| /* |
| * ATRAC3 compatible decoder |
| * Copyright (c) 2006-2008 Maxim Poliakovski |
| * Copyright (c) 2006-2008 Benjamin Larsson |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * ATRAC3 compatible decoder. |
| * This decoder handles Sony's ATRAC3 data. |
| * |
| * Container formats used to store ATRAC3 data: |
| * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3). |
| * |
| * To use this decoder, a calling application must supply the extradata |
| * bytes provided in the containers above. |
| */ |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdio.h> |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/float_dsp.h" |
| #include "libavutil/libm.h" |
| #include "avcodec.h" |
| #include "bytestream.h" |
| #include "fft.h" |
| #include "get_bits.h" |
| #include "internal.h" |
| |
| #include "atrac.h" |
| #include "atrac3data.h" |
| |
| #define JOINT_STEREO 0x12 |
| #define STEREO 0x2 |
| |
| #define SAMPLES_PER_FRAME 1024 |
| #define MDCT_SIZE 512 |
| |
| typedef struct GainBlock { |
| AtracGainInfo g_block[4]; |
| } GainBlock; |
| |
| typedef struct TonalComponent { |
| int pos; |
| int num_coefs; |
| float coef[8]; |
| } TonalComponent; |
| |
| typedef struct ChannelUnit { |
| int bands_coded; |
| int num_components; |
| float prev_frame[SAMPLES_PER_FRAME]; |
| int gc_blk_switch; |
| TonalComponent components[64]; |
| GainBlock gain_block[2]; |
| |
| DECLARE_ALIGNED(32, float, spectrum)[SAMPLES_PER_FRAME]; |
| DECLARE_ALIGNED(32, float, imdct_buf)[SAMPLES_PER_FRAME]; |
| |
| float delay_buf1[46]; ///<qmf delay buffers |
| float delay_buf2[46]; |
| float delay_buf3[46]; |
| } ChannelUnit; |
| |
| typedef struct ATRAC3Context { |
| GetBitContext gb; |
| //@{ |
| /** stream data */ |
| int coding_mode; |
| |
| ChannelUnit *units; |
| //@} |
| //@{ |
| /** joint-stereo related variables */ |
| int matrix_coeff_index_prev[4]; |
| int matrix_coeff_index_now[4]; |
| int matrix_coeff_index_next[4]; |
| int weighting_delay[6]; |
| //@} |
| //@{ |
| /** data buffers */ |
| uint8_t *decoded_bytes_buffer; |
| float temp_buf[1070]; |
| //@} |
| //@{ |
| /** extradata */ |
| int scrambled_stream; |
| //@} |
| |
| AtracGCContext gainc_ctx; |
| FFTContext mdct_ctx; |
| AVFloatDSPContext *fdsp; |
| } ATRAC3Context; |
| |
| static DECLARE_ALIGNED(32, float, mdct_window)[MDCT_SIZE]; |
| static VLC_TYPE atrac3_vlc_table[4096][2]; |
| static VLC spectral_coeff_tab[7]; |
| |
| /** |
| * Regular 512 points IMDCT without overlapping, with the exception of the |
| * swapping of odd bands caused by the reverse spectra of the QMF. |
| * |
| * @param odd_band 1 if the band is an odd band |
| */ |
| static void imlt(ATRAC3Context *q, float *input, float *output, int odd_band) |
| { |
| int i; |
| |
| if (odd_band) { |
| /** |
| * Reverse the odd bands before IMDCT, this is an effect of the QMF |
| * transform or it gives better compression to do it this way. |
| * FIXME: It should be possible to handle this in imdct_calc |
| * for that to happen a modification of the prerotation step of |
| * all SIMD code and C code is needed. |
| * Or fix the functions before so they generate a pre reversed spectrum. |
| */ |
| for (i = 0; i < 128; i++) |
| FFSWAP(float, input[i], input[255 - i]); |
| } |
| |
| q->mdct_ctx.imdct_calc(&q->mdct_ctx, output, input); |
| |
| /* Perform windowing on the output. */ |
| q->fdsp->vector_fmul(output, output, mdct_window, MDCT_SIZE); |
