| /* |
| * COOK compatible decoder |
| * Copyright (c) 2003 Sascha Sommer |
| * Copyright (c) 2005 Benjamin Larsson |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Cook compatible decoder. Bastardization of the G.722.1 standard. |
| * This decoder handles RealNetworks, RealAudio G2 data. |
| * Cook is identified by the codec name cook in RM files. |
| * |
| * To use this decoder, a calling application must supply the extradata |
| * bytes provided from the RM container; 8+ bytes for mono streams and |
| * 16+ for stereo streams (maybe more). |
| * |
| * Codec technicalities (all this assume a buffer length of 1024): |
| * Cook works with several different techniques to achieve its compression. |
| * In the timedomain the buffer is divided into 8 pieces and quantized. If |
| * two neighboring pieces have different quantization index a smooth |
| * quantization curve is used to get a smooth overlap between the different |
| * pieces. |
| * To get to the transformdomain Cook uses a modulated lapped transform. |
| * The transform domain has 50 subbands with 20 elements each. This |
| * means only a maximum of 50*20=1000 coefficients are used out of the 1024 |
| * available. |
| */ |
| |
| #include "libavutil/channel_layout.h" |
| #include "libavutil/lfg.h" |
| |
| #include "audiodsp.h" |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "bytestream.h" |
| #include "fft.h" |
| #include "internal.h" |
| #include "sinewin.h" |
| #include "unary.h" |
| |
| #include "cookdata.h" |
| |
| /* the different Cook versions */ |
| #define MONO 0x1000001 |
| #define STEREO 0x1000002 |
| #define JOINT_STEREO 0x1000003 |
| #define MC_COOK 0x2000000 // multichannel Cook, not supported |
| |
| #define SUBBAND_SIZE 20 |
| #define MAX_SUBPACKETS 5 |
| |
| typedef struct cook_gains { |
| int *now; |
| int *previous; |
| } cook_gains; |
| |
| typedef struct COOKSubpacket { |
| int ch_idx; |
| int size; |
| int num_channels; |
| int cookversion; |
| int subbands; |
| int js_subband_start; |
| int js_vlc_bits; |
| int samples_per_channel; |
| int log2_numvector_size; |
| unsigned int channel_mask; |
| VLC channel_coupling; |
| int joint_stereo; |
| int bits_per_subpacket; |
| int bits_per_subpdiv; |
| int total_subbands; |
| int numvector_size; // 1 << log2_numvector_size; |
| |
| float mono_previous_buffer1[1024]; |
| float mono_previous_buffer2[1024]; |
| |
| cook_gains gains1; |
| cook_gains gains2; |
| int gain_1[9]; |
| int gain_2[9]; |
| int gain_3[9]; |
| int gain_4[9]; |
| } COOKSubpacket; |
| |
| typedef struct cook { |
| /* |
| * The following 5 functions provide the lowlevel arithmetic on |
| * the internal audio buffers. |
| */ |
| void (*scalar_dequant)(struct cook *q, int index, int quant_index, |
| int *subband_coef_index, int *subband_coef_sign, |
| float *mlt_p); |
| |
| void (*decouple)(struct cook *q, |
| COOKSubpacket *p, |
| int subband, |
| float f1, float f2, |
| float *decode_buffer, |
| float *mlt_buffer1, float *mlt_buffer2); |
| |
| void (*imlt_window)(struct cook *q, float *buffer1, |
| cook_gains *gains_ptr, float *previous_buffer); |
| |
| void (*interpolate)(struct cook *q, float *buffer, |
| int gain_index, int gain_index_next); |
| |
| void (*saturate_output)(struct cook *q, float *out); |
| |
| AVCodecContext* avctx; |
| AudioDSPContext adsp; |
| GetBitContext gb; |
| /* stream data */ |
| int num_vectors; |
| int samples_per_channel; |
| /* states */ |
| AVLFG random_state; |
| int discarded_packets; |
| |
| /* transform data */ |
| FFTContext mdct_ctx; |
| float* mlt_window; |
| |
| /* VLC data */ |
| VLC envelope_quant_index[13]; |
| VLC sqvh[7]; // scalar quantization |
| |
| /* generatable tables and related variables */ |
| int gain_size_factor; |
| float gain_table[23]; |
| |
| /* data buffers */ |
| |
| uint8_t* decoded_bytes_buffer; |
| DECLARE_ALIGNED(32, float, mono_mdct_output)[2048]; |
| float decode_buffer_1[1024]; |
| float decode_buffer_2[1024]; |
| float decode_buffer_0[1060]; /* static allocation for joint decode */ |
| |
| const float *cplscales[5]; |
| int num_subpackets; |
| COOKSubpacket subpacket[MAX_SUBPACKETS]; |
| } COOKContext; |
| |
| static float pow2tab[127]; |
| static float rootpow2tab[127]; |
| |
| /*************** init functions ***************/ |
| |
| /* table generator */ |
| static av_cold void init_pow2table(void) |
| { |
| /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */ |
| int i; |
| static const float exp2_tab[2] = {1, M_SQRT2}; |
| float exp2_val = powf(2, -63); |
| float root_val = powf(2, -32); |
| for (i = -63; i < 64; i++) { |
| if (!(i & 1)) |
| root_val *= 2; |
| pow2tab[63 + i] = exp2_val; |
| rootpow2tab[63 + i] = root_val * exp2_tab[i & 1]; |
| exp2_val *= 2; |
| } |
| } |
| |
| /* table generator */ |
| static av_cold void init_gain_table(COOKContext *q) |
| { |
| int i; |
