| /* |
| * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Codebook Generator using the ELBG algorithm |
| */ |
| |
| #include <string.h> |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/common.h" |
| #include "libavutil/lfg.h" |
| #include "elbg.h" |
| #include "avcodec.h" |
| |
| #define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentual error) |
| |
| /** |
| * In the ELBG jargon, a cell is the set of points that are closest to a |
| * codebook entry. Not to be confused with a RoQ Video cell. */ |
| typedef struct cell_s { |
| int index; |
| struct cell_s *next; |
| } cell; |
| |
| /** |
| * ELBG internal data |
| */ |
| typedef struct elbg_data { |
| int error; |
| int dim; |
| int numCB; |
| int *codebook; |
| cell **cells; |
| int *utility; |
| int64_t *utility_inc; |
| int *nearest_cb; |
| int *points; |
| AVLFG *rand_state; |
| int *scratchbuf; |
| } elbg_data; |
| |
| static inline int distance_limited(int *a, int *b, int dim, int limit) |
| { |
| int i, dist=0; |
| for (i=0; i<dim; i++) { |
| dist += (a[i] - b[i])*(a[i] - b[i]); |
| if (dist > limit) |
| return INT_MAX; |
| } |
| |
| return dist; |
| } |
| |
| static inline void vect_division(int *res, int *vect, int div, int dim) |
| { |
| int i; |
| if (div > 1) |
| for (i=0; i<dim; i++) |
| res[i] = ROUNDED_DIV(vect[i],div); |
| else if (res != vect) |
| memcpy(res, vect, dim*sizeof(int)); |
| |
| } |
| |
| static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells) |
| { |
| int error=0; |
| for (; cells; cells=cells->next) |
| error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX); |
| |
| return error; |
| } |
| |
| static int get_closest_codebook(elbg_data *elbg, int index) |
| { |
| int i, pick=0, diff, diff_min = INT_MAX; |
| for (i=0; i<elbg->numCB; i++) |
| if (i != index) { |
| diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min); |
| if (diff < diff_min) { |
| pick = i; |
| diff_min = diff; |
| } |
| } |
| return pick; |
| } |
| |
| static int get_high_utility_cell(elbg_data *elbg) |
| { |
| int i=0; |
| /* Using linear search, do binary if it ever turns to be speed critical */ |
| uint64_t r; |
| |
| if (elbg->utility_inc[elbg->numCB-1] < INT_MAX) { |
| r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->numCB-1] + 1; |
| } else { |
| r = av_lfg_get(elbg->rand_state); |
| r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->numCB-1] + 1; |
| } |
| |
| while (elbg->utility_inc[i] < r) { |
| i++; |
| } |
| |
| av_assert2(elbg->cells[i]); |
| |
| return i; |
| } |
| |
| /** |
| * Implementation of the simple LBG algorithm for just two codebooks |
| */ |
| static int simple_lbg(elbg_data *elbg, |
| int dim, |
| int *centroid[3], |
| int newutility[3], |
| int *points, |
| cell *cells) |
| { |
| int i, idx; |
| int numpoints[2] = {0,0}; |
| int *newcentroid[2] = { |
| elbg->scratchbuf + 3*dim, |
| elbg->scratchbuf + 4*dim |
| }; |
| cell *tempcell; |
| |
| memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0])); |
| |
| newutility[0] = |
| newutility[1] = 0; |
| |
| for (tempcell = cells; tempcell; tempcell=tempcell->next) { |
| idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>= |
| distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX); |
| numpoints[idx]++; |
| for (i=0; i<dim; i++) |
| newcentroid[idx][i] += points[tempcell->index*dim + i]; |
| } |
| |
| vect_division(centroid[0], newcentroid[0], numpoints[0], dim); |
| vect_division(centroid[1], newcentroid[1], numpoints[1], dim); |
| |
| for (tempcell = cells; tempcell; tempcell=tempcell->next) { |
| int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX), |
| distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)}; |
| int idx = dist[0] > dist[1]; |
| newutility[idx] += dist[idx]; |
| } |
| |
| return newutility[0] + newutility[1]; |
