| /* |
| * VC3/DNxHD encoder |
| * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com> |
| * Copyright (c) 2011 MirriAd Ltd |
| * |
| * VC-3 encoder funded by the British Broadcasting Corporation |
| * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/timer.h" |
| |
| #include "avcodec.h" |
| #include "blockdsp.h" |
| #include "fdctdsp.h" |
| #include "internal.h" |
| #include "mpegvideo.h" |
| #include "pixblockdsp.h" |
| #include "dnxhdenc.h" |
| |
| |
| // The largest value that will not lead to overflow for 10bit samples. |
| #define DNX10BIT_QMAT_SHIFT 18 |
| #define RC_VARIANCE 1 // use variance or ssd for fast rc |
| #define LAMBDA_FRAC_BITS 10 |
| |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| static const AVOption options[] = { |
| { "nitris_compat", "encode with Avid Nitris compatibility", |
| offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
| { "ibias", "intra quant bias", |
| offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT, |
| { .i64 = 0 }, INT_MIN, INT_MAX, VE }, |
| { NULL } |
| }; |
| |
| static const AVClass dnxhd_class = { |
| .class_name = "dnxhd", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block, |
| const uint8_t *pixels, |
| ptrdiff_t line_size) |
| { |
| int i; |
| for (i = 0; i < 4; i++) { |
| block[0] = pixels[0]; |
| block[1] = pixels[1]; |
| block[2] = pixels[2]; |
| block[3] = pixels[3]; |
| block[4] = pixels[4]; |
| block[5] = pixels[5]; |
| block[6] = pixels[6]; |
| block[7] = pixels[7]; |
| pixels += line_size; |
| block += 8; |
| } |
| memcpy(block, block - 8, sizeof(*block) * 8); |
| memcpy(block + 8, block - 16, sizeof(*block) * 8); |
| memcpy(block + 16, block - 24, sizeof(*block) * 8); |
| memcpy(block + 24, block - 32, sizeof(*block) * 8); |
| } |
| |
| static av_always_inline |
| void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block, |
| const uint8_t *pixels, |
| ptrdiff_t line_size) |
| { |
| memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); |
| memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block)); |
| } |
| |
| static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block, |
| int n, int qscale, int *overflow) |
| { |
| const uint8_t *scantable= ctx->intra_scantable.scantable; |
| const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale]; |
| int last_non_zero = 0; |
| int i; |
| |
| ctx->fdsp.fdct(block); |
| |
| // Divide by 4 with rounding, to compensate scaling of DCT coefficients |
| block[0] = (block[0] + 2) >> 2; |
| |
| for (i = 1; i < 64; ++i) { |
| int j = scantable[i]; |
| int sign = FF_SIGNBIT(block[j]); |
| int level = (block[j] ^ sign) - sign; |
| level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT; |
| block[j] = (level ^ sign) - sign; |
| if (level) |
| last_non_zero = i; |
| } |
| |
| /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */ |
| if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE) |
| ff_block_permute(block, ctx->idsp.idct_permutation, |
| scantable, last_non_zero); |
| |
| return last_non_zero; |
| } |
| |
| static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx) |
| { |
| int i, j, level, run; |
| int max_level = 1 << (ctx->cid_table->bit_depth + 2); |
| |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, |
| max_level, 4 * sizeof(*ctx->vlc_codes), fail); |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, |
| max_level, 4 * sizeof(*ctx->vlc_bits), fail); |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, |
| 63 * 2, fail); |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, |
| 63, fail); |
| |
| ctx->vlc_codes += max_level * 2; |
| ctx->vlc_bits += max_level * 2; |
| for (level = -max_level; level < max_level; level++) { |
| for (run = 0; run < 2; run++) { |
| int index = (level << 1) | run; |
| int sign, offset = 0, alevel = level; |
| |
| MASK_ABS(sign, alevel); |
| if (alevel > 64) { |
| offset = (alevel - 1) >> 6; |
| alevel -= offset << 6; |
| } |
| for (j = 0; j < 257; j++) { |
| if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel && |
| (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) && |
| (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) { |
| av_assert1(!ctx->vlc_codes[index]); |
| if (alevel) { |
| ctx->vlc_codes[index] = |
| (ctx->cid_table->ac_codes[j] << 1) | (sign & 1); |
| ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1; |