| q->gain_size_factor = q->samples_per_channel / 8; |
| for (i = 0; i < 23; i++) |
| q->gain_table[i] = pow(pow2tab[i + 52], |
| (1.0 / (double) q->gain_size_factor)); |
| } |
| |
| |
| static av_cold int init_cook_vlc_tables(COOKContext *q) |
| { |
| int i, result; |
| |
| result = 0; |
| for (i = 0; i < 13; i++) { |
| result |= init_vlc(&q->envelope_quant_index[i], 9, 24, |
| envelope_quant_index_huffbits[i], 1, 1, |
| envelope_quant_index_huffcodes[i], 2, 2, 0); |
| } |
| av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n"); |
| for (i = 0; i < 7; i++) { |
| result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], |
| cvh_huffbits[i], 1, 1, |
| cvh_huffcodes[i], 2, 2, 0); |
| } |
| |
| for (i = 0; i < q->num_subpackets; i++) { |
| if (q->subpacket[i].joint_stereo == 1) { |
| result |= init_vlc(&q->subpacket[i].channel_coupling, 6, |
| (1 << q->subpacket[i].js_vlc_bits) - 1, |
| ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1, |
| ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0); |
| av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i); |
| } |
| } |
| |
| av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n"); |
| return result; |
| } |
| |
| static av_cold int init_cook_mlt(COOKContext *q) |
| { |
| int j, ret; |
| int mlt_size = q->samples_per_channel; |
| |
| if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0) |
| return AVERROR(ENOMEM); |
| |
| /* Initialize the MLT window: simple sine window. */ |
| ff_sine_window_init(q->mlt_window, mlt_size); |
| for (j = 0; j < mlt_size; j++) |
| q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel); |
| |
| /* Initialize the MDCT. */ |
| if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) { |
| av_freep(&q->mlt_window); |
| return ret; |
| } |
| av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n", |
| av_log2(mlt_size) + 1); |
| |
| return 0; |
| } |
| |
| static av_cold void init_cplscales_table(COOKContext *q) |
| { |
| int i; |
| for (i = 0; i < 5; i++) |
| q->cplscales[i] = cplscales[i]; |
| } |
| |
| /*************** init functions end ***********/ |
| |
| #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4) |
| #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) |
| |
| /** |
| * Cook indata decoding, every 32 bits are XORed with 0x37c511f2. |
| * Why? No idea, some checksum/error detection method maybe. |
| * |
| * Out buffer size: extra bytes are needed to cope with |
| * padding/misalignment. |
| * Subpackets passed to the decoder can contain two, consecutive |
| * half-subpackets, of identical but arbitrary size. |
| * 1234 1234 1234 1234 extraA extraB |
| * Case 1: AAAA BBBB 0 0 |
| * Case 2: AAAA ABBB BB-- 3 3 |
| * Case 3: AAAA AABB BBBB 2 2 |
| * Case 4: AAAA AAAB BBBB BB-- 1 5 |
| * |
| * Nice way to waste CPU cycles. |
| * |
| * @param inbuffer pointer to byte array of indata |
| * @param out pointer to byte array of outdata |
| * @param bytes number of bytes |
| */ |
| static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes) |
| { |
| static const uint32_t tab[4] = { |
| AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u), |
| AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u), |
| }; |
| int i, off; |
| uint32_t c; |
| const uint32_t *buf; |
| uint32_t *obuf = (uint32_t *) out; |
| /* FIXME: 64 bit platforms would be able to do 64 bits at a time. |
| * I'm too lazy though, should be something like |
| * for (i = 0; i < bitamount / 64; i++) |
| * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]); |
| * Buffer alignment needs to be checked. */ |
| |
| off = (intptr_t) inbuffer & 3; |
| buf = (const uint32_t *) (inbuffer - off); |
| c = tab[off]; |
| bytes += 3 + off; |
| for (i = 0; i < bytes / 4; i++) |
| obuf[i] = c ^ buf[i]; |
| |
| return off; |
| } |
| |
| static av_cold int cook_decode_close(AVCodecContext *avctx) |
| { |
| int i; |
| COOKContext *q = avctx->priv_data; |
| av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n"); |
| |
| /* Free allocated memory buffers. */ |
| av_freep(&q->mlt_window); |
| av_freep(&q->decoded_bytes_buffer); |
| |
| /* Free the transform. */ |
| ff_mdct_end(&q->mdct_ctx); |
| |
| /* Free the VLC tables. */ |
| for (i = 0; i < 13; i++) |
| ff_free_vlc(&q->envelope_quant_index[i]); |
| for (i = 0; i < 7; i++) |
| ff_free_vlc(&q->sqvh[i]); |
| for (i = 0; i < q->num_subpackets; i++) |
| ff_free_vlc(&q->subpacket[i].channel_coupling); |
| |
| av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * Fill the gain array for the timedomain quantization. |
| * |
| * @param gb pointer to the GetBitContext |
| * @param gaininfo array[9] of gain indexes |
| */ |
| static void decode_gain_info(GetBitContext *gb, int *gaininfo) |
| { |
| int i, n; |
| |
| n = get_unary(gb, 0, get_bits_left(gb)); // amount of elements*2 to update |
| |
| i = 0; |
| while (n--) { |
| int index = get_bits(gb, 3); |
