avctx->channels > 2) { |
| av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n"); |
| return AVERROR(EINVAL); |
| } |
| s->bps = avctx->bits_per_coded_sample; |
| switch (s->bps) { |
| case 8: |
| avctx->sample_fmt = AV_SAMPLE_FMT_U8P; |
| break; |
| case 16: |
| avctx->sample_fmt = AV_SAMPLE_FMT_S16P; |
| break; |
| case 24: |
| avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
| break; |
| default: |
| avpriv_request_sample(avctx, |
| "%d bits per coded sample", s->bps); |
| return AVERROR_PATCHWELCOME; |
| } |
| s->avctx = avctx; |
| s->channels = avctx->channels; |
| s->fileversion = AV_RL16(avctx->extradata); |
| s->compression_level = AV_RL16(avctx->extradata + 2); |
| s->flags = AV_RL16(avctx->extradata + 4); |
| |
| av_log(avctx, AV_LOG_VERBOSE, "Compression Level: %d - Flags: %d\n", |
| s->compression_level, s->flags); |
| if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE || |
| !s->compression_level || |
| (s->fileversion < 3930 && s->compression_level == COMPRESSION_LEVEL_INSANE)) { |
| av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", |
| s->compression_level); |
| return AVERROR_INVALIDDATA; |
| } |
| s->fset = s->compression_level / 1000 - 1; |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[s->fset][i]) |
| break; |
| FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i], |
| (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4, |
| filter_alloc_fail); |
| } |
| |
| if (s->fileversion < 3860) { |
| s->entropy_decode_mono = entropy_decode_mono_0000; |
| s->entropy_decode_stereo = entropy_decode_stereo_0000; |
| } else if (s->fileversion < 3900) { |
| s->entropy_decode_mono = entropy_decode_mono_3860; |
| s->entropy_decode_stereo = entropy_decode_stereo_3860; |
| } else if (s->fileversion < 3930) { |
| s->entropy_decode_mono = entropy_decode_mono_3900; |
| s->entropy_decode_stereo = entropy_decode_stereo_3900; |
| } else if (s->fileversion < 3990) { |
| s->entropy_decode_mono = entropy_decode_mono_3900; |
| s->entropy_decode_stereo = entropy_decode_stereo_3930; |
| } else { |
| s->entropy_decode_mono = entropy_decode_mono_3990; |
| s->entropy_decode_stereo = entropy_decode_stereo_3990; |
| } |
| |
| if (s->fileversion < 3930) { |
| s->predictor_decode_mono = predictor_decode_mono_3800; |
| s->predictor_decode_stereo = predictor_decode_stereo_3800; |
| } else if (s->fileversion < 3950) { |
| s->predictor_decode_mono = predictor_decode_mono_3930; |
| s->predictor_decode_stereo = predictor_decode_stereo_3930; |
| } else { |
| s->predictor_decode_mono = predictor_decode_mono_3950; |
| s->predictor_decode_stereo = predictor_decode_stereo_3950; |
| } |
| |
| ff_bswapdsp_init(&s->bdsp); |
| ff_llauddsp_init(&s->adsp); |
| avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; |
| |
| return 0; |
| filter_alloc_fail: |
| ape_decode_close(avctx); |
| return AVERROR(ENOMEM); |
| } |
| |
| /** |
| * @name APE range decoding functions |
| * @{ |
| */ |
| |
| #define CODE_BITS 32 |
| #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) |
| #define SHIFT_BITS (CODE_BITS - 9) |
| #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) |
| #define BOTTOM_VALUE (TOP_VALUE >> 8) |
| |
| /** Start the decoder */ |
| static inline void range_start_decoding(APEContext *ctx) |
| { |
| ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); |
| ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS); |
| ctx->rc.range = (uint32_t) 1 << EXTRA_BITS; |
| } |
| |
| /** Perform normalization */ |
| static inline void range_dec_normalize(APEContext *ctx) |
| { |
| while (ctx->rc.range <= BOTTOM_VALUE) { |
| ctx->rc.buffer <<= 8; |
| if(ctx->ptr < ctx->data_end) { |
| ctx->rc.buffer += *ctx->ptr; |
| ctx->ptr++; |
| } else { |
| ctx->error = 1; |
| } |
| ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); |
| ctx->rc.range <<= 8; |
| } |
| } |
| |
| /** |
| * Calculate culmulative frequency for next symbol. Does NO update! |
| * @param ctx decoder context |
| * @param tot_f is the total frequency or (code_value)1<<shift |
| * @return the culmulative frequency |
| */ |
| static inline int range_decode_culfreq(APEContext *ctx, int tot_f) |
| { |
| range_dec_normalize(ctx); |
| ctx->rc.help = ctx->rc.range / tot_f; |
| return ctx->rc.low / ctx->rc.help; |
| } |
| |
| /** |
| * Decode value with given size in bits |
| * @param ctx decoder context |
| * @param shift number of bits to decode |
| */ |
| static inline int range_decode_culshift(APEContext *ctx, int shift) |
| { |
| range_dec_normalize(ctx); |
| ctx->rc.help = ctx->rc.range >> shift; |
| return ctx->rc.low / ctx->rc.help; |
| } |
| |
| |
| /** |
| * Update decoding state |
| * @param ctx decoder context |
| * @param sy_f the interval length (frequency of the symbol) |