| } |
| |
| /* |
| * indata descrambling, only used for data coming from the rm container |
| */ |
| static int decode_bytes(const uint8_t *input, uint8_t *out, int bytes) |
| { |
| int i, off; |
| uint32_t c; |
| const uint32_t *buf; |
| uint32_t *output = (uint32_t *)out; |
| |
| off = (intptr_t)input & 3; |
| buf = (const uint32_t *)(input - off); |
| if (off) |
| c = av_be2ne32((0x537F6103U >> (off * 8)) | (0x537F6103U << (32 - (off * 8)))); |
| else |
| c = av_be2ne32(0x537F6103U); |
| bytes += 3 + off; |
| for (i = 0; i < bytes / 4; i++) |
| output[i] = c ^ buf[i]; |
| |
| if (off) |
| avpriv_request_sample(NULL, "Offset of %d", off); |
| |
| return off; |
| } |
| |
| static av_cold void init_imdct_window(void) |
| { |
| int i, j; |
| |
| /* generate the mdct window, for details see |
| * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */ |
| for (i = 0, j = 255; i < 128; i++, j--) { |
| float wi = sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0; |
| float wj = sin(((j + 0.5) / 256.0 - 0.5) * M_PI) + 1.0; |
| float w = 0.5 * (wi * wi + wj * wj); |
| mdct_window[i] = mdct_window[511 - i] = wi / w; |
| mdct_window[j] = mdct_window[511 - j] = wj / w; |
| } |
| } |
| |
| static av_cold int atrac3_decode_close(AVCodecContext *avctx) |
| { |
| ATRAC3Context *q = avctx->priv_data; |
| |
| av_freep(&q->units); |
| av_freep(&q->decoded_bytes_buffer); |
| av_freep(&q->fdsp); |
| |
| ff_mdct_end(&q->mdct_ctx); |
| |
| return 0; |
| } |
| |
| /** |
| * Mantissa decoding |
| * |
| * @param selector which table the output values are coded with |
| * @param coding_flag constant length coding or variable length coding |
| * @param mantissas mantissa output table |
| * @param num_codes number of values to get |
| */ |
| static void read_quant_spectral_coeffs(GetBitContext *gb, int selector, |
| int coding_flag, int *mantissas, |
| int num_codes) |
| { |
| int i, code, huff_symb; |
| |
| if (selector == 1) |
| num_codes /= 2; |
| |
| if (coding_flag != 0) { |
| /* constant length coding (CLC) */ |
| int num_bits = clc_length_tab[selector]; |
| |
| if (selector > 1) { |
| for (i = 0; i < num_codes; i++) { |
| if (num_bits) |
| code = get_sbits(gb, num_bits); |
| else |
| code = 0; |
| mantissas[i] = code; |
| } |
| } else { |
| for (i = 0; i < num_codes; i++) { |
| if (num_bits) |
| code = get_bits(gb, num_bits); // num_bits is always 4 in this case |
| else |
| code = 0; |
| mantissas[i * 2 ] = mantissa_clc_tab[code >> 2]; |
| mantissas[i * 2 + 1] = mantissa_clc_tab[code & 3]; |
| } |
| } |
| } else { |
| /* variable length coding (VLC) */ |
| if (selector != 1) { |
| for (i = 0; i < num_codes; i++) { |
| huff_symb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, |
| spectral_coeff_tab[selector-1].bits, 3); |
| huff_symb += 1; |
| code = huff_symb >> 1; |
| if (huff_symb & 1) |
| code = -code; |
| mantissas[i] = code; |
| } |
| } else { |
| for (i = 0; i < num_codes; i++) { |
| huff_symb = get_vlc2(gb, spectral_coeff_tab[selector - 1].table, |
| spectral_coeff_tab[selector - 1].bits, 3); |
| mantissas[i * 2 ] = mantissa_vlc_tab[huff_symb * 2 ]; |
| mantissas[i * 2 + 1] = mantissa_vlc_tab[huff_symb * 2 + 1]; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Restore the quantized band spectrum coefficients |
| * |
| * @return subband count, fix for broken specification/files |
| */ |