| int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; |
| |
| while (i <= index) |
| gaininfo[i++] = gain; |
| } |
| while (i <= 8) |
| gaininfo[i++] = 0; |
| } |
| |
| /** |
| * Create the quant index table needed for the envelope. |
| * |
| * @param q pointer to the COOKContext |
| * @param quant_index_table pointer to the array |
| */ |
| static int decode_envelope(COOKContext *q, COOKSubpacket *p, |
| int *quant_index_table) |
| { |
| int i, j, vlc_index; |
| |
| quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize |
| |
| for (i = 1; i < p->total_subbands; i++) { |
| vlc_index = i; |
| if (i >= p->js_subband_start * 2) { |
| vlc_index -= p->js_subband_start; |
| } else { |
| vlc_index /= 2; |
| if (vlc_index < 1) |
| vlc_index = 1; |
| } |
| if (vlc_index > 13) |
| vlc_index = 13; // the VLC tables >13 are identical to No. 13 |
| |
| j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table, |
| q->envelope_quant_index[vlc_index - 1].bits, 2); |
| quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding |
| if (quant_index_table[i] > 63 || quant_index_table[i] < -63) { |
| av_log(q->avctx, AV_LOG_ERROR, |
| "Invalid quantizer %d at position %d, outside [-63, 63] range\n", |
| quant_index_table[i], i); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Calculate the category and category_index vector. |
| * |
| * @param q pointer to the COOKContext |
| * @param quant_index_table pointer to the array |
| * @param category pointer to the category array |
| * @param category_index pointer to the category_index array |
| */ |
| static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table, |
| int *category, int *category_index) |
| { |
| int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j; |
| int exp_index2[102] = { 0 }; |
| int exp_index1[102] = { 0 }; |
| |
| int tmp_categorize_array[128 * 2] = { 0 }; |
| int tmp_categorize_array1_idx = p->numvector_size; |
| int tmp_categorize_array2_idx = p->numvector_size; |
| |
| bits_left = p->bits_per_subpacket - get_bits_count(&q->gb); |
| |
| if (bits_left > q->samples_per_channel) |
| bits_left = q->samples_per_channel + |
| ((bits_left - q->samples_per_channel) * 5) / 8; |
| |
| bias = -32; |
| |
| /* Estimate bias. */ |
| for (i = 32; i > 0; i = i / 2) { |
| num_bits = 0; |
| index = 0; |
| for (j = p->total_subbands; j > 0; j--) { |
| exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3); |
| index++; |
| num_bits += expbits_tab[exp_idx]; |
| } |
| if (num_bits >= bits_left - 32) |
| bias += i; |
| } |
| |
| /* Calculate total number of bits. */ |
| num_bits = 0; |
| for (i = 0; i < p->total_subbands; i++) { |
| exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3); |
| num_bits += expbits_tab[exp_idx]; |
| exp_index1[i] = exp_idx; |
| exp_index2[i] = exp_idx; |
| } |
| tmpbias1 = tmpbias2 = num_bits; |
| |
| for (j = 1; j < p->numvector_size; j++) { |
| if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */ |
| int max = -999999; |
| index = -1; |
| for (i = 0; i < p->total_subbands; i++) { |
| if (exp_index1[i] < 7) { |
| v = (-2 * exp_index1[i]) - quant_index_table[i] + bias; |
| if (v >= max) { |
| max = v; |
| index = i; |
| } |
| } |
| } |
| if (index == -1) |
| break; |
| tmp_categorize_array[tmp_categorize_array1_idx++] = index; |
| tmpbias1 -= expbits_tab[exp_index1[index]] - |
| expbits_tab[exp_index1[index] + 1]; |
| ++exp_index1[index]; |
| } else { /* <--- */ |
| int min = 999999; |
| index = -1; |
| for (i = 0; i < p->total_subbands; i++) { |
| if (exp_index2[i] > 0) { |
| v = (-2 * exp_index2[i]) - quant_index_table[i] + bias; |
| if (v < min) { |
| min = v; |
| index = i; |
| } |
| } |
| } |
| if (index == -1) |
| break; |
| tmp_categorize_array[--tmp_categorize_array2_idx] = index; |
| tmpbias2 -= expbits_tab[exp_index2[index]] - |
| expbits_tab[exp_index2[index] - 1]; |
| --exp_index2[index]; |
| } |
| } |
| |
| for (i = 0; i < p->total_subbands; i++) |
| category[i] = exp_index2[i]; |
| |
| for (i = 0; i < p->numvector_size - 1; i++) |
| category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; |
| } |
| |
| |
| /** |
| * Expand the category vector. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param category_index pointer to the category_index array |
| */ |
| static inline void expand_category(COOKContext *q, int *category, |
| int *category_index) |
| { |
| int i; |
| for (i = 0; i < q->num_vectors; i++) |
| { |
| int idx = category_index[i]; |
| if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab)) |
| --category[idx]; |
| } |
| } |
| |
| /** |
| * The real requantization of the mltcoefs |
| * |
| * @param q pointer to the COOKContext |
| * @param index index |
| * @param quant_index quantisation index |
| * @param subband_coef_index array of indexes to quant_centroid_tab |
| * @param subband_coef_sign signs of coefficients |