| } else { |
| ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j]; |
| ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j]; |
| } |
| break; |
| } |
| } |
| av_assert0(!alevel || j < 257); |
| if (offset) { |
| ctx->vlc_codes[index] = |
| (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset; |
| ctx->vlc_bits[index] += ctx->cid_table->index_bits; |
| } |
| } |
| } |
| for (i = 0; i < 62; i++) { |
| int run = ctx->cid_table->run[i]; |
| av_assert0(run < 63); |
| ctx->run_codes[run] = ctx->cid_table->run_codes[i]; |
| ctx->run_bits[run] = ctx->cid_table->run_bits[i]; |
| } |
| return 0; |
| fail: |
| return AVERROR(ENOMEM); |
| } |
| |
| static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias) |
| { |
| // init first elem to 1 to avoid div by 0 in convert_matrix |
| uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t* |
| int qscale, i; |
| const uint8_t *luma_weight_table = ctx->cid_table->luma_weight; |
| const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight; |
| |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, |
| (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail); |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, |
| (ctx->m.avctx->qmax + 1), 64 * sizeof(int), fail); |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, |
| (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t), |
| fail); |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, |
| (ctx->m.avctx->qmax + 1), 64 * 2 * sizeof(uint16_t), |
| fail); |
| |
| if (ctx->cid_table->bit_depth == 8) { |
| for (i = 1; i < 64; i++) { |
| int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; |
| weight_matrix[j] = ctx->cid_table->luma_weight[i]; |
| } |
| ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16, |
| weight_matrix, ctx->intra_quant_bias, 1, |
| ctx->m.avctx->qmax, 1); |
| for (i = 1; i < 64; i++) { |
| int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]]; |
| weight_matrix[j] = ctx->cid_table->chroma_weight[i]; |
| } |
| ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16, |
| weight_matrix, ctx->intra_quant_bias, 1, |
| ctx->m.avctx->qmax, 1); |
| |
| for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { |
| for (i = 0; i < 64; i++) { |
| ctx->qmatrix_l[qscale][i] <<= 2; |
| ctx->qmatrix_c[qscale][i] <<= 2; |
| ctx->qmatrix_l16[qscale][0][i] <<= 2; |
| ctx->qmatrix_l16[qscale][1][i] <<= 2; |
| ctx->qmatrix_c16[qscale][0][i] <<= 2; |
| ctx->qmatrix_c16[qscale][1][i] <<= 2; |
| } |
| } |
| } else { |
| // 10-bit |
| for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) { |
| for (i = 1; i < 64; i++) { |
| int j = ff_zigzag_direct[i]; |
| |
| /* The quantization formula from the VC-3 standard is: |
| * quantized = sign(block[i]) * floor(abs(block[i]/s) * p / |
| * (qscale * weight_table[i])) |
| * Where p is 32 for 8-bit samples and 8 for 10-bit ones. |
| * The s factor compensates scaling of DCT coefficients done by |
| * the DCT routines, and therefore is not present in standard. |
| * It's 8 for 8-bit samples and 4 for 10-bit ones. |
| * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be: |
| * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / |
| * (qscale * weight_table[i]) |
| * For 10-bit samples, p / s == 2 */ |
| ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / |
| (qscale * luma_weight_table[i]); |
| ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / |
| (qscale * chroma_weight_table[i]); |
| } |
| } |
| } |
| |
| ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16; |
| ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c; |
| ctx->m.q_intra_matrix16 = ctx->qmatrix_l16; |
| ctx->m.q_intra_matrix = ctx->qmatrix_l; |
| |
| return 0; |
| fail: |
| return AVERROR(ENOMEM); |
| } |
| |
| static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx) |
| { |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_rc, (ctx->m.avctx->qmax + 1), 8160 * sizeof(RCEntry), fail); |
| if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) |
| FF_ALLOCZ_ARRAY_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, |
| ctx->m.mb_num, sizeof(RCCMPEntry), fail); |
| |
| ctx->frame_bits = (ctx->cid_table->coding_unit_size - |
| 640 - 4 - ctx->min_padding) * 8; |
| ctx->qscale = 1; |
| ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2 |
| return 0; |
| fail: |