| * @param lt_f the lower end (frequency sum of < symbols) |
| */ |
| static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f) |
| { |
| ctx->rc.low -= ctx->rc.help * lt_f; |
| ctx->rc.range = ctx->rc.help * sy_f; |
| } |
| |
| /** Decode n bits (n <= 16) without modelling */ |
| static inline int range_decode_bits(APEContext *ctx, int n) |
| { |
| int sym = range_decode_culshift(ctx, n); |
| range_decode_update(ctx, 1, sym); |
| return sym; |
| } |
| |
| |
| #define MODEL_ELEMENTS 64 |
| |
| /** |
| * Fixed probabilities for symbols in Monkey Audio version 3.97 |
| */ |
| static const uint16_t counts_3970[22] = { |
| 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, |
| 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, |
| 65450, 65469, 65480, 65487, 65491, 65493, |
| }; |
| |
| /** |
| * Probability ranges for symbols in Monkey Audio version 3.97 |
| */ |
| static const uint16_t counts_diff_3970[21] = { |
| 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, |
| 1104, 677, 415, 248, 150, 89, 54, 31, |
| 19, 11, 7, 4, 2, |
| }; |
| |
| /** |
| * Fixed probabilities for symbols in Monkey Audio version 3.98 |
| */ |
| static const uint16_t counts_3980[22] = { |
| 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, |
| 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, |
| 65485, 65488, 65490, 65491, 65492, 65493, |
| }; |
| |
| /** |
| * Probability ranges for symbols in Monkey Audio version 3.98 |
| */ |
| static const uint16_t counts_diff_3980[21] = { |
| 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, |
| 261, 119, 65, 31, 19, 10, 6, 3, |
| 3, 2, 1, 1, 1, |
| }; |
| |
| /** |
| * Decode symbol |
| * @param ctx decoder context |
| * @param counts probability range start position |
| * @param counts_diff probability range widths |
| */ |
| static inline int range_get_symbol(APEContext *ctx, |
| const uint16_t counts[], |
| const uint16_t counts_diff[]) |
| { |
| int symbol, cf; |
| |
| cf = range_decode_culshift(ctx, 16); |
| |
| if(cf > 65492){ |
| symbol= cf - 65535 + 63; |
| range_decode_update(ctx, 1, cf); |
| if(cf > 65535) |
| ctx->error=1; |
| return symbol; |
| } |
| /* figure out the symbol inefficiently; a binary search would be much better */ |
| for (symbol = 0; counts[symbol + 1] <= cf; symbol++); |
| |
| range_decode_update(ctx, counts_diff[symbol], counts[symbol]); |
| |
| return symbol; |
| } |
| /** @} */ // group rangecoder |
| |
| static inline void update_rice(APERice *rice, unsigned int x) |
| { |
| int lim = rice->k ? (1 << (rice->k + 4)) : 0; |
| rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); |
| |
| if (rice->ksum < lim) |
| rice->k--; |
| else if (rice->ksum >= (1 << (rice->k + 5))) |
| rice->k++; |
| } |
| |
| static inline int get_rice_ook(GetBitContext *gb, int k) |
| { |
| unsigned int x; |
| |
| x = get_unary(gb, 1, get_bits_left(gb)); |
| |
| if (k) |
| x = (x << k) | get_bits(gb, k); |
| |
| return x; |
| } |
| |
| static inline int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb, |
| APERice *rice) |
| { |
| unsigned int x, overflow; |
| |
| overflow = get_unary(gb, 1, get_bits_left(gb)); |
| |
| if (ctx->fileversion > 3880) { |
| while (overflow >= 16) { |
| overflow -= 16; |
| rice->k += 4; |
| } |
| } |
| |
| if (!rice->k) |
| x = overflow; |
| else if(rice->k <= MIN_CACHE_BITS) { |
| x = (overflow << rice->k) + get_bits(gb, rice->k); |
| } else { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", rice->k); |
| return AVERROR_INVALIDDATA; |
| } |
| rice->ksum += x - (rice->ksum + 8 >> 4); |
| if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0)) |
| rice->k--; |
| else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24) |
| rice->k++; |
| |
| /* Convert to signed */ |
| return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
| } |
| |
| static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice) |
| { |
| unsigned int x, overflow; |
| int tmpk; |
| |
| overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); |
| |
| if (overflow == (MODEL_ELEMENTS - 1)) { |
| tmpk = range_decode_bits(ctx, 5); |
| overflow = 0; |
| } else |
| tmpk = (rice->k < 1) ? 0 : rice->k - 1; |
| |
| if (tmpk <= 16 || ctx->fileversion < 3910) { |
| if (tmpk > 23) { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk); |
| return AVERROR_INVALIDDATA; |
| } |
| x = range_decode_bits(ctx, tmpk); |
| } else if (tmpk <= 31) { |
| x = range_decode_bits(ctx, 16); |
| x |= (range_decode_bits(ctx, tmpk - 16) << 16); |
| } else { |
| av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk); |
| return AVERROR_INVALIDDATA; |
| } |
| x += overflow << tmpk; |
| |
| update_rice(rice, x); |
| |
| /* Convert to signed */ |
| return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