| * @param mlt_p pointer into the mlt buffer |
| */ |
| static void scalar_dequant_float(COOKContext *q, int index, int quant_index, |
| int *subband_coef_index, int *subband_coef_sign, |
| float *mlt_p) |
| { |
| int i; |
| float f1; |
| |
| for (i = 0; i < SUBBAND_SIZE; i++) { |
| if (subband_coef_index[i]) { |
| f1 = quant_centroid_tab[index][subband_coef_index[i]]; |
| if (subband_coef_sign[i]) |
| f1 = -f1; |
| } else { |
| /* noise coding if subband_coef_index[i] == 0 */ |
| f1 = dither_tab[index]; |
| if (av_lfg_get(&q->random_state) < 0x80000000) |
| f1 = -f1; |
| } |
| mlt_p[i] = f1 * rootpow2tab[quant_index + 63]; |
| } |
| } |
| /** |
| * Unpack the subband_coef_index and subband_coef_sign vectors. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param subband_coef_index array of indexes to quant_centroid_tab |
| * @param subband_coef_sign signs of coefficients |
| */ |
| static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, |
| int *subband_coef_index, int *subband_coef_sign) |
| { |
| int i, j; |
| int vlc, vd, tmp, result; |
| |
| vd = vd_tab[category]; |
| result = 0; |
| for (i = 0; i < vpr_tab[category]; i++) { |
| vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); |
| if (p->bits_per_subpacket < get_bits_count(&q->gb)) { |
| vlc = 0; |
| result = 1; |
| } |
| for (j = vd - 1; j >= 0; j--) { |
| tmp = (vlc * invradix_tab[category]) / 0x100000; |
| subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1); |
| vlc = tmp; |
| } |
| for (j = 0; j < vd; j++) { |
| if (subband_coef_index[i * vd + j]) { |
| if (get_bits_count(&q->gb) < p->bits_per_subpacket) { |
| subband_coef_sign[i * vd + j] = get_bits1(&q->gb); |
| } else { |
| result = 1; |
| subband_coef_sign[i * vd + j] = 0; |
| } |
| } else { |
| subband_coef_sign[i * vd + j] = 0; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| /** |
| * Fill the mlt_buffer with mlt coefficients. |
| * |
| * @param q pointer to the COOKContext |
| * @param category pointer to the category array |
| * @param quant_index_table pointer to the array |
| * @param mlt_buffer pointer to mlt coefficients |
| */ |
| static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category, |
| int *quant_index_table, float *mlt_buffer) |
| { |
| /* A zero in this table means that the subband coefficient is |
| random noise coded. */ |
| int subband_coef_index[SUBBAND_SIZE]; |
| /* A zero in this table means that the subband coefficient is a |
| positive multiplicator. */ |
| int subband_coef_sign[SUBBAND_SIZE]; |
| int band, j; |
| int index = 0; |
| |
| for (band = 0; band < p->total_subbands; band++) { |
| index = category[band]; |
| if (category[band] < 7) { |
| if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) { |
| index = 7; |
| for (j = 0; j < p->total_subbands; j++) |
| category[band + j] = 7; |
| } |
| } |
| if (index >= 7) { |
| memset(subband_coef_index, 0, sizeof(subband_coef_index)); |
| memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); |
| } |
| q->scalar_dequant(q, index, quant_index_table[band], |
| subband_coef_index, subband_coef_sign, |
| &mlt_buffer[band * SUBBAND_SIZE]); |
| } |
| |
| /* FIXME: should this be removed, or moved into loop above? */ |
| if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel) |
| return; |
| } |
| |
| |
| static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer) |
| { |
| int category_index[128] = { 0 }; |
| int category[128] = { 0 }; |
| int quant_index_table[102]; |
| int res, i; |
| |
| if ((res = decode_envelope(q, p, quant_index_table)) < 0) |
| return res; |
| q->num_vectors = get_bits(&q->gb, p->log2_numvector_size); |
| categorize(q, p, quant_index_table, category, category_index); |
| expand_category(q, category, category_index); |
| for (i=0; i<p->total_subbands; i++) { |
| if (category[i] > 7) |
| return AVERROR_INVALIDDATA; |
| } |
| decode_vectors(q, p, category, quant_index_table, mlt_buffer); |
| |
| return 0; |
| } |
| |
| |
| /** |
| * the actual requantization of the timedomain samples |
| * |
| * @param q pointer to the COOKContext |
| * @param buffer pointer to the timedomain buffer |
| * @param gain_index index for the block multiplier |
| * @param gain_index_next index for the next block multiplier |
| */ |
| static void interpolate_float(COOKContext *q, float *buffer, |
| int gain_index, int gain_index_next) |
| { |
| int i; |
| float fc1, fc2; |
| fc1 = pow2tab[gain_index + 63]; |
| |
| if (gain_index == gain_index_next) { // static gain |
| for (i = 0; i < q->gain_size_factor; i++) |
| buffer[i] *= fc1; |
| } else { // smooth gain |
| fc2 = q->gain_table[11 + (gain_index_next - gain_index)]; |
| for (i = 0; i < q->gain_size_factor; i++) { |
| buffer[i] *= fc1; |
| fc1 *= fc2; |
| } |
| } |
| } |
| |
| /** |
| * Apply transform window, overlap buffers. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the mltcoefficients |