| static int decode_spectrum(GetBitContext *gb, float *output) |
| { |
| int num_subbands, coding_mode, i, j, first, last, subband_size; |
| int subband_vlc_index[32], sf_index[32]; |
| int mantissas[128]; |
| float scale_factor; |
| |
| num_subbands = get_bits(gb, 5); // number of coded subbands |
| coding_mode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC |
| |
| /* get the VLC selector table for the subbands, 0 means not coded */ |
| for (i = 0; i <= num_subbands; i++) |
| subband_vlc_index[i] = get_bits(gb, 3); |
| |
| /* read the scale factor indexes from the stream */ |
| for (i = 0; i <= num_subbands; i++) { |
| if (subband_vlc_index[i] != 0) |
| sf_index[i] = get_bits(gb, 6); |
| } |
| |
| for (i = 0; i <= num_subbands; i++) { |
| first = subband_tab[i ]; |
| last = subband_tab[i + 1]; |
| |
| subband_size = last - first; |
| |
| if (subband_vlc_index[i] != 0) { |
| /* decode spectral coefficients for this subband */ |
| /* TODO: This can be done faster is several blocks share the |
| * same VLC selector (subband_vlc_index) */ |
| read_quant_spectral_coeffs(gb, subband_vlc_index[i], coding_mode, |
| mantissas, subband_size); |
| |
| /* decode the scale factor for this subband */ |
| scale_factor = ff_atrac_sf_table[sf_index[i]] * |
| inv_max_quant[subband_vlc_index[i]]; |
| |
| /* inverse quantize the coefficients */ |
| for (j = 0; first < last; first++, j++) |
| output[first] = mantissas[j] * scale_factor; |
| } else { |
| /* this subband was not coded, so zero the entire subband */ |
| memset(output + first, 0, subband_size * sizeof(*output)); |
| } |
| } |
| |
| /* clear the subbands that were not coded */ |
| first = subband_tab[i]; |
| memset(output + first, 0, (SAMPLES_PER_FRAME - first) * sizeof(*output)); |
| return num_subbands; |
| } |
| |
| /** |
| * Restore the quantized tonal components |
| * |
| * @param components tonal components |
| * @param num_bands number of coded bands |
| */ |
| static int decode_tonal_components(GetBitContext *gb, |
| TonalComponent *components, int num_bands) |
| { |
| int i, b, c, m; |
| int nb_components, coding_mode_selector, coding_mode; |
| int band_flags[4], mantissa[8]; |
| int component_count = 0; |
| |
| nb_components = get_bits(gb, 5); |
| |
| /* no tonal components */ |
| if (nb_components == 0) |
| return 0; |
| |
| coding_mode_selector = get_bits(gb, 2); |
| if (coding_mode_selector == 2) |
| return AVERROR_INVALIDDATA; |
| |
| coding_mode = coding_mode_selector & 1; |
| |
| for (i = 0; i < nb_components; i++) { |
| int coded_values_per_component, quant_step_index; |
| |
| for (b = 0; b <= num_bands; b++) |
| band_flags[b] = get_bits1(gb); |
| |
| coded_values_per_component = get_bits(gb, 3); |
| |
| quant_step_index = get_bits(gb, 3); |
| if (quant_step_index <= 1) |
| return AVERROR_INVALIDDATA; |
| |
| if (coding_mode_selector == 3) |
| coding_mode = get_bits1(gb); |
| |
| for (b = 0; b < (num_bands + 1) * 4; b++) { |
| int coded_components; |
| |
| if (band_flags[b >> 2] == 0) |
| continue; |
| |
| coded_components = get_bits(gb, 3); |
| |
| for (c = 0; c < coded_components; c++) { |
| TonalComponent *cmp = &components[component_count]; |
| int sf_index, coded_values, max_coded_values; |
| float scale_factor; |
| |
| sf_index = get_bits(gb, 6); |
| if (component_count >= 64) |
| return AVERROR_INVALIDDATA; |
| |
| cmp->pos = b * 64 + get_bits(gb, 6); |
| |