| } |
| |
| static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice) |
| { |
| unsigned int x, overflow; |
| int base, pivot; |
| |
| pivot = rice->ksum >> 5; |
| if (pivot == 0) |
| pivot = 1; |
| |
| overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); |
| |
| if (overflow == (MODEL_ELEMENTS - 1)) { |
| overflow = range_decode_bits(ctx, 16) << 16; |
| overflow |= range_decode_bits(ctx, 16); |
| } |
| |
| if (pivot < 0x10000) { |
| base = range_decode_culfreq(ctx, pivot); |
| range_decode_update(ctx, 1, base); |
| } else { |
| int base_hi = pivot, base_lo; |
| int bbits = 0; |
| |
| while (base_hi & ~0xFFFF) { |
| base_hi >>= 1; |
| bbits++; |
| } |
| base_hi = range_decode_culfreq(ctx, base_hi + 1); |
| range_decode_update(ctx, 1, base_hi); |
| base_lo = range_decode_culfreq(ctx, 1 << bbits); |
| range_decode_update(ctx, 1, base_lo); |
| |
| base = (base_hi << bbits) + base_lo; |
| } |
| |
| x = base + overflow * pivot; |
| |
| update_rice(rice, x); |
| |
| /* Convert to signed */ |
| return ((x >> 1) ^ ((x & 1) - 1)) + 1; |
| } |
| |
| static void decode_array_0000(APEContext *ctx, GetBitContext *gb, |
| int32_t *out, APERice *rice, int blockstodecode) |
| { |
| int i; |
| int ksummax, ksummin; |
| |
| rice->ksum = 0; |
| for (i = 0; i < FFMIN(blockstodecode, 5); i++) { |
| out[i] = get_rice_ook(&ctx->gb, 10); |
| rice->ksum += out[i]; |
| } |
| rice->k = av_log2(rice->ksum / 10) + 1; |
| if (rice->k >= 24) |
| return; |
| for (; i < FFMIN(blockstodecode, 64); i++) { |
| out[i] = get_rice_ook(&ctx->gb, rice->k); |
| rice->ksum += out[i]; |
| rice->k = av_log2(rice->ksum / ((i + 1) * 2)) + 1; |
| if (rice->k >= 24) |
| return; |
| } |
| ksummax = 1 << rice->k + 7; |
| ksummin = rice->k ? (1 << rice->k + 6) : 0; |
| for (; i < blockstodecode; i++) { |
| out[i] = get_rice_ook(&ctx->gb, rice->k); |
| rice->ksum += out[i] - out[i - 64]; |
| while (rice->ksum < ksummin) { |
| rice->k--; |
| ksummin = rice->k ? ksummin >> 1 : 0; |
| ksummax >>= 1; |
| } |
| while (rice->ksum >= ksummax) { |
| rice->k++; |
| if (rice->k > 24) |
| return; |
| ksummax <<= 1; |
| ksummin = ksummin ? ksummin << 1 : 128; |
| } |
| } |
| |
| for (i = 0; i < blockstodecode; i++) |
| out[i] = ((out[i] >> 1) ^ ((out[i] & 1) - 1)) + 1; |
| } |
| |
| static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode) |
| { |
| decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY, |
| blockstodecode); |
| } |
| |
| static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode) |
| { |
| decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY, |
| blockstodecode); |
| decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX, |
| blockstodecode); |
| } |
| |
| static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| |
| while (blockstodecode--) |
| *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY); |
| } |
| |
| static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| int blocks = blockstodecode; |
| |
| while (blockstodecode--) |
| *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY); |
| while (blocks--) |
| *decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX); |
| } |
| |
| static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| |
| while (blockstodecode--) |
| *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
| } |
| |
| static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| int blocks = blockstodecode; |
| |
| while (blockstodecode--) |
| *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
| range_dec_normalize(ctx); |
| // because of some implementation peculiarities we need to backpedal here |
| ctx->ptr -= 1; |
| range_start_decoding(ctx); |
| while (blocks--) |
| *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX); |
| } |
| |
| static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| |
| while (blockstodecode--) { |
| *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY); |
| *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX); |
| } |
| } |
| |
| static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| |
| while (blockstodecode--) |
| *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY); |
| } |
| |
| static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode) |
| { |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| |
| while (blockstodecode--) { |
| *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY); |
| *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX); |
| } |
| } |
| |
| static int init_entropy_decoder(APEContext *ctx) |
| { |
| /* Read the CRC */ |
| if (ctx->fileversion >= 3900) { |
| if (ctx->data_end - ctx->ptr < 6) |
| return AVERROR_INVALIDDATA; |
| ctx->CRC = bytestream_get_be32(&ctx->ptr); |
| } else { |
| ctx->CRC = get_bits_long(&ctx->gb, 32); |
| } |