| } |
| |
| static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i, |
| int *newcentroid_p) |
| { |
| cell *tempcell; |
| int *min = newcentroid_i; |
| int *max = newcentroid_p; |
| int i; |
| |
| for (i=0; i< elbg->dim; i++) { |
| min[i]=INT_MAX; |
| max[i]=0; |
| } |
| |
| for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next) |
| for(i=0; i<elbg->dim; i++) { |
| min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]); |
| max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]); |
| } |
| |
| for (i=0; i<elbg->dim; i++) { |
| int ni = min[i] + (max[i] - min[i])/3; |
| int np = min[i] + (2*(max[i] - min[i]))/3; |
| newcentroid_i[i] = ni; |
| newcentroid_p[i] = np; |
| } |
| } |
| |
| /** |
| * Add the points in the low utility cell to its closest cell. Split the high |
| * utility cell, putting the separate points in the (now empty) low utility |
| * cell. |
| * |
| * @param elbg Internal elbg data |
| * @param indexes {luc, huc, cluc} |
| * @param newcentroid A vector with the position of the new centroids |
| */ |
| static void shift_codebook(elbg_data *elbg, int *indexes, |
| int *newcentroid[3]) |
| { |
| cell *tempdata; |
| cell **pp = &elbg->cells[indexes[2]]; |
| |
| while(*pp) |
| pp= &(*pp)->next; |
| |
| *pp = elbg->cells[indexes[0]]; |
| |
| elbg->cells[indexes[0]] = NULL; |
| tempdata = elbg->cells[indexes[1]]; |
| elbg->cells[indexes[1]] = NULL; |
| |
| while(tempdata) { |
| cell *tempcell2 = tempdata->next; |
| int idx = distance_limited(elbg->points + tempdata->index*elbg->dim, |
| newcentroid[0], elbg->dim, INT_MAX) > |
| distance_limited(elbg->points + tempdata->index*elbg->dim, |
| newcentroid[1], elbg->dim, INT_MAX); |
| |
| tempdata->next = elbg->cells[indexes[idx]]; |
| elbg->cells[indexes[idx]] = tempdata; |
| tempdata = tempcell2; |
| } |
| } |
| |
| static void evaluate_utility_inc(elbg_data *elbg) |
| { |
| int i; |
| int64_t inc=0; |
| |
| for (i=0; i < elbg->numCB; i++) { |
| if (elbg->numCB*elbg->utility[i] > elbg->error) |
| inc += elbg->utility[i]; |
| elbg->utility_inc[i] = inc; |
| } |
| } |
| |
| |
| static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility) |
| { |
| cell *tempcell; |
| |
| elbg->utility[idx] = newutility; |
| for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next) |
| elbg->nearest_cb[tempcell->index] = idx; |
| } |
| |
| /** |
| * Evaluate if a shift lower the error. If it does, call shift_codebooks |
| * and update elbg->error, elbg->utility and elbg->nearest_cb. |
| * |
| * @param elbg Internal elbg data |
| * @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)} |
| */ |
| static void try_shift_candidate(elbg_data *elbg, int idx[3]) |
| { |
| int j, k, olderror=0, newerror, cont=0; |
| int newutility[3]; |
| int *newcentroid[3] = { |
| elbg->scratchbuf, |
| elbg->scratchbuf + elbg->dim, |
| elbg->scratchbuf + 2*elbg->dim |
| }; |
| cell *tempcell; |
| |
| for (j=0; j<3; j++) |
| olderror += elbg->utility[idx[j]]; |
| |
| memset(newcentroid[2], 0, elbg->dim*sizeof(int)); |
| |
| for (k=0; k<2; k++) |
| for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) { |
| cont++; |
| for (j=0; j<elbg->dim; j++) |
| newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j]; |
| } |
| |
| vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim); |
| |
| get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]); |
| |
| newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]); |
| newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]); |
| |
| newerror = newutility[2]; |
| |
| newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points, |
| elbg->cells[idx[1]]); |
| |
| if (olderror > newerror) { |
| shift_codebook(elbg, idx, newcentroid); |
| |
| elbg->error += newerror - olderror; |
| |
| for (j=0; j<3; j++) |