| return AVERROR(ENOMEM); |
| } |
| |
| static av_cold int dnxhd_encode_init(AVCodecContext *avctx) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int i, index, bit_depth, ret; |
| |
| switch (avctx->pix_fmt) { |
| case AV_PIX_FMT_YUV422P: |
| bit_depth = 8; |
| break; |
| case AV_PIX_FMT_YUV422P10: |
| bit_depth = 10; |
| break; |
| default: |
| av_log(avctx, AV_LOG_ERROR, |
| "pixel format is incompatible with DNxHD\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth); |
| if (!ctx->cid) { |
| av_log(avctx, AV_LOG_ERROR, |
| "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n"); |
| ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR); |
| return AVERROR(EINVAL); |
| } |
| av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid); |
| |
| index = ff_dnxhd_get_cid_table(ctx->cid); |
| av_assert0(index >= 0); |
| |
| ctx->cid_table = &ff_dnxhd_cid_table[index]; |
| |
| ctx->m.avctx = avctx; |
| ctx->m.mb_intra = 1; |
| ctx->m.h263_aic = 1; |
| |
| avctx->bits_per_raw_sample = ctx->cid_table->bit_depth; |
| |
| ff_blockdsp_init(&ctx->bdsp, avctx); |
| ff_fdctdsp_init(&ctx->m.fdsp, avctx); |
| ff_mpv_idct_init(&ctx->m); |
| ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx); |
| ff_pixblockdsp_init(&ctx->m.pdsp, avctx); |
| ff_dct_encode_init(&ctx->m); |
| |
| if (!ctx->m.dct_quantize) |
| ctx->m.dct_quantize = ff_dct_quantize_c; |
| |
| if (ctx->cid_table->bit_depth == 10) { |
| ctx->m.dct_quantize = dnxhd_10bit_dct_quantize; |
| ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym; |
| ctx->block_width_l2 = 4; |
| } else { |
| ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym; |
| ctx->block_width_l2 = 3; |
| } |
| |
| if (ARCH_X86) |
| ff_dnxhdenc_init_x86(ctx); |
| |
| ctx->m.mb_height = (avctx->height + 15) / 16; |
| ctx->m.mb_width = (avctx->width + 15) / 16; |
| |
| if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { |
| ctx->interlaced = 1; |
| ctx->m.mb_height /= 2; |
| } |
| |
| ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width; |
| |
| #if FF_API_QUANT_BIAS |
| FF_DISABLE_DEPRECATION_WARNINGS |
| if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS) |
| ctx->intra_quant_bias = avctx->intra_quant_bias; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| // XXX tune lbias/cbias |
| if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0) |
| return ret; |
| |
| /* Avid Nitris hardware decoder requires a minimum amount of padding |
| * in the coding unit payload */ |
| if (ctx->nitris_compat) |
| ctx->min_padding = 1600; |
| |
| if ((ret = dnxhd_init_vlc(ctx)) < 0) |
| return ret; |
| if ((ret = dnxhd_init_rc(ctx)) < 0) |
| return ret; |
| |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, |
| ctx->m.mb_height * sizeof(uint32_t), fail); |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, |
| ctx->m.mb_height * sizeof(uint32_t), fail); |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, |
| ctx->m.mb_num * sizeof(uint16_t), fail); |
| FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, |
| ctx->m.mb_num * sizeof(uint8_t), fail); |
| |
| #if FF_API_CODED_FRAME |
| FF_DISABLE_DEPRECATION_WARNINGS |
| avctx->coded_frame->key_frame = 1; |
| avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| if (avctx->thread_count > MAX_THREADS) { |
| av_log(avctx, AV_LOG_ERROR, "too many threads\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->qmax <= 1) { |
| av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| ctx->thread[0] = ctx; |
| for (i = 1; i < avctx->thread_count; i++) { |
| ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext)); |
| memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext)); |
| } |
| |
| return 0; |
| fail: // for FF_ALLOCZ_OR_GOTO |
| return AVERROR(ENOMEM); |
| } |
| |
| static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 }; |
| |
| memset(buf, 0, 640); |
| |
| memcpy(buf, header_prefix, 5); |
| buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01; |
| buf[6] = 0x80; // crc flag off |
| buf[7] = 0xa0; // reserved |
| AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF |
| AV_WB16(buf + 0x1a, avctx->width); // SPL |
| AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL |
| |
| buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38; |
| buf[0x22] = 0x88 + (ctx->interlaced << 2); |
| AV_WB32(buf + 0x28, ctx->cid); // CID |