| * @param gains_ptr current and previous gains |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| */ |
| static void imlt_window_float(COOKContext *q, float *inbuffer, |
| cook_gains *gains_ptr, float *previous_buffer) |
| { |
| const float fc = pow2tab[gains_ptr->previous[0] + 63]; |
| int i; |
| /* The weird thing here, is that the two halves of the time domain |
| * buffer are swapped. Also, the newest data, that we save away for |
| * next frame, has the wrong sign. Hence the subtraction below. |
| * Almost sounds like a complex conjugate/reverse data/FFT effect. |
| */ |
| |
| /* Apply window and overlap */ |
| for (i = 0; i < q->samples_per_channel; i++) |
| inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] - |
| previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i]; |
| } |
| |
| /** |
| * The modulated lapped transform, this takes transform coefficients |
| * and transforms them into timedomain samples. |
| * Apply transform window, overlap buffers, apply gain profile |
| * and buffer management. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the mltcoefficients |
| * @param gains_ptr current and previous gains |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| */ |
| static void imlt_gain(COOKContext *q, float *inbuffer, |
| cook_gains *gains_ptr, float *previous_buffer) |
| { |
| float *buffer0 = q->mono_mdct_output; |
| float *buffer1 = q->mono_mdct_output + q->samples_per_channel; |
| int i; |
| |
| /* Inverse modified discrete cosine transform */ |
| q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer); |
| |
| q->imlt_window(q, buffer1, gains_ptr, previous_buffer); |
| |
| /* Apply gain profile */ |
| for (i = 0; i < 8; i++) |
| if (gains_ptr->now[i] || gains_ptr->now[i + 1]) |
| q->interpolate(q, &buffer1[q->gain_size_factor * i], |
| gains_ptr->now[i], gains_ptr->now[i + 1]); |
| |
| /* Save away the current to be previous block. */ |
| memcpy(previous_buffer, buffer0, |
| q->samples_per_channel * sizeof(*previous_buffer)); |
| } |
| |
| |
| /** |
| * function for getting the jointstereo coupling information |
| * |
| * @param q pointer to the COOKContext |
| * @param decouple_tab decoupling array |
| */ |
| static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab) |
| { |
| int i; |
| int vlc = get_bits1(&q->gb); |
| int start = cplband[p->js_subband_start]; |
| int end = cplband[p->subbands - 1]; |
| int length = end - start + 1; |
| |
| if (start > end) |
| return 0; |
| |
| if (vlc) |
| for (i = 0; i < length; i++) |
| decouple_tab[start + i] = get_vlc2(&q->gb, |
| p->channel_coupling.table, |
| p->channel_coupling.bits, 2); |
| else |
| for (i = 0; i < length; i++) { |
| int v = get_bits(&q->gb, p->js_vlc_bits); |
| if (v == (1<<p->js_vlc_bits)-1) { |
| av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| decouple_tab[start + i] = v; |
| } |
| return 0; |
| } |
| |
| /** |
| * function decouples a pair of signals from a single signal via multiplication. |
| * |
| * @param q pointer to the COOKContext |
| * @param subband index of the current subband |
| * @param f1 multiplier for channel 1 extraction |
| * @param f2 multiplier for channel 2 extraction |
| * @param decode_buffer input buffer |
| * @param mlt_buffer1 pointer to left channel mlt coefficients |
| * @param mlt_buffer2 pointer to right channel mlt coefficients |
| */ |
| static void decouple_float(COOKContext *q, |
| COOKSubpacket *p, |
| int subband, |
| float f1, float f2, |
| float *decode_buffer, |
| float *mlt_buffer1, float *mlt_buffer2) |
| { |
| int j, tmp_idx; |
| for (j = 0; j < SUBBAND_SIZE; j++) { |
| tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j; |
| mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx]; |
| mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx]; |
| } |
| } |
| |
| /** |
| * function for decoding joint stereo data |
| * |
| * @param q pointer to the COOKContext |
| * @param mlt_buffer1 pointer to left channel mlt coefficients |
| * @param mlt_buffer2 pointer to right channel mlt coefficients |
| */ |
| static int joint_decode(COOKContext *q, COOKSubpacket *p, |
| float *mlt_buffer_left, float *mlt_buffer_right) |
| { |
| int i, j, res; |
| int decouple_tab[SUBBAND_SIZE] = { 0 }; |
| float *decode_buffer = q->decode_buffer_0; |
| int idx, cpl_tmp; |
| float f1, f2; |
| const float *cplscale; |
| |
| memset(decode_buffer, 0, sizeof(q->decode_buffer_0)); |
| |
| /* Make sure the buffers are zeroed out. */ |
| memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left)); |
| memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right)); |
| if ((res = decouple_info(q, p, decouple_tab)) < 0) |
| return res; |
| if ((res = mono_decode(q, p, decode_buffer)) < 0) |
| return res; |
| /* The two channels are stored interleaved in decode_buffer. */ |