| max_coded_values = SAMPLES_PER_FRAME - cmp->pos; |
| coded_values = coded_values_per_component + 1; |
| coded_values = FFMIN(max_coded_values, coded_values); |
| |
| scale_factor = ff_atrac_sf_table[sf_index] * |
| inv_max_quant[quant_step_index]; |
| |
| read_quant_spectral_coeffs(gb, quant_step_index, coding_mode, |
| mantissa, coded_values); |
| |
| cmp->num_coefs = coded_values; |
| |
| /* inverse quant */ |
| for (m = 0; m < coded_values; m++) |
| cmp->coef[m] = mantissa[m] * scale_factor; |
| |
| component_count++; |
| } |
| } |
| } |
| |
| return component_count; |
| } |
| |
| /** |
| * Decode gain parameters for the coded bands |
| * |
| * @param block the gainblock for the current band |
| * @param num_bands amount of coded bands |
| */ |
| static int decode_gain_control(GetBitContext *gb, GainBlock *block, |
| int num_bands) |
| { |
| int b, j; |
| int *level, *loc; |
| |
| AtracGainInfo *gain = block->g_block; |
| |
| for (b = 0; b <= num_bands; b++) { |
| gain[b].num_points = get_bits(gb, 3); |
| level = gain[b].lev_code; |
| loc = gain[b].loc_code; |
| |
| for (j = 0; j < gain[b].num_points; j++) { |
| level[j] = get_bits(gb, 4); |
| loc[j] = get_bits(gb, 5); |
| if (j && loc[j] <= loc[j - 1]) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| /* Clear the unused blocks. */ |
| for (; b < 4 ; b++) |
| gain[b].num_points = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * Combine the tonal band spectrum and regular band spectrum |
| * |
| * @param spectrum output spectrum buffer |
| * @param num_components number of tonal components |
| * @param components tonal components for this band |
| * @return position of the last tonal coefficient |
| */ |
| static int add_tonal_components(float *spectrum, int num_components, |
| TonalComponent *components) |
| { |
| int i, j, last_pos = -1; |
| float *input, *output; |
| |
| for (i = 0; i < num_components; i++) { |
| last_pos = FFMAX(components[i].pos + components[i].num_coefs, last_pos); |
| input = components[i].coef; |
| output = &spectrum[components[i].pos]; |
| |
| for (j = 0; j < components[i].num_coefs; j++) |
| output[j] += input[j]; |
| } |
| |
| return last_pos; |
| } |
| |
| #define INTERPOLATE(old, new, nsample) \ |
| ((old) + (nsample) * 0.125 * ((new) - (old))) |
| |
| static void reverse_matrixing(float *su1, float *su2, int *prev_code, |
| int *curr_code) |
| { |
| int i, nsample, band; |
| float mc1_l, mc1_r, mc2_l, mc2_r; |
| |
| for (i = 0, band = 0; band < 4 * 256; band += 256, i++) { |
| int s1 = prev_code[i]; |
| int s2 = curr_code[i]; |
| nsample = band; |
| |
| if (s1 != s2) { |
| /* Selector value changed, interpolation needed. */ |
| mc1_l = matrix_coeffs[s1 * 2 ]; |
| mc1_r = matrix_coeffs[s1 * 2 + 1]; |
| mc2_l = matrix_coeffs[s2 * 2 ]; |
| mc2_r = matrix_coeffs[s2 * 2 + 1]; |
| |
| /* Interpolation is done over the first eight samples. */ |
| for (; nsample < band + 8; nsample++) { |
| float c1 = su1[nsample]; |
| float c2 = su2[nsample]; |
| c2 = c1 * INTERPOLATE(mc1_l, mc2_l, nsample - band) + |
| c2 * INTERPOLATE(mc1_r, mc2_r, nsample - band); |
| su1[nsample] = c2; |
| su2[nsample] = c1 * 2.0 - c2; |
| } |
| } |
| |
| /* Apply the matrix without interpolation. */ |
| switch (s2) { |
| case 0: /* M/S decoding */ |
| for (; nsample < band + 256; nsample++) { |
| float c1 = su1[nsample]; |
| float c2 = su2[nsample]; |
| su1[nsample] = c2 * 2.0; |