| buf[0x2c] = ctx->interlaced ? 0 : 0x80; |
| |
| buf[0x5f] = 0x01; // UDL |
| |
| buf[0x167] = 0x02; // reserved |
| AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS |
| buf[0x16d] = ctx->m.mb_height; // Ns |
| buf[0x16f] = 0x10; // reserved |
| |
| ctx->msip = buf + 0x170; |
| return 0; |
| } |
| |
| static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff) |
| { |
| int nbits; |
| if (diff < 0) { |
| nbits = av_log2_16bit(-2 * diff); |
| diff--; |
| } else { |
| nbits = av_log2_16bit(2 * diff); |
| } |
| put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits, |
| (ctx->cid_table->dc_codes[nbits] << nbits) + |
| av_mod_uintp2(diff, nbits)); |
| } |
| |
| static av_always_inline |
| void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, |
| int last_index, int n) |
| { |
| int last_non_zero = 0; |
| int slevel, i, j; |
| |
| dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]); |
| ctx->m.last_dc[n] = block[0]; |
| |
| for (i = 1; i <= last_index; i++) { |
| j = ctx->m.intra_scantable.permutated[i]; |
| slevel = block[j]; |
| if (slevel) { |
| int run_level = i - last_non_zero - 1; |
| int rlevel = (slevel << 1) | !!run_level; |
| put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]); |
| if (run_level) |
| put_bits(&ctx->m.pb, ctx->run_bits[run_level], |
| ctx->run_codes[run_level]); |
| last_non_zero = i; |
| } |
| } |
| put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB |
| } |
| |
| static av_always_inline |
| void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, |
| int qscale, int last_index) |
| { |
| const uint8_t *weight_matrix; |
| int level; |
| int i; |
| |
| weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight |
| : ctx->cid_table->luma_weight; |
| |
| for (i = 1; i <= last_index; i++) { |
| int j = ctx->m.intra_scantable.permutated[i]; |
| level = block[j]; |
| if (level) { |
| if (level < 0) { |
| level = (1 - 2 * level) * qscale * weight_matrix[i]; |
| if (ctx->cid_table->bit_depth == 10) { |
| if (weight_matrix[i] != 8) |
| level += 8; |
| level >>= 4; |
| } else { |
| if (weight_matrix[i] != 32) |
| level += 32; |
| level >>= 6; |
| } |
| level = -level; |
| } else { |
| level = (2 * level + 1) * qscale * weight_matrix[i]; |
| if (ctx->cid_table->bit_depth == 10) { |
| if (weight_matrix[i] != 8) |
| level += 8; |
| level >>= 4; |
| } else { |
| if (weight_matrix[i] != 32) |
| level += 32; |
| level >>= 6; |
| } |
| } |
| block[j] = level; |
| } |
| } |
| } |
| |
| static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block) |
| { |
| int score = 0; |
| int i; |
| for (i = 0; i < 64; i++) |
| score += (block[i] - qblock[i]) * (block[i] - qblock[i]); |
| return score; |
| } |
| |
| static av_always_inline |
| int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index) |
| { |
| int last_non_zero = 0; |
| int bits = 0; |
| int i, j, level; |
| for (i = 1; i <= last_index; i++) { |
| j = ctx->m.intra_scantable.permutated[i]; |
| level = block[j]; |
| if (level) { |
| int run_level = i - last_non_zero - 1; |
| bits += ctx->vlc_bits[(level << 1) | |
| !!run_level] + ctx->run_bits[run_level]; |
| last_non_zero = i; |
| } |
| } |
| return bits; |
| } |
| |
| static av_always_inline |
| void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y) |
| { |
| const int bs = ctx->block_width_l2; |
| const int bw = 1 << bs; |
| const uint8_t *ptr_y = ctx->thread[0]->src[0] + |
| ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1); |
| const uint8_t *ptr_u = ctx->thread[0]->src[1] + |
| ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); |
| const uint8_t *ptr_v = ctx->thread[0]->src[2] + |
| ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs); |
| PixblockDSPContext *pdsp = &ctx->m.pdsp; |
| |
| pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize); |
| pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize); |
| pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize); |
| pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize); |
| |
| if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) { |
| if (ctx->interlaced) { |
| ctx->get_pixels_8x4_sym(ctx->blocks[4], |
| ptr_y + ctx->dct_y_offset, |
| ctx->m.linesize); |
| ctx->get_pixels_8x4_sym(ctx->blocks[5], |
| ptr_y + ctx->dct_y_offset + bw, |
| ctx->m.linesize); |
| ctx->get_pixels_8x4_sym(ctx->blocks[6], |