| for (i = 0; i < p->js_subband_start; i++) { |
| for (j = 0; j < SUBBAND_SIZE; j++) { |
| mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j]; |
| mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j]; |
| } |
| } |
| |
| /* When we reach js_subband_start (the higher frequencies) |
| the coefficients are stored in a coupling scheme. */ |
| idx = (1 << p->js_vlc_bits) - 1; |
| for (i = p->js_subband_start; i < p->subbands; i++) { |
| cpl_tmp = cplband[i]; |
| idx -= decouple_tab[cpl_tmp]; |
| cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table |
| f1 = cplscale[decouple_tab[cpl_tmp] + 1]; |
| f2 = cplscale[idx]; |
| q->decouple(q, p, i, f1, f2, decode_buffer, |
| mlt_buffer_left, mlt_buffer_right); |
| idx = (1 << p->js_vlc_bits) - 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * First part of subpacket decoding: |
| * decode raw stream bytes and read gain info. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to raw stream data |
| * @param gains_ptr array of current/prev gain pointers |
| */ |
| static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, |
| const uint8_t *inbuffer, |
| cook_gains *gains_ptr) |
| { |
| int offset; |
| |
| offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, |
| p->bits_per_subpacket / 8); |
| init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, |
| p->bits_per_subpacket); |
| decode_gain_info(&q->gb, gains_ptr->now); |
| |
| /* Swap current and previous gains */ |
| FFSWAP(int *, gains_ptr->now, gains_ptr->previous); |
| } |
| |
| /** |
| * Saturate the output signal and interleave. |
| * |
| * @param q pointer to the COOKContext |
| * @param out pointer to the output vector |
| */ |
| static void saturate_output_float(COOKContext *q, float *out) |
| { |
| q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel, |
| -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8)); |
| } |
| |
| |
| /** |
| * Final part of subpacket decoding: |
| * Apply modulated lapped transform, gain compensation, |
| * clip and convert to integer. |
| * |
| * @param q pointer to the COOKContext |
| * @param decode_buffer pointer to the mlt coefficients |
| * @param gains_ptr array of current/prev gain pointers |
| * @param previous_buffer pointer to the previous buffer to be used for overlapping |
| * @param out pointer to the output buffer |
| */ |
| static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer, |
| cook_gains *gains_ptr, float *previous_buffer, |
| float *out) |
| { |
| imlt_gain(q, decode_buffer, gains_ptr, previous_buffer); |
| if (out) |
| q->saturate_output(q, out); |
| } |
| |
| |
| /** |
| * Cook subpacket decoding. This function returns one decoded subpacket, |
| * usually 1024 samples per channel. |
| * |
| * @param q pointer to the COOKContext |
| * @param inbuffer pointer to the inbuffer |
| * @param outbuffer pointer to the outbuffer |
| */ |
| static int decode_subpacket(COOKContext *q, COOKSubpacket *p, |
| const uint8_t *inbuffer, float **outbuffer) |
| { |
| int sub_packet_size = p->size; |
| int res; |
| |
| memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1)); |
| decode_bytes_and_gain(q, p, inbuffer, &p->gains1); |
| |
| if (p->joint_stereo) { |
| if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0) |
| return res; |
| } else { |
| if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0) |
| return res; |
| |
| if (p->num_channels == 2) { |
| decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2); |
| if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0) |
| return res; |
| } |
| } |
| |
| mlt_compensate_output(q, q->decode_buffer_1, &p->gains1, |
| p->mono_previous_buffer1, |
| outbuffer ? outbuffer[p->ch_idx] : NULL); |
| |
| if (p->num_channels == 2) { |
| if (p->joint_stereo) |
| mlt_compensate_output(q, q->decode_buffer_2, &p->gains1, |
| p->mono_previous_buffer2, |
| outbuffer ? outbuffer[p->ch_idx + 1] : NULL); |
| else |
| mlt_compensate_output(q, q->decode_buffer_2, &p->gains2, |
| p->mono_previous_buffer2, |
| outbuffer ? outbuffer[p->ch_idx + 1] : NULL); |
| } |
| |
| return 0; |
| } |
| |
| |
| static int cook_decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket *avpkt) |
| { |
| AVFrame *frame = data; |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| COOKContext *q = avctx->priv_data; |
| float **samples = NULL; |
| int i, ret; |
| int offset = 0; |
| int chidx = 0; |
| |
| if (buf_size < avctx->block_align) |
| return buf_size; |
| |
| /* get output buffer */ |
| if (q->discarded_packets >= 2) { |
| frame->nb_samples = q->samples_per_channel; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| samples = (float **)frame->extended_data; |
| } |
| |
| /* estimate subpacket sizes */ |
| q->subpacket[0].size = avctx->block_align; |
| |
| for (i = 1; i < q->num_subpackets; i++) { |
| q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i]; |