| su2[nsample] = (c1 - c2) * 2.0; |
| } |
| break; |
| case 1: |
| for (; nsample < band + 256; nsample++) { |
| float c1 = su1[nsample]; |
| float c2 = su2[nsample]; |
| su1[nsample] = (c1 + c2) * 2.0; |
| su2[nsample] = c2 * -2.0; |
| } |
| break; |
| case 2: |
| case 3: |
| for (; nsample < band + 256; nsample++) { |
| float c1 = su1[nsample]; |
| float c2 = su2[nsample]; |
| su1[nsample] = c1 + c2; |
| su2[nsample] = c1 - c2; |
| } |
| break; |
| default: |
| av_assert1(0); |
| } |
| } |
| } |
| |
| static void get_channel_weights(int index, int flag, float ch[2]) |
| { |
| if (index == 7) { |
| ch[0] = 1.0; |
| ch[1] = 1.0; |
| } else { |
| ch[0] = (index & 7) / 7.0; |
| ch[1] = sqrt(2 - ch[0] * ch[0]); |
| if (flag) |
| FFSWAP(float, ch[0], ch[1]); |
| } |
| } |
| |
| static void channel_weighting(float *su1, float *su2, int *p3) |
| { |
| int band, nsample; |
| /* w[x][y] y=0 is left y=1 is right */ |
| float w[2][2]; |
| |
| if (p3[1] != 7 || p3[3] != 7) { |
| get_channel_weights(p3[1], p3[0], w[0]); |
| get_channel_weights(p3[3], p3[2], w[1]); |
| |
| for (band = 256; band < 4 * 256; band += 256) { |
| for (nsample = band; nsample < band + 8; nsample++) { |
| su1[nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample - band); |
| su2[nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample - band); |
| } |
| for(; nsample < band + 256; nsample++) { |
| su1[nsample] *= w[1][0]; |
| su2[nsample] *= w[1][1]; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Decode a Sound Unit |
| * |
| * @param snd the channel unit to be used |
| * @param output the decoded samples before IQMF in float representation |
| * @param channel_num channel number |
| * @param coding_mode the coding mode (JOINT_STEREO or regular stereo/mono) |
| */ |
| static int decode_channel_sound_unit(ATRAC3Context *q, GetBitContext *gb, |
| ChannelUnit *snd, float *output, |
| int channel_num, int coding_mode) |
| { |
| int band, ret, num_subbands, last_tonal, num_bands; |
| GainBlock *gain1 = &snd->gain_block[ snd->gc_blk_switch]; |
| GainBlock *gain2 = &snd->gain_block[1 - snd->gc_blk_switch]; |
| |
| if (coding_mode == JOINT_STEREO && channel_num == 1) { |
| if (get_bits(gb, 2) != 3) { |
| av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } else { |
| if (get_bits(gb, 6) != 0x28) { |
| av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| /* number of coded QMF bands */ |
| snd->bands_coded = get_bits(gb, 2); |
| |
| ret = decode_gain_control(gb, gain2, snd->bands_coded); |
| if (ret) |
| return ret; |
| |
| snd->num_components = decode_tonal_components(gb, snd->components, |
| snd->bands_coded); |
| if (snd->num_components < 0) |
| return snd->num_components; |
| |
| num_subbands = decode_spectrum(gb, snd->spectrum); |
| |
| /* Merge the decoded spectrum and tonal components. */ |
| last_tonal = add_tonal_components(snd->spectrum, snd->num_components, |
| snd->components); |
| |
| |
| /* calculate number of used MLT/QMF bands according to the amount of coded |
| spectral lines */ |
| num_bands = (subband_tab[num_subbands] - 1) >> 8; |
| if (last_tonal >= 0) |
| num_bands = FFMAX((last_tonal + 256) >> 8, num_bands); |
| |
| |
| /* Reconstruct time domain samples. */ |
| for (band = 0; band < 4; band++) { |
| /* Perform the IMDCT step without overlapping. */ |
| if (band <= num_bands) |
| imlt(q, &snd->spectrum[band * 256], snd->imdct_buf, band & 1); |