| |
| /* Read the frame flags if they exist */ |
| ctx->frameflags = 0; |
| if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { |
| ctx->CRC &= ~0x80000000; |
| |
| if (ctx->data_end - ctx->ptr < 6) |
| return AVERROR_INVALIDDATA; |
| ctx->frameflags = bytestream_get_be32(&ctx->ptr); |
| } |
| |
| /* Initialize the rice structs */ |
| ctx->riceX.k = 10; |
| ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; |
| ctx->riceY.k = 10; |
| ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; |
| |
| if (ctx->fileversion >= 3900) { |
| /* The first 8 bits of input are ignored. */ |
| ctx->ptr++; |
| |
| range_start_decoding(ctx); |
| } |
| |
| return 0; |
| } |
| |
| static const int32_t initial_coeffs_fast_3320[1] = { |
| 375, |
| }; |
| |
| static const int32_t initial_coeffs_a_3800[3] = { |
| 64, 115, 64, |
| }; |
| |
| static const int32_t initial_coeffs_b_3800[2] = { |
| 740, 0 |
| }; |
| |
| static const int32_t initial_coeffs_3930[4] = { |
| 360, 317, -109, 98 |
| }; |
| |
| static void init_predictor_decoder(APEContext *ctx) |
| { |
| APEPredictor *p = &ctx->predictor; |
| |
| /* Zero the history buffers */ |
| memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| |
| /* Initialize and zero the coefficients */ |
| if (ctx->fileversion < 3930) { |
| if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
| memcpy(p->coeffsA[0], initial_coeffs_fast_3320, |
| sizeof(initial_coeffs_fast_3320)); |
| memcpy(p->coeffsA[1], initial_coeffs_fast_3320, |
| sizeof(initial_coeffs_fast_3320)); |
| } else { |
| memcpy(p->coeffsA[0], initial_coeffs_a_3800, |
| sizeof(initial_coeffs_a_3800)); |
| memcpy(p->coeffsA[1], initial_coeffs_a_3800, |
| sizeof(initial_coeffs_a_3800)); |
| } |
| } else { |
| memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930)); |
| memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930)); |
| } |
| memset(p->coeffsB, 0, sizeof(p->coeffsB)); |
| if (ctx->fileversion < 3930) { |
| memcpy(p->coeffsB[0], initial_coeffs_b_3800, |
| sizeof(initial_coeffs_b_3800)); |
| memcpy(p->coeffsB[1], initial_coeffs_b_3800, |
| sizeof(initial_coeffs_b_3800)); |
| } |
| |
| p->filterA[0] = p->filterA[1] = 0; |
| p->filterB[0] = p->filterB[1] = 0; |
| p->lastA[0] = p->lastA[1] = 0; |
| |
| p->sample_pos = 0; |
| } |
| |
| /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */ |
| static inline int APESIGN(int32_t x) { |
| return (x < 0) - (x > 0); |
| } |
| |
| static av_always_inline int filter_fast_3320(APEPredictor *p, |
| const int decoded, const int filter, |
| const int delayA) |
| { |
| int32_t predictionA; |
| |
| p->buf[delayA] = p->lastA[filter]; |
| if (p->sample_pos < 3) { |
| p->lastA[filter] = decoded; |
| p->filterA[filter] = decoded; |
| return decoded; |
| } |
| |
| predictionA = p->buf[delayA] * 2 - p->buf[delayA - 1]; |
| p->lastA[filter] = decoded + (predictionA * p->coeffsA[filter][0] >> 9); |
| |
| if ((decoded ^ predictionA) > 0) |
| p->coeffsA[filter][0]++; |
| else |
| p->coeffsA[filter][0]--; |
| |
| p->filterA[filter] += p->lastA[filter]; |
| |
| return p->filterA[filter]; |
| } |
| |
| static av_always_inline int filter_3800(APEPredictor *p, |
| const int decoded, const int filter, |
| const int delayA, const int delayB, |
| const int start, const int shift) |
| { |
| int32_t predictionA, predictionB, sign; |
| int32_t d0, d1, d2, d3, d4; |
| |
| p->buf[delayA] = p->lastA[filter]; |
| p->buf[delayB] = p->filterB[filter]; |
| if (p->sample_pos < start) { |
| predictionA = decoded + p->filterA[filter]; |
| p->lastA[filter] = decoded; |
| p->filterB[filter] = decoded; |
| p->filterA[filter] = predictionA; |
| return predictionA; |
| } |
| d2 = p->buf[delayA]; |
| d1 = (p->buf[delayA] - p->buf[delayA - 1]) << 1; |
| d0 = p->buf[delayA] + ((p->buf[delayA - 2] - p->buf[delayA - 1]) << 3); |
| d3 = p->buf[delayB] * 2 - p->buf[delayB - 1]; |
| d4 = p->buf[delayB]; |
| |
| predictionA = d0 * p->coeffsA[filter][0] + |
| d1 * p->coeffsA[filter][1] + |
| d2 * p->coeffsA[filter][2]; |
| |
| sign = APESIGN(decoded); |
| p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign; |
| p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign; |
| p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign; |
| |
| predictionB = d3 * p->coeffsB[filter][0] - |
| d4 * p->coeffsB[filter][1]; |
| p->lastA[filter] = decoded + (predictionA >> 11); |
| sign = APESIGN(p->lastA[filter]); |
| p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign; |
| p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign; |
| |
| p->filterB[filter] = p->lastA[filter] + (predictionB >> shift); |
| p->filterA[filter] = p->filterB[filter] + ((p->filterA[filter] * 31) >> 5); |
| |
| return p->filterA[filter]; |
| } |
| |