| q->subpacket[0].size -= q->subpacket[i].size + 1; |
| if (q->subpacket[0].size < 0) { |
| av_log(avctx, AV_LOG_DEBUG, |
| "frame subpacket size total > avctx->block_align!\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| /* decode supbackets */ |
| for (i = 0; i < q->num_subpackets; i++) { |
| q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >> |
| q->subpacket[i].bits_per_subpdiv; |
| q->subpacket[i].ch_idx = chidx; |
| av_log(avctx, AV_LOG_DEBUG, |
| "subpacket[%i] size %i js %i %i block_align %i\n", |
| i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset, |
| avctx->block_align); |
| |
| if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0) |
| return ret; |
| offset += q->subpacket[i].size; |
| chidx += q->subpacket[i].num_channels; |
| av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n", |
| i, q->subpacket[i].size * 8, get_bits_count(&q->gb)); |
| } |
| |
| /* Discard the first two frames: no valid audio. */ |
| if (q->discarded_packets < 2) { |
| q->discarded_packets++; |
| *got_frame_ptr = 0; |
| return avctx->block_align; |
| } |
| |
| *got_frame_ptr = 1; |
| |
| return avctx->block_align; |
| } |
| |
| static void dump_cook_context(COOKContext *q) |
| { |
| //int i=0; |
| #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b); |
| ff_dlog(q->avctx, "COOKextradata\n"); |
| ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion); |
| if (q->subpacket[0].cookversion > STEREO) { |
| PRINT("js_subband_start", q->subpacket[0].js_subband_start); |
| PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits); |
| } |
| ff_dlog(q->avctx, "COOKContext\n"); |
| PRINT("nb_channels", q->avctx->channels); |
| PRINT("bit_rate", (int)q->avctx->bit_rate); |
| PRINT("sample_rate", q->avctx->sample_rate); |
| PRINT("samples_per_channel", q->subpacket[0].samples_per_channel); |
| PRINT("subbands", q->subpacket[0].subbands); |
| PRINT("js_subband_start", q->subpacket[0].js_subband_start); |
| PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size); |
| PRINT("numvector_size", q->subpacket[0].numvector_size); |
| PRINT("total_subbands", q->subpacket[0].total_subbands); |
| } |
| |
| /** |
| * Cook initialization |
| * |
| * @param avctx pointer to the AVCodecContext |
| */ |
| static av_cold int cook_decode_init(AVCodecContext *avctx) |
| { |
| COOKContext *q = avctx->priv_data; |
| const uint8_t *edata_ptr = avctx->extradata; |
| const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size; |
| int extradata_size = avctx->extradata_size; |
| int s = 0; |
| unsigned int channel_mask = 0; |
| int samples_per_frame = 0; |
| int ret; |
| q->avctx = avctx; |
| |
| /* Take care of the codec specific extradata. */ |
| if (extradata_size < 8) { |
| av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size); |
| |
| /* Take data from the AVCodecContext (RM container). */ |
| if (!avctx->channels) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| /* Initialize RNG. */ |
| av_lfg_init(&q->random_state, 0); |
| |
| ff_audiodsp_init(&q->adsp); |
| |
| while (edata_ptr < edata_ptr_end) { |
| /* 8 for mono, 16 for stereo, ? for multichannel |
| Swap to right endianness so we don't need to care later on. */ |
| if (extradata_size >= 8) { |
| q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); |
| samples_per_frame = bytestream_get_be16(&edata_ptr); |
| q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr); |
| extradata_size -= 8; |
| } |
| if (extradata_size >= 8) { |
| bytestream_get_be32(&edata_ptr); // Unknown unused |
| q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); |
| if (q->subpacket[s].js_subband_start >= 51) { |
| av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); |
| extradata_size -= 8; |
| } |
| |
| /* Initialize extradata related variables. */ |
| q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels; |
| q->subpacket[s].bits_per_subpacket = avctx->block_align * 8; |
| |
| /* Initialize default data states. */ |
| q->subpacket[s].log2_numvector_size = 5; |
| q->subpacket[s].total_subbands = q->subpacket[s].subbands; |
| q->subpacket[s].num_channels = 1; |
| |
| /* Initialize version-dependent variables */ |
| |
| av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s, |
| q->subpacket[s].cookversion); |
| q->subpacket[s].joint_stereo = 0; |
| switch (q->subpacket[s].cookversion) { |
| case MONO: |
| if (avctx->channels != 1) { |
| avpriv_request_sample(avctx, "Container channels != 1"); |
| return AVERROR_PATCHWELCOME; |
| } |
| av_log(avctx, AV_LOG_DEBUG, "MONO\n"); |
| break; |
| case STEREO: |
| if (avctx->channels != 1) { |
| q->subpacket[s].bits_per_subpdiv = 1; |
| q->subpacket[s].num_channels = 2; |
| } |
| av_log(avctx, AV_LOG_DEBUG, "STEREO\n"); |
| break; |
| case JOINT_STEREO: |
| if (avctx->channels != 2) { |
| avpriv_request_sample(avctx, "Container channels != 2"); |