| else |
| memset(snd->imdct_buf, 0, 512 * sizeof(*snd->imdct_buf)); |
| |
| /* gain compensation and overlapping */ |
| ff_atrac_gain_compensation(&q->gainc_ctx, snd->imdct_buf, |
| &snd->prev_frame[band * 256], |
| &gain1->g_block[band], &gain2->g_block[band], |
| 256, &output[band * 256]); |
| } |
| |
| /* Swap the gain control buffers for the next frame. */ |
| snd->gc_blk_switch ^= 1; |
| |
| return 0; |
| } |
| |
| static int decode_frame(AVCodecContext *avctx, const uint8_t *databuf, |
| float **out_samples) |
| { |
| ATRAC3Context *q = avctx->priv_data; |
| int ret, i; |
| uint8_t *ptr1; |
| |
| if (q->coding_mode == JOINT_STEREO) { |
| /* channel coupling mode */ |
| /* decode Sound Unit 1 */ |
| init_get_bits(&q->gb, databuf, avctx->block_align * 8); |
| |
| ret = decode_channel_sound_unit(q, &q->gb, q->units, out_samples[0], 0, |
| JOINT_STEREO); |
| if (ret != 0) |
| return ret; |
| |
| /* Framedata of the su2 in the joint-stereo mode is encoded in |
| * reverse byte order so we need to swap it first. */ |
| if (databuf == q->decoded_bytes_buffer) { |
| uint8_t *ptr2 = q->decoded_bytes_buffer + avctx->block_align - 1; |
| ptr1 = q->decoded_bytes_buffer; |
| for (i = 0; i < avctx->block_align / 2; i++, ptr1++, ptr2--) |
| FFSWAP(uint8_t, *ptr1, *ptr2); |
| } else { |
| const uint8_t *ptr2 = databuf + avctx->block_align - 1; |
| for (i = 0; i < avctx->block_align; i++) |
| q->decoded_bytes_buffer[i] = *ptr2--; |
| } |
| |
| /* Skip the sync codes (0xF8). */ |
| ptr1 = q->decoded_bytes_buffer; |
| for (i = 4; *ptr1 == 0xF8; i++, ptr1++) { |
| if (i >= avctx->block_align) |
| return AVERROR_INVALIDDATA; |
| } |
| |
| |
| /* set the bitstream reader at the start of the second Sound Unit*/ |
| init_get_bits8(&q->gb, ptr1, q->decoded_bytes_buffer + avctx->block_align - ptr1); |
| |
| /* Fill the Weighting coeffs delay buffer */ |
| memmove(q->weighting_delay, &q->weighting_delay[2], |
| 4 * sizeof(*q->weighting_delay)); |
| q->weighting_delay[4] = get_bits1(&q->gb); |
| q->weighting_delay[5] = get_bits(&q->gb, 3); |
| |
| for (i = 0; i < 4; i++) { |
| q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i]; |
| q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i]; |
| q->matrix_coeff_index_next[i] = get_bits(&q->gb, 2); |
| } |
| |
| /* Decode Sound Unit 2. */ |
| ret = decode_channel_sound_unit(q, &q->gb, &q->units[1], |
| out_samples[1], 1, JOINT_STEREO); |
| if (ret != 0) |
| return ret; |
| |
| /* Reconstruct the channel coefficients. */ |
| reverse_matrixing(out_samples[0], out_samples[1], |
| q->matrix_coeff_index_prev, |
| q->matrix_coeff_index_now); |
| |
| channel_weighting(out_samples[0], out_samples[1], q->weighting_delay); |
| } else { |
| /* normal stereo mode or mono */ |
| /* Decode the channel sound units. */ |
| for (i = 0; i < avctx->channels; i++) { |
| /* Set the bitstream reader at the start of a channel sound unit. */ |
| init_get_bits(&q->gb, |
| databuf + i * avctx->block_align / avctx->channels, |
| avctx->block_align * 8 / avctx->channels); |
| |
| ret = decode_channel_sound_unit(q, &q->gb, &q->units[i], |
| out_samples[i], i, q->coding_mode); |
| if (ret != 0) |
| return ret; |
| } |
| } |
| |
| /* Apply the iQMF synthesis filter. */ |
| for (i = 0; i < avctx->channels; i++) { |
| float *p1 = out_samples[i]; |
| float *p2 = p1 + 256; |
| float *p3 = p2 + 256; |
| float *p4 = p3 + 256; |