| static void long_filter_high_3800(int32_t *buffer, int order, int shift, int length) |
| { |
| int i, j; |
| int32_t dotprod, sign; |
| int32_t coeffs[256], delay[256]; |
| |
| if (order >= length) |
| return; |
| |
| memset(coeffs, 0, order * sizeof(*coeffs)); |
| for (i = 0; i < order; i++) |
| delay[i] = buffer[i]; |
| for (i = order; i < length; i++) { |
| dotprod = 0; |
| sign = APESIGN(buffer[i]); |
| for (j = 0; j < order; j++) { |
| dotprod += delay[j] * coeffs[j]; |
| coeffs[j] += ((delay[j] >> 31) | 1) * sign; |
| } |
| buffer[i] -= dotprod >> shift; |
| for (j = 0; j < order - 1; j++) |
| delay[j] = delay[j + 1]; |
| delay[order - 1] = buffer[i]; |
| } |
| } |
| |
| static void long_filter_ehigh_3830(int32_t *buffer, int length) |
| { |
| int i, j; |
| int32_t dotprod, sign; |
| int32_t coeffs[8] = { 0 }, delay[8] = { 0 }; |
| |
| for (i = 0; i < length; i++) { |
| dotprod = 0; |
| sign = APESIGN(buffer[i]); |
| for (j = 7; j >= 0; j--) { |
| dotprod += delay[j] * coeffs[j]; |
| coeffs[j] += ((delay[j] >> 31) | 1) * sign; |
| } |
| for (j = 7; j > 0; j--) |
| delay[j] = delay[j - 1]; |
| delay[0] = buffer[i]; |
| buffer[i] -= dotprod >> 9; |
| } |
| } |
| |
| static void predictor_decode_stereo_3800(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| int start = 4, shift = 10; |
| |
| if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) { |
| start = 16; |
| long_filter_high_3800(decoded0, 16, 9, count); |
| long_filter_high_3800(decoded1, 16, 9, count); |
| } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) { |
| int order = 128, shift2 = 11; |
| |
| if (ctx->fileversion >= 3830) { |
| order <<= 1; |
| shift++; |
| shift2++; |
| long_filter_ehigh_3830(decoded0 + order, count - order); |
| long_filter_ehigh_3830(decoded1 + order, count - order); |
| } |
| start = order; |
| long_filter_high_3800(decoded0, order, shift2, count); |
| long_filter_high_3800(decoded1, order, shift2, count); |
| } |
| |
| while (count--) { |
| int X = *decoded0, Y = *decoded1; |
| if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
| *decoded0 = filter_fast_3320(p, Y, 0, YDELAYA); |
| decoded0++; |
| *decoded1 = filter_fast_3320(p, X, 1, XDELAYA); |
| decoded1++; |
| } else { |
| *decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB, |
| start, shift); |
| decoded0++; |
| *decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB, |
| start, shift); |
| decoded1++; |
| } |
| |
| /* Combined */ |
| p->buf++; |
| p->sample_pos++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static void predictor_decode_mono_3800(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int start = 4, shift = 10; |
| |
| if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) { |
| start = 16; |
| long_filter_high_3800(decoded0, 16, 9, count); |
| } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) { |
| int order = 128, shift2 = 11; |
| |
| if (ctx->fileversion >= 3830) { |
| order <<= 1; |
| shift++; |
| shift2++; |
| long_filter_ehigh_3830(decoded0 + order, count - order); |
| } |
| start = order; |
| long_filter_high_3800(decoded0, order, shift2, count); |
| } |
| |
| while (count--) { |
| if (ctx->compression_level == COMPRESSION_LEVEL_FAST) { |
| *decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA); |
| decoded0++; |
| } else { |
| *decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB, |
| start, shift); |
| decoded0++; |
| } |
| |
| /* Combined */ |
| p->buf++; |
| p->sample_pos++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static av_always_inline int predictor_update_3930(APEPredictor *p, |
| const int decoded, const int filter, |
| const int delayA) |
| { |
| int32_t predictionA, sign; |
| int32_t d0, d1, d2, d3; |
| |
| p->buf[delayA] = p->lastA[filter]; |
| d0 = p->buf[delayA ]; |
| d1 = p->buf[delayA ] - p->buf[delayA - 1]; |
| d2 = p->buf[delayA - 1] - p->buf[delayA - 2]; |
| d3 = p->buf[delayA - 2] - p->buf[delayA - 3]; |
| |
| predictionA = d0 * p->coeffsA[filter][0] + |
| d1 * p->coeffsA[filter][1] + |
| d2 * p->coeffsA[filter][2] + |
| d3 * p->coeffsA[filter][3]; |
| |
| p->lastA[filter] = decoded + (predictionA >> 9); |
| p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); |
| |
| sign = APESIGN(decoded); |
| p->coeffsA[filter][0] += ((d0 < 0) * 2 - 1) * sign; |
| p->coeffsA[filter][1] += ((d1 < 0) * 2 - 1) * sign; |
| p->coeffsA[filter][2] += ((d2 < 0) * 2 - 1) * sign; |
| p->coeffsA[filter][3] += ((d3 < 0) * 2 - 1) * sign; |
| |
| return p->filterA[filter]; |
| } |
| |
| static void predictor_decode_stereo_3930(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| |
| ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count); |
| |
| while (count--) { |
| /* Predictor Y */ |
| int Y = *decoded1, X = *decoded0; |