| return AVERROR_PATCHWELCOME; |
| } |
| av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n"); |
| if (avctx->extradata_size >= 16) { |
| q->subpacket[s].total_subbands = q->subpacket[s].subbands + |
| q->subpacket[s].js_subband_start; |
| q->subpacket[s].joint_stereo = 1; |
| q->subpacket[s].num_channels = 2; |
| } |
| if (q->subpacket[s].samples_per_channel > 256) { |
| q->subpacket[s].log2_numvector_size = 6; |
| } |
| if (q->subpacket[s].samples_per_channel > 512) { |
| q->subpacket[s].log2_numvector_size = 7; |
| } |
| break; |
| case MC_COOK: |
| av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n"); |
| if (extradata_size >= 4) |
| channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); |
| |
| if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) { |
| q->subpacket[s].total_subbands = q->subpacket[s].subbands + |
| q->subpacket[s].js_subband_start; |
| q->subpacket[s].joint_stereo = 1; |
| q->subpacket[s].num_channels = 2; |
| q->subpacket[s].samples_per_channel = samples_per_frame >> 1; |
| |
| if (q->subpacket[s].samples_per_channel > 256) { |
| q->subpacket[s].log2_numvector_size = 6; |
| } |
| if (q->subpacket[s].samples_per_channel > 512) { |
| q->subpacket[s].log2_numvector_size = 7; |
| } |
| } else |
| q->subpacket[s].samples_per_channel = samples_per_frame; |
| |
| break; |
| default: |
| avpriv_request_sample(avctx, "Cook version %d", |
| q->subpacket[s].cookversion); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) { |
| av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n"); |
| return AVERROR_INVALIDDATA; |
| } else |
| q->samples_per_channel = q->subpacket[0].samples_per_channel; |
| |
| |
| /* Initialize variable relations */ |
| q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size); |
| |
| /* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
| if (q->subpacket[s].total_subbands > 53) { |
| avpriv_request_sample(avctx, "total_subbands > 53"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if ((q->subpacket[s].js_vlc_bits > 6) || |
| (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) { |
| av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n", |
| q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (q->subpacket[s].subbands > 50) { |
| avpriv_request_sample(avctx, "subbands > 50"); |
| return AVERROR_PATCHWELCOME; |
| } |
| if (q->subpacket[s].subbands == 0) { |
| avpriv_request_sample(avctx, "subbands = 0"); |
| return AVERROR_PATCHWELCOME; |
| } |
| q->subpacket[s].gains1.now = q->subpacket[s].gain_1; |
| q->subpacket[s].gains1.previous = q->subpacket[s].gain_2; |
| q->subpacket[s].gains2.now = q->subpacket[s].gain_3; |
| q->subpacket[s].gains2.previous = q->subpacket[s].gain_4; |
| |
| if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) { |
| av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| q->num_subpackets++; |
| s++; |
| if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) { |
| avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align)); |
| return AVERROR_PATCHWELCOME; |
| } |
| } |
| /* Generate tables */ |
| init_pow2table(); |
| init_gain_table(q); |
| init_cplscales_table(q); |
| |
| if ((ret = init_cook_vlc_tables(q))) |
| return ret; |
| |
| |
| if (avctx->block_align >= UINT_MAX / 2) |
| return AVERROR(EINVAL); |
| |
| /* Pad the databuffer with: |
| DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), |
| AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ |
| q->decoded_bytes_buffer = |
| av_mallocz(avctx->block_align |
| + DECODE_BYTES_PAD1(avctx->block_align) |
| + AV_INPUT_BUFFER_PADDING_SIZE); |
| if (!q->decoded_bytes_buffer) |
| return AVERROR(ENOMEM); |
| |
| /* Initialize transform. */ |
| if ((ret = init_cook_mlt(q))) |
| return ret; |
| |
| /* Initialize COOK signal arithmetic handling */ |
| if (1) { |
| q->scalar_dequant = scalar_dequant_float; |
| q->decouple = decouple_float; |
| q->imlt_window = imlt_window_float; |
| q->interpolate = interpolate_float; |
| q->saturate_output = saturate_output_float; |
| } |
| |
| /* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
| if (q->samples_per_channel != 256 && q->samples_per_channel != 512 && |
| q->samples_per_channel != 1024) { |
| avpriv_request_sample(avctx, "samples_per_channel = %d", |
| q->samples_per_channel); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| if (channel_mask) |
| avctx->channel_layout = channel_mask; |
| else |
| avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; |
| |
| |
| dump_cook_context(q); |
| |
| return 0; |
| } |
| |
| AVCodec ff_cook_decoder = { |
| .name = "cook", |
| .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_COOK, |
| .priv_data_size = sizeof(COOKContext), |
| .init = cook_decode_init, |
| .close = cook_decode_close, |
| .decode = cook_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| }; |