| ff_atrac_iqmf(p1, p2, 256, p1, q->units[i].delay_buf1, q->temp_buf); |
| ff_atrac_iqmf(p4, p3, 256, p3, q->units[i].delay_buf2, q->temp_buf); |
| ff_atrac_iqmf(p1, p3, 512, p1, q->units[i].delay_buf3, q->temp_buf); |
| } |
| |
| return 0; |
| } |
| |
| static int atrac3_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| AVFrame *frame = data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| ATRAC3Context *q = avctx->priv_data; |
| int ret; |
| const uint8_t *databuf; |
| |
| if (buf_size < avctx->block_align) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Frame too small (%d bytes). Truncated file?\n", buf_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* get output buffer */ |
| frame->nb_samples = SAMPLES_PER_FRAME; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| |
| /* Check if we need to descramble and what buffer to pass on. */ |
| if (q->scrambled_stream) { |
| decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align); |
| databuf = q->decoded_bytes_buffer; |
| } else { |
| databuf = buf; |
| } |
| |
| ret = decode_frame(avctx, databuf, (float **)frame->extended_data); |
| if (ret) { |
| av_log(NULL, AV_LOG_ERROR, "Frame decoding error!\n"); |
| return ret; |
| } |
| |
| *got_frame_ptr = 1; |
| |
| return avctx->block_align; |
| } |
| |
| static av_cold void atrac3_init_static_data(void) |
| { |
| int i; |
| |
| init_imdct_window(); |
| ff_atrac_generate_tables(); |
| |
| /* Initialize the VLC tables. */ |
| for (i = 0; i < 7; i++) { |
| spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]]; |
| spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - |
| atrac3_vlc_offs[i ]; |
| init_vlc(&spectral_coeff_tab[i], 9, huff_tab_sizes[i], |
| huff_bits[i], 1, 1, |
| huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC); |
| } |
| } |
| |
| static av_cold int atrac3_decode_init(AVCodecContext *avctx) |
| { |
| static int static_init_done; |
| int i, ret; |
| int version, delay, samples_per_frame, frame_factor; |
| const uint8_t *edata_ptr = avctx->extradata; |
| ATRAC3Context *q = avctx->priv_data; |
| |
| if (avctx->channels <= 0 || avctx->channels > 2) { |
| av_log(avctx, AV_LOG_ERROR, "Channel configuration error!\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (!static_init_done) |
| atrac3_init_static_data(); |
| static_init_done = 1; |
| |
| /* Take care of the codec-specific extradata. */ |
| if (avctx->extradata_size == 14) { |
| /* Parse the extradata, WAV format */ |
| av_log(avctx, AV_LOG_DEBUG, "[0-1] %d\n", |
| bytestream_get_le16(&edata_ptr)); // Unknown value always 1 |
| edata_ptr += 4; // samples per channel |
| q->coding_mode = bytestream_get_le16(&edata_ptr); |
| av_log(avctx, AV_LOG_DEBUG,"[8-9] %d\n", |
| bytestream_get_le16(&edata_ptr)); //Dupe of coding mode |
| frame_factor = bytestream_get_le16(&edata_ptr); // Unknown always 1 |
| av_log(avctx, AV_LOG_DEBUG,"[12-13] %d\n", |
| bytestream_get_le16(&edata_ptr)); // Unknown always 0 |
| |
| /* setup */ |
| samples_per_frame = SAMPLES_PER_FRAME * avctx->channels; |
| version = 4; |
| delay = 0x88E; |
| q->coding_mode = q->coding_mode ? JOINT_STEREO : STEREO; |
| q->scrambled_stream = 0; |
| |
| if (avctx->block_align != 96 * avctx->channels * frame_factor && |
| avctx->block_align != 152 * avctx->channels * frame_factor && |
| avctx->block_align != 192 * avctx->channels * frame_factor) { |