| *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA); |
| decoded0++; |
| *decoded1 = predictor_update_3930(p, X, 1, XDELAYA); |
| decoded1++; |
| |
| /* Combined */ |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static void predictor_decode_mono_3930(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| |
| ape_apply_filters(ctx, ctx->decoded[0], NULL, count); |
| |
| while (count--) { |
| *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA); |
| decoded0++; |
| |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static av_always_inline int predictor_update_filter(APEPredictor *p, |
| const int decoded, const int filter, |
| const int delayA, const int delayB, |
| const int adaptA, const int adaptB) |
| { |
| int32_t predictionA, predictionB, sign; |
| |
| p->buf[delayA] = p->lastA[filter]; |
| p->buf[adaptA] = APESIGN(p->buf[delayA]); |
| p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1]; |
| p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); |
| |
| predictionA = p->buf[delayA ] * p->coeffsA[filter][0] + |
| p->buf[delayA - 1] * p->coeffsA[filter][1] + |
| p->buf[delayA - 2] * p->coeffsA[filter][2] + |
| p->buf[delayA - 3] * p->coeffsA[filter][3]; |
| |
| /* Apply a scaled first-order filter compression */ |
| p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5); |
| p->buf[adaptB] = APESIGN(p->buf[delayB]); |
| p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1]; |
| p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); |
| p->filterB[filter] = p->filterA[filter ^ 1]; |
| |
| predictionB = p->buf[delayB ] * p->coeffsB[filter][0] + |
| p->buf[delayB - 1] * p->coeffsB[filter][1] + |
| p->buf[delayB - 2] * p->coeffsB[filter][2] + |
| p->buf[delayB - 3] * p->coeffsB[filter][3] + |
| p->buf[delayB - 4] * p->coeffsB[filter][4]; |
| |
| p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10); |
| p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); |
| |
| sign = APESIGN(decoded); |
| p->coeffsA[filter][0] += p->buf[adaptA ] * sign; |
| p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign; |
| p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign; |
| p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign; |
| p->coeffsB[filter][0] += p->buf[adaptB ] * sign; |
| p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign; |
| p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign; |
| p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign; |
| p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign; |
| |
| return p->filterA[filter]; |
| } |
| |
| static void predictor_decode_stereo_3950(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| |
| ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count); |
| |
| while (count--) { |
| /* Predictor Y */ |
| *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, |
| YADAPTCOEFFSA, YADAPTCOEFFSB); |
| decoded0++; |
| *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, |
| XADAPTCOEFFSA, XADAPTCOEFFSB); |
| decoded1++; |
| |
| /* Combined */ |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| } |
| } |
| |
| static void predictor_decode_mono_3950(APEContext *ctx, int count) |
| { |
| APEPredictor *p = &ctx->predictor; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t predictionA, currentA, A, sign; |
| |
| ape_apply_filters(ctx, ctx->decoded[0], NULL, count); |
| |
| currentA = p->lastA[0]; |
| |
| while (count--) { |
| A = *decoded0; |
| |
| p->buf[YDELAYA] = currentA; |
| p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1]; |
| |
| predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + |
| p->buf[YDELAYA - 1] * p->coeffsA[0][1] + |
| p->buf[YDELAYA - 2] * p->coeffsA[0][2] + |
| p->buf[YDELAYA - 3] * p->coeffsA[0][3]; |
| |
| currentA = A + (predictionA >> 10); |
| |
| p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); |
| p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); |
| |
| sign = APESIGN(A); |
| p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign; |
| p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign; |
| p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign; |
| p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign; |
| |
| p->buf++; |
| |
| /* Have we filled the history buffer? */ |
| if (p->buf == p->historybuffer + HISTORY_SIZE) { |
| memmove(p->historybuffer, p->buf, |
| PREDICTOR_SIZE * sizeof(*p->historybuffer)); |
| p->buf = p->historybuffer; |
| } |
| |
| p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5); |
| *(decoded0++) = p->filterA[0]; |
| } |
| |
| p->lastA[0] = currentA; |
| } |
| |
| static void do_init_filter(APEFilter *f, int16_t *buf, int order) |
| { |
| f->coeffs = buf; |
| f->historybuffer = buf + order; |
| f->delay = f->historybuffer + order * 2; |