| ptr_u + ctx->dct_uv_offset, |
| ctx->m.uvlinesize); |
| ctx->get_pixels_8x4_sym(ctx->blocks[7], |
| ptr_v + ctx->dct_uv_offset, |
| ctx->m.uvlinesize); |
| } else { |
| ctx->bdsp.clear_block(ctx->blocks[4]); |
| ctx->bdsp.clear_block(ctx->blocks[5]); |
| ctx->bdsp.clear_block(ctx->blocks[6]); |
| ctx->bdsp.clear_block(ctx->blocks[7]); |
| } |
| } else { |
| pdsp->get_pixels(ctx->blocks[4], |
| ptr_y + ctx->dct_y_offset, ctx->m.linesize); |
| pdsp->get_pixels(ctx->blocks[5], |
| ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize); |
| pdsp->get_pixels(ctx->blocks[6], |
| ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize); |
| pdsp->get_pixels(ctx->blocks[7], |
| ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize); |
| } |
| } |
| |
| static av_always_inline |
| int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i) |
| { |
| const static uint8_t component[8]={0,0,1,2,0,0,1,2}; |
| return component[i]; |
| } |
| |
| static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, |
| int jobnr, int threadnr) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int mb_y = jobnr, mb_x; |
| int qscale = ctx->qscale; |
| LOCAL_ALIGNED_16(int16_t, block, [64]); |
| ctx = ctx->thread[threadnr]; |
| |
| ctx->m.last_dc[0] = |
| ctx->m.last_dc[1] = |
| ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2); |
| |
| for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
| unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
| int ssd = 0; |
| int ac_bits = 0; |
| int dc_bits = 0; |
| int i; |
| |
| dnxhd_get_blocks(ctx, mb_x, mb_y); |
| |
| for (i = 0; i < 8; i++) { |
| int16_t *src_block = ctx->blocks[i]; |
| int overflow, nbits, diff, last_index; |
| int n = dnxhd_switch_matrix(ctx, i); |
| |
| memcpy(block, src_block, 64 * sizeof(*block)); |
| last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i), |
| qscale, &overflow); |
| ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index); |
| |
| diff = block[0] - ctx->m.last_dc[n]; |
| if (diff < 0) |
| nbits = av_log2_16bit(-2 * diff); |
| else |
| nbits = av_log2_16bit(2 * diff); |
| |
| av_assert1(nbits < ctx->cid_table->bit_depth + 4); |
| dc_bits += ctx->cid_table->dc_bits[nbits] + nbits; |
| |
| ctx->m.last_dc[n] = block[0]; |
| |
| if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) { |
| dnxhd_unquantize_c(ctx, block, i, qscale, last_index); |
| ctx->m.idsp.idct(block); |
| ssd += dnxhd_ssd_block(block, src_block); |
| } |
| } |
| ctx->mb_rc[qscale][mb].ssd = ssd; |
| ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 + |
| 8 * ctx->vlc_bits[0]; |
| } |
| return 0; |
| } |
| |
| static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, |
| int jobnr, int threadnr) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int mb_y = jobnr, mb_x; |
| ctx = ctx->thread[threadnr]; |
| init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], |
| ctx->slice_size[jobnr]); |
| |
| ctx->m.last_dc[0] = |
| ctx->m.last_dc[1] = |
| ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2); |
| for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
| unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
| int qscale = ctx->mb_qscale[mb]; |
| int i; |
| |
| put_bits(&ctx->m.pb, 12, qscale << 1); |
| |
| dnxhd_get_blocks(ctx, mb_x, mb_y); |
| |
| for (i = 0; i < 8; i++) { |
| int16_t *block = ctx->blocks[i]; |
| int overflow, n = dnxhd_switch_matrix(ctx, i); |
| int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i), |
| qscale, &overflow); |
| // START_TIMER; |
| dnxhd_encode_block(ctx, block, last_index, n); |
| // STOP_TIMER("encode_block"); |
| } |
| } |
| if (put_bits_count(&ctx->m.pb) & 31) |
| put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0); |
| flush_put_bits(&ctx->m.pb); |
| return 0; |
| } |
| |
| static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx) |
| { |
| int mb_y, mb_x; |
| int offset = 0; |
| for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) { |
| int thread_size; |
| ctx->slice_offs[mb_y] = offset; |
| ctx->slice_size[mb_y] = 0; |
| for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) { |
| unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
| ctx->slice_size[mb_y] += ctx->mb_bits[mb]; |
| } |
| ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31; |
| ctx->slice_size[mb_y] >>= 3; |