| av_log(avctx, AV_LOG_ERROR, "Unknown frame/channel/frame_factor " |
| "configuration %d/%d/%d\n", avctx->block_align, |
| avctx->channels, frame_factor); |
| return AVERROR_INVALIDDATA; |
| } |
| } else if (avctx->extradata_size == 12 || avctx->extradata_size == 10) { |
| /* Parse the extradata, RM format. */ |
| version = bytestream_get_be32(&edata_ptr); |
| samples_per_frame = bytestream_get_be16(&edata_ptr); |
| delay = bytestream_get_be16(&edata_ptr); |
| q->coding_mode = bytestream_get_be16(&edata_ptr); |
| q->scrambled_stream = 1; |
| |
| } else { |
| av_log(NULL, AV_LOG_ERROR, "Unknown extradata size %d.\n", |
| avctx->extradata_size); |
| return AVERROR(EINVAL); |
| } |
| |
| /* Check the extradata */ |
| |
| if (version != 4) { |
| av_log(avctx, AV_LOG_ERROR, "Version %d != 4.\n", version); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (samples_per_frame != SAMPLES_PER_FRAME && |
| samples_per_frame != SAMPLES_PER_FRAME * 2) { |
| av_log(avctx, AV_LOG_ERROR, "Unknown amount of samples per frame %d.\n", |
| samples_per_frame); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (delay != 0x88E) { |
| av_log(avctx, AV_LOG_ERROR, "Unknown amount of delay %x != 0x88E.\n", |
| delay); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (q->coding_mode == STEREO) |
| av_log(avctx, AV_LOG_DEBUG, "Normal stereo detected.\n"); |
| else if (q->coding_mode == JOINT_STEREO) { |
| if (avctx->channels != 2) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid coding mode\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| av_log(avctx, AV_LOG_DEBUG, "Joint stereo detected.\n"); |
| } else { |
| av_log(avctx, AV_LOG_ERROR, "Unknown channel coding mode %x!\n", |
| q->coding_mode); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (avctx->block_align >= UINT_MAX / 2) |
| return AVERROR(EINVAL); |
| |
| q->decoded_bytes_buffer = av_mallocz(FFALIGN(avctx->block_align, 4) + |
| AV_INPUT_BUFFER_PADDING_SIZE); |
| if (!q->decoded_bytes_buffer) |
| return AVERROR(ENOMEM); |
| |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| |
| /* initialize the MDCT transform */ |
| if ((ret = ff_mdct_init(&q->mdct_ctx, 9, 1, 1.0 / 32768)) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n"); |
| av_freep(&q->decoded_bytes_buffer); |
| return ret; |
| } |
| |
| /* init the joint-stereo decoding data */ |
| q->weighting_delay[0] = 0; |
| q->weighting_delay[1] = 7; |
| q->weighting_delay[2] = 0; |
| q->weighting_delay[3] = 7; |
| q->weighting_delay[4] = 0; |
| q->weighting_delay[5] = 7; |
| |
| for (i = 0; i < 4; i++) { |
| q->matrix_coeff_index_prev[i] = 3; |
| q->matrix_coeff_index_now[i] = 3; |
| q->matrix_coeff_index_next[i] = 3; |
| } |
| |
| ff_atrac_init_gain_compensation(&q->gainc_ctx, 4, 3); |
| q->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
| |
| q->units = av_mallocz_array(avctx->channels, sizeof(*q->units)); |
| if (!q->units || !q->fdsp) { |
| atrac3_decode_close(avctx); |
| return AVERROR(ENOMEM); |
| } |
| |
| return 0; |
| } |
| |
| AVCodec ff_atrac3_decoder = { |
| .name = "atrac3", |
| .long_name = NULL_IF_CONFIG_SMALL("ATRAC3 (Adaptive TRansform Acoustic Coding 3)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_ATRAC3, |
| .priv_data_size = sizeof(ATRAC3Context), |
| .init = atrac3_decode_init, |
| .close = atrac3_decode_close, |
| .decode = atrac3_decode_frame, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| }; |