| f->adaptcoeffs = f->historybuffer + order; |
| |
| memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer)); |
| memset(f->coeffs, 0, order * sizeof(*f->coeffs)); |
| f->avg = 0; |
| } |
| |
| static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order) |
| { |
| do_init_filter(&f[0], buf, order); |
| do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); |
| } |
| |
| static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, |
| int32_t *data, int count, int order, int fracbits) |
| { |
| int res; |
| int absres; |
| |
| while (count--) { |
| /* round fixedpoint scalar product */ |
| res = ctx->adsp.scalarproduct_and_madd_int16(f->coeffs, |
| f->delay - order, |
| f->adaptcoeffs - order, |
| order, APESIGN(*data)); |
| res = (res + (1 << (fracbits - 1))) >> fracbits; |
| res += *data; |
| *data++ = res; |
| |
| /* Update the output history */ |
| *f->delay++ = av_clip_int16(res); |
| |
| if (version < 3980) { |
| /* Version ??? to < 3.98 files (untested) */ |
| f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; |
| f->adaptcoeffs[-4] >>= 1; |
| f->adaptcoeffs[-8] >>= 1; |
| } else { |
| /* Version 3.98 and later files */ |
| |
| /* Update the adaption coefficients */ |
| absres = FFABS(res); |
| if (absres) |
| *f->adaptcoeffs = ((res & INT32_MIN) ^ (-(1<<30))) >> |
| (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3)); |
| else |
| *f->adaptcoeffs = 0; |
| |
| f->avg += (absres - f->avg) / 16; |
| |
| f->adaptcoeffs[-1] >>= 1; |
| f->adaptcoeffs[-2] >>= 1; |
| f->adaptcoeffs[-8] >>= 1; |
| } |
| |
| f->adaptcoeffs++; |
| |
| /* Have we filled the history buffer? */ |
| if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { |
| memmove(f->historybuffer, f->delay - (order * 2), |
| (order * 2) * sizeof(*f->historybuffer)); |
| f->delay = f->historybuffer + order * 2; |
| f->adaptcoeffs = f->historybuffer + order; |
| } |
| } |
| } |
| |
| static void apply_filter(APEContext *ctx, APEFilter *f, |
| int32_t *data0, int32_t *data1, |
| int count, int order, int fracbits) |
| { |
| do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits); |
| if (data1) |
| do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits); |
| } |
| |
| static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, |
| int32_t *decoded1, int count) |
| { |
| int i; |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[ctx->fset][i]) |
| break; |
| apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, |
| ape_filter_orders[ctx->fset][i], |
| ape_filter_fracbits[ctx->fset][i]); |
| } |
| } |
| |
| static int init_frame_decoder(APEContext *ctx) |
| { |
| int i, ret; |
| if ((ret = init_entropy_decoder(ctx)) < 0) |
| return ret; |
| init_predictor_decoder(ctx); |
| |
| for (i = 0; i < APE_FILTER_LEVELS; i++) { |
| if (!ape_filter_orders[ctx->fset][i]) |
| break; |
| init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], |
| ape_filter_orders[ctx->fset][i]); |
| } |
| return 0; |
| } |
| |
| static void ape_unpack_mono(APEContext *ctx, int count) |
| { |
| if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
| /* We are pure silence, so we're done. */ |
| av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n"); |
| return; |
| } |
| |
| ctx->entropy_decode_mono(ctx, count); |
| |
| /* Now apply the predictor decoding */ |
| ctx->predictor_decode_mono(ctx, count); |
| |
| /* Pseudo-stereo - just copy left channel to right channel */ |
| if (ctx->channels == 2) { |
| memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1])); |
| } |
| } |
| |
| static void ape_unpack_stereo(APEContext *ctx, int count) |
| { |
| int32_t left, right; |
| int32_t *decoded0 = ctx->decoded[0]; |
| int32_t *decoded1 = ctx->decoded[1]; |
| |
| if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
| /* We are pure silence, so we're done. */ |
| av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n"); |
| return; |
| } |
| |
| ctx->entropy_decode_stereo(ctx, count); |
| |
| /* Now apply the predictor decoding */ |
| ctx->predictor_decode_stereo(ctx, count); |
| |
| /* Decorrelate and scale to output depth */ |
| while (count--) { |
| left = *decoded1 - (*decoded0 / 2); |
| right = left + *decoded0; |
| |
| *(decoded0++) = left; |
| *(decoded1++) = right; |
| } |
| } |
| |
| static int ape_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| AVFrame *frame = data; |
| const uint8_t *buf = avpkt->data; |
| APEContext *s = avctx->priv_data; |
| uint8_t *sample8; |
| int16_t *sample16; |
| int32_t *sample24; |
| int i, ch, ret; |
| int blockstodecode; |
| |
| /* this should never be negative, but bad things will happen if it is, so |
| check it just to make sure. */ |
| av_assert0(s->samples >= 0); |
| |
| if(!s->samples){ |
| uint32_t nblocks, offset; |
| int buf_size; |