| thread_size = ctx->slice_size[mb_y]; |
| offset += thread_size; |
| } |
| } |
| |
| static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, |
| int jobnr, int threadnr) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int mb_y = jobnr, mb_x, x, y; |
| int partial_last_row = (mb_y == ctx->m.mb_height - 1) && |
| ((avctx->height >> ctx->interlaced) & 0xF); |
| |
| ctx = ctx->thread[threadnr]; |
| if (ctx->cid_table->bit_depth == 8) { |
| uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize); |
| for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) { |
| unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
| int sum; |
| int varc; |
| |
| if (!partial_last_row && mb_x * 16 <= avctx->width - 16) { |
| sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize); |
| varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize); |
| } else { |
| int bw = FFMIN(avctx->width - 16 * mb_x, 16); |
| int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); |
| sum = varc = 0; |
| for (y = 0; y < bh; y++) { |
| for (x = 0; x < bw; x++) { |
| uint8_t val = pix[x + y * ctx->m.linesize]; |
| sum += val; |
| varc += val * val; |
| } |
| } |
| } |
| varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8; |
| |
| ctx->mb_cmp[mb].value = varc; |
| ctx->mb_cmp[mb].mb = mb; |
| } |
| } else { // 10-bit |
| int const linesize = ctx->m.linesize >> 1; |
| for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) { |
| uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] + |
| ((mb_y << 4) * linesize) + (mb_x << 4); |
| unsigned mb = mb_y * ctx->m.mb_width + mb_x; |
| int sum = 0; |
| int sqsum = 0; |
| int bw = FFMIN(avctx->width - 16 * mb_x, 16); |
| int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16); |
| int mean, sqmean; |
| int i, j; |
| // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8. |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| // Turn 16-bit pixels into 10-bit ones. |
| int const sample = (unsigned) pix[j] >> 6; |
| sum += sample; |
| sqsum += sample * sample; |
| // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX |
| } |
| pix += linesize; |
| } |
| mean = sum >> 8; // 16*16 == 2^8 |
| sqmean = sqsum >> 8; |
| ctx->mb_cmp[mb].value = sqmean - mean * mean; |
| ctx->mb_cmp[mb].mb = mb; |
| } |
| } |
| return 0; |
| } |
| |
| static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx) |
| { |
| int lambda, up_step, down_step; |
| int last_lower = INT_MAX, last_higher = 0; |
| int x, y, q; |
| |
| for (q = 1; q < avctx->qmax; q++) { |
| ctx->qscale = q; |
| avctx->execute2(avctx, dnxhd_calc_bits_thread, |
| NULL, NULL, ctx->m.mb_height); |
| } |
| up_step = down_step = 2 << LAMBDA_FRAC_BITS; |
| lambda = ctx->lambda; |
| |
| for (;;) { |
| int bits = 0; |
| int end = 0; |
| if (lambda == last_higher) { |
| lambda++; |
| end = 1; // need to set final qscales/bits |
| } |
| for (y = 0; y < ctx->m.mb_height; y++) { |
| for (x = 0; x < ctx->m.mb_width; x++) { |
| unsigned min = UINT_MAX; |
| int qscale = 1; |
| int mb = y * ctx->m.mb_width + x; |
| for (q = 1; q < avctx->qmax; q++) { |
| unsigned score = ctx->mb_rc[q][mb].bits * lambda + |
| ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS); |
| if (score < min) { |
| min = score; |
| qscale = q; |
| } |
| } |
| bits += ctx->mb_rc[qscale][mb].bits; |
| ctx->mb_qscale[mb] = qscale; |
| ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits; |
| } |
| bits = (bits + 31) & ~31; // padding |
| if (bits > ctx->frame_bits) |
| break; |
| } |
| // ff_dlog(ctx->m.avctx, |
| // "lambda %d, up %u, down %u, bits %d, frame %d\n", |
| // lambda, last_higher, last_lower, bits, ctx->frame_bits); |
| if (end) { |
| if (bits > ctx->frame_bits) |
| return AVERROR(EINVAL); |
| break; |
| } |
| if (bits < ctx->frame_bits) { |
| last_lower = FFMIN(lambda, last_lower); |
| if (last_higher != 0) |
| lambda = (lambda+last_higher)>>1; |
| else |
| lambda -= down_step; |
| down_step = FFMIN((int64_t)down_step*5, INT_MAX); |
| up_step = 1<<LAMBDA_FRAC_BITS; |
| lambda = FFMAX(1, lambda); |
| if (lambda == last_lower) |
| break; |
| } else { |
| last_higher = FFMAX(lambda, last_higher); |
| if (last_lower != INT_MAX) |
| lambda = (lambda+last_lower)>>1; |
| else if ((int64_t)lambda + up_step > INT_MAX) |
| return AVERROR(EINVAL); |
| else |
| lambda += up_step; |
| up_step = FFMIN((int64_t)up_step*5, INT_MAX); |
| down_step = 1<<LAMBDA_FRAC_BITS; |
| } |
| } |
| //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda); |
| ctx->lambda = lambda; |
| return 0; |
| } |
| |
| static int dnxhd_find_qscale(DNXHDEncContext *ctx) |
| { |
| int bits = 0; |
| int up_step = 1; |
| int down_step = 1; |
| int last_higher = 0; |
| int last_lower = INT_MAX; |
| int qscale; |
| int x, y; |
| |
| qscale = ctx->qscale; |
| for (;;) { |
| bits = 0; |
| ctx->qscale = qscale; |
| // XXX avoid recalculating bits |
| ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, |
| NULL, NULL, ctx->m.mb_height); |
| for (y = 0; y < ctx->m.mb_height; y++) { |
| for (x = 0; x < ctx->m.mb_width; x++) |
| bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits; |
| bits = (bits+31)&~31; // padding |
| if (bits > ctx->frame_bits) |
| break; |
| } |
| // ff_dlog(ctx->m.avctx, |
| // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n", |
| // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, |
| // last_higher, last_lower); |
| if (bits < ctx->frame_bits) { |
| if (qscale == 1) |
| return 1; |
| if (last_higher == qscale - 1) { |
| qscale = last_higher; |
| break; |
| } |
| last_lower = FFMIN(qscale, last_lower); |
| if (last_higher != 0) |
| qscale = (qscale + last_higher) >> 1; |
| else |
| qscale -= down_step++; |
| if (qscale < 1) |
| qscale = 1; |
| up_step = 1; |
| } else { |
| if (last_lower == qscale + 1) |
| break; |
| last_higher = FFMAX(qscale, last_higher); |
| if (last_lower != INT_MAX) |
| qscale = (qscale + last_lower) >> 1; |
| else |
| qscale += up_step++; |
| down_step = 1; |
| if (qscale >= ctx->m.avctx->qmax) |
| return AVERROR(EINVAL); |
| } |
| } |
| //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale); |
| ctx->qscale = qscale; |
| return 0; |
| } |
| |
| #define BUCKET_BITS 8 |
| #define RADIX_PASSES 4 |
| #define NBUCKETS (1 << BUCKET_BITS) |
| |
| static inline int get_bucket(int value, int shift) |
| { |
| value >>= shift; |
| value &= NBUCKETS - 1; |
| return NBUCKETS - 1 - value; |
| } |
| |
| static void radix_count(const RCCMPEntry *data, int size, |
| int buckets[RADIX_PASSES][NBUCKETS]) |
| { |
| int i, j; |
| memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS); |
| for (i = 0; i < size; i++) { |
| int v = data[i].value; |
| for (j = 0; j < RADIX_PASSES; j++) { |
| buckets[j][get_bucket(v, 0)]++; |
| v >>= BUCKET_BITS; |
| } |
| av_assert1(!v); |
| } |
| for (j = 0; j < RADIX_PASSES; j++) { |
| int offset = size; |
| for (i = NBUCKETS - 1; i >= 0; i--) |
| buckets[j][i] = offset -= buckets[j][i]; |
| av_assert1(!buckets[j][0]); |
| } |
| } |
| |
| static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, |
| int size, int buckets[NBUCKETS], int pass) |
| { |
| int shift = pass * BUCKET_BITS; |
| int i; |
| for (i = 0; i < size; i++) { |
| int v = get_bucket(data[i].value, shift); |
| int pos = buckets[v]++; |
| dst[pos] = data[i]; |
| } |
| } |
| |
| static void radix_sort(RCCMPEntry *data, int size) |
| { |
| int buckets[RADIX_PASSES][NBUCKETS]; |
| RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp)); |
| radix_count(data, size, buckets); |
| radix_sort_pass(tmp, data, size, buckets[0], 0); |
| radix_sort_pass(data, tmp, size, buckets[1], 1); |
| if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) { |
| radix_sort_pass(tmp, data, size, buckets[2], 2); |
| radix_sort_pass(data, tmp, size, buckets[3], 3); |
| } |
| av_free(tmp); |
| } |
| |
| static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx) |
| { |
| int max_bits = 0; |
| int ret, x, y; |
| if ((ret = dnxhd_find_qscale(ctx)) < 0) |
| return ret; |
| for (y = 0; y < ctx->m.mb_height; y++) { |
| for (x = 0; x < ctx->m.mb_width; x++) { |
| int mb = y * ctx->m.mb_width + x; |
| int delta_bits; |
| ctx->mb_qscale[mb] = ctx->qscale; |
| ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits; |
| max_bits += ctx->mb_rc[ctx->qscale][mb].bits; |
| if (!RC_VARIANCE) { |
| delta_bits = ctx->mb_rc[ctx->qscale][mb].bits - |
| ctx->mb_rc[ctx->qscale + 1][mb].bits; |
| ctx->mb_cmp[mb].mb = mb; |
| ctx->mb_cmp[mb].value = |
| delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd - |
| ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) / |
| delta_bits |
| : INT_MIN; // avoid increasing qscale |
| } |
| } |
| max_bits += 31; // worst padding |