| |
| if (!avpkt->size) { |
| *got_frame_ptr = 0; |
| return 0; |
| } |
| if (avpkt->size < 8) { |
| av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| buf_size = avpkt->size & ~3; |
| if (buf_size != avpkt->size) { |
| av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. " |
| "extra bytes at the end will be skipped.\n"); |
| } |
| if (s->fileversion < 3950) // previous versions overread two bytes |
| buf_size += 2; |
| av_fast_padded_malloc(&s->data, &s->data_size, buf_size); |
| if (!s->data) |
| return AVERROR(ENOMEM); |
| s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf, |
| buf_size >> 2); |
| memset(s->data + (buf_size & ~3), 0, buf_size & 3); |
| s->ptr = s->data; |
| s->data_end = s->data + buf_size; |
| |
| nblocks = bytestream_get_be32(&s->ptr); |
| offset = bytestream_get_be32(&s->ptr); |
| if (s->fileversion >= 3900) { |
| if (offset > 3) { |
| av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n"); |
| s->data = NULL; |
| return AVERROR_INVALIDDATA; |
| } |
| if (s->data_end - s->ptr < offset) { |
| av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->ptr += offset; |
| } else { |
| if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0) |
| return ret; |
| if (s->fileversion > 3800) |
| skip_bits_long(&s->gb, offset * 8); |
| else |
| skip_bits_long(&s->gb, offset); |
| } |
| |
| if (!nblocks || nblocks > INT_MAX) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n", |
| nblocks); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* Initialize the frame decoder */ |
| if (init_frame_decoder(s) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->samples = nblocks; |
| } |
| |
| if (!s->data) { |
| *got_frame_ptr = 0; |
| return avpkt->size; |
| } |
| |
| blockstodecode = FFMIN(s->blocks_per_loop, s->samples); |
| // for old files coefficients were not interleaved, |
| // so we need to decode all of them at once |
| if (s->fileversion < 3930) |
| blockstodecode = s->samples; |
| |
| /* reallocate decoded sample buffer if needed */ |
| av_fast_malloc(&s->decoded_buffer, &s->decoded_size, |
| 2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer)); |
| if (!s->decoded_buffer) |
| return AVERROR(ENOMEM); |
| memset(s->decoded_buffer, 0, s->decoded_size); |
| s->decoded[0] = s->decoded_buffer; |
| s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8); |
| |
| /* get output buffer */ |
| frame->nb_samples = blockstodecode; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| s->error=0; |
| |
| if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) |
| ape_unpack_mono(s, blockstodecode); |
| else |
| ape_unpack_stereo(s, blockstodecode); |
| emms_c(); |
| |
| if (s->error) { |
| s->samples=0; |
| av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| switch (s->bps) { |
| case 8: |
| for (ch = 0; ch < s->channels; ch++) { |
| sample8 = (uint8_t *)frame->data[ch]; |
| for (i = 0; i < blockstodecode; i++) |
| *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff; |
| } |
| break; |
| case 16: |
| for (ch = 0; ch < s->channels; ch++) { |
| sample16 = (int16_t *)frame->data[ch]; |
| for (i = 0; i < blockstodecode; i++) |
| *sample16++ = s->decoded[ch][i]; |
| } |
| break; |
| case 24: |
| for (ch = 0; ch < s->channels; ch++) { |
| sample24 = (int32_t *)frame->data[ch]; |
| for (i = 0; i < blockstodecode; i++) |
| *sample24++ = s->decoded[ch][i] << 8; |
| } |
| break; |
| } |
| |
| s->samples -= blockstodecode; |
| |
| *got_frame_ptr = 1; |
| |
| return !s->samples ? avpkt->size : 0; |
| } |
| |
| static void ape_flush(AVCodecContext *avctx) |
| { |
| APEContext *s = avctx->priv_data; |
| s->samples= 0; |
| } |
| |
| #define OFFSET(x) offsetof(APEContext, x) |
| #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM) |
| static const AVOption options[] = { |
| { "max_samples", "maximum number of samples decoded per call", OFFSET(blocks_per_loop), AV_OPT_TYPE_INT, { .i64 = 4608 }, 1, INT_MAX, PAR, "max_samples" }, |
| { "all", "no maximum. decode all samples for each packet at once", 0, AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" }, |
| { NULL}, |
| }; |
| |
| static const AVClass ape_decoder_class = { |
| .class_name = "APE decoder", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_ape_decoder = { |
| .name = "ape", |
| .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_APE, |
| .priv_data_size = sizeof(APEContext), |
| .init = ape_decode_init, |
| .close = ape_decode_close, |
| .decode = ape_decode_frame, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DELAY | |
| AV_CODEC_CAP_DR1, |
| .flush = ape_flush, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P, |
| AV_SAMPLE_FMT_S16P, |
| AV_SAMPLE_FMT_S32P, |
| AV_SAMPLE_FMT_NONE }, |
| .priv_class = &ape_decoder_class, |
| }; |