| } |
| if (!ret) { |
| if (RC_VARIANCE) |
| avctx->execute2(avctx, dnxhd_mb_var_thread, |
| NULL, NULL, ctx->m.mb_height); |
| radix_sort(ctx->mb_cmp, ctx->m.mb_num); |
| for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) { |
| int mb = ctx->mb_cmp[x].mb; |
| max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - |
| ctx->mb_rc[ctx->qscale + 1][mb].bits; |
| ctx->mb_qscale[mb] = ctx->qscale + 1; |
| ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits; |
| } |
| } |
| return 0; |
| } |
| |
| static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame) |
| { |
| int i; |
| |
| for (i = 0; i < ctx->m.avctx->thread_count; i++) { |
| ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced; |
| ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced; |
| ctx->thread[i]->dct_y_offset = ctx->m.linesize *8; |
| ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8; |
| } |
| |
| #if FF_API_CODED_FRAME |
| FF_DISABLE_DEPRECATION_WARNINGS |
| ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| ctx->cur_field = frame->interlaced_frame && !frame->top_field_first; |
| } |
| |
| static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt, |
| const AVFrame *frame, int *got_packet) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int first_field = 1; |
| int offset, i, ret; |
| uint8_t *buf; |
| |
| if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size, 0)) < 0) |
| return ret; |
| buf = pkt->data; |
| |
| dnxhd_load_picture(ctx, frame); |
| |
| encode_coding_unit: |
| for (i = 0; i < 3; i++) { |
| ctx->src[i] = frame->data[i]; |
| if (ctx->interlaced && ctx->cur_field) |
| ctx->src[i] += frame->linesize[i]; |
| } |
| |
| dnxhd_write_header(avctx, buf); |
| |
| if (avctx->mb_decision == FF_MB_DECISION_RD) |
| ret = dnxhd_encode_rdo(avctx, ctx); |
| else |
| ret = dnxhd_encode_fast(avctx, ctx); |
| if (ret < 0) { |
| av_log(avctx, AV_LOG_ERROR, |
| "picture could not fit ratecontrol constraints, increase qmax\n"); |
| return ret; |
| } |
| |
| dnxhd_setup_threads_slices(ctx); |
| |
| offset = 0; |
| for (i = 0; i < ctx->m.mb_height; i++) { |
| AV_WB32(ctx->msip + i * 4, offset); |
| offset += ctx->slice_size[i]; |
| av_assert1(!(ctx->slice_size[i] & 3)); |
| } |
| |
| avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height); |
| |
| av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size); |
| memset(buf + 640 + offset, 0, |
| ctx->cid_table->coding_unit_size - 4 - offset - 640); |
| |
| AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF |
| |
| if (ctx->interlaced && first_field) { |
| first_field = 0; |
| ctx->cur_field ^= 1; |
| buf += ctx->cid_table->coding_unit_size; |
| goto encode_coding_unit; |
| } |
| |
| #if FF_API_CODED_FRAME |
| FF_DISABLE_DEPRECATION_WARNINGS |
| avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I); |
| |
| pkt->flags |= AV_PKT_FLAG_KEY; |
| *got_packet = 1; |
| return 0; |
| } |
| |
| static av_cold int dnxhd_encode_end(AVCodecContext *avctx) |
| { |
| DNXHDEncContext *ctx = avctx->priv_data; |
| int max_level = 1 << (ctx->cid_table->bit_depth + 2); |
| int i; |
| |
| av_free(ctx->vlc_codes - max_level * 2); |
| av_free(ctx->vlc_bits - max_level * 2); |
| av_freep(&ctx->run_codes); |
| av_freep(&ctx->run_bits); |
| |
| av_freep(&ctx->mb_bits); |
| av_freep(&ctx->mb_qscale); |
| av_freep(&ctx->mb_rc); |
| av_freep(&ctx->mb_cmp); |
| av_freep(&ctx->slice_size); |
| av_freep(&ctx->slice_offs); |
| |
| av_freep(&ctx->qmatrix_c); |
| av_freep(&ctx->qmatrix_l); |
| av_freep(&ctx->qmatrix_c16); |
| av_freep(&ctx->qmatrix_l16); |
| |
| for (i = 1; i < avctx->thread_count; i++) |
| av_freep(&ctx->thread[i]); |
| |
| return 0; |
| } |
| |
| static const AVCodecDefault dnxhd_defaults[] = { |
| { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */ |
| { NULL }, |
| }; |
| |
| AVCodec ff_dnxhd_encoder = { |
| .name = "dnxhd", |
| .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_DNXHD, |
| .priv_data_size = sizeof(DNXHDEncContext), |
| .init = dnxhd_encode_init, |
| .encode2 = dnxhd_encode_picture, |
| .close = dnxhd_encode_end, |
| .capabilities = AV_CODEC_CAP_SLICE_THREADS, |
| .pix_fmts = (const enum AVPixelFormat[]) { |
| AV_PIX_FMT_YUV422P, |
| AV_PIX_FMT_YUV422P10, |
| AV_PIX_FMT_NONE |
| }, |
| .priv_class = &dnxhd_class, |
| .defaults = dnxhd_defaults, |
| }; |