| update_utility_and_n_cb(elbg, idx[j], newutility[j]); |
| |
| evaluate_utility_inc(elbg); |
| } |
| } |
| |
| /** |
| * Implementation of the ELBG block |
| */ |
| static void do_shiftings(elbg_data *elbg) |
| { |
| int idx[3]; |
| |
| evaluate_utility_inc(elbg); |
| |
| for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++) |
| if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) { |
| if (elbg->utility_inc[elbg->numCB-1] == 0) |
| return; |
| |
| idx[1] = get_high_utility_cell(elbg); |
| idx[2] = get_closest_codebook(elbg, idx[0]); |
| |
| if (idx[1] != idx[0] && idx[1] != idx[2]) |
| try_shift_candidate(elbg, idx); |
| } |
| } |
| |
| #define BIG_PRIME 433494437LL |
| |
| int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook, |
| int numCB, int max_steps, int *closest_cb, |
| AVLFG *rand_state) |
| { |
| int i, k, ret = 0; |
| |
| if (numpoints > 24*numCB) { |
| /* ELBG is very costly for a big number of points. So if we have a lot |
| of them, get a good initial codebook to save on iterations */ |
| int *temp_points = av_malloc_array(dim, (numpoints/8)*sizeof(int)); |
| if (!temp_points) |
| return AVERROR(ENOMEM); |
| for (i=0; i<numpoints/8; i++) { |
| k = (i*BIG_PRIME) % numpoints; |
| memcpy(temp_points + i*dim, points + k*dim, dim*sizeof(int)); |
| } |
| |
| ret = avpriv_init_elbg(temp_points, dim, numpoints / 8, codebook, |
| numCB, 2 * max_steps, closest_cb, rand_state); |
| if (ret < 0) { |
| av_freep(&temp_points); |
| return ret; |
| } |
| ret = avpriv_do_elbg(temp_points, dim, numpoints / 8, codebook, |
| numCB, 2 * max_steps, closest_cb, rand_state); |
| av_free(temp_points); |
| |
| } else // If not, initialize the codebook with random positions |
| for (i=0; i < numCB; i++) |
| memcpy(codebook + i*dim, points + ((i*BIG_PRIME)%numpoints)*dim, |
| dim*sizeof(int)); |
| return ret; |
| } |
| |
| int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook, |
| int numCB, int max_steps, int *closest_cb, |
| AVLFG *rand_state) |
| { |
| int dist; |
| elbg_data elbg_d; |
| elbg_data *elbg = &elbg_d; |
| int i, j, k, last_error, steps = 0, ret = 0; |
| int *dist_cb = av_malloc_array(numpoints, sizeof(int)); |
| int *size_part = av_malloc_array(numCB, sizeof(int)); |
| cell *list_buffer = av_malloc_array(numpoints, sizeof(cell)); |
| cell *free_cells; |
| int best_dist, best_idx = 0; |
| |
| elbg->error = INT_MAX; |
| elbg->dim = dim; |
| elbg->numCB = numCB; |
| elbg->codebook = codebook; |
| elbg->cells = av_malloc_array(numCB, sizeof(cell *)); |
| elbg->utility = av_malloc_array(numCB, sizeof(int)); |
| elbg->nearest_cb = closest_cb; |
| elbg->points = points; |
| elbg->utility_inc = av_malloc_array(numCB, sizeof(*elbg->utility_inc)); |
| elbg->scratchbuf = av_malloc_array(5*dim, sizeof(int)); |
| |
| if (!dist_cb || !size_part || !list_buffer || !elbg->cells || |
| !elbg->utility || !elbg->utility_inc || !elbg->scratchbuf) { |
| ret = AVERROR(ENOMEM); |
| goto out; |
| } |
| |
| elbg->rand_state = rand_state; |
| |
| do { |
| free_cells = list_buffer; |
| last_error = elbg->error; |
| steps++; |
| memset(elbg->utility, 0, numCB*sizeof(int)); |
| memset(elbg->cells, 0, numCB*sizeof(cell *)); |
| |
| elbg->error = 0; |
| |
| /* This loop evaluate the actual Voronoi partition. It is the most |
| costly part of the algorithm. */ |
| for (i=0; i < numpoints; i++) { |
| best_dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + best_idx*elbg->dim, dim, INT_MAX); |
| for (k=0; k < elbg->numCB; k++) { |
| dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, best_dist); |
| if (dist < best_dist) { |
| best_dist = dist; |
| best_idx = k; |
| } |
| } |
| elbg->nearest_cb[i] = best_idx; |
| dist_cb[i] = best_dist; |
| elbg->error += dist_cb[i]; |
| elbg->utility[elbg->nearest_cb[i]] += dist_cb[i]; |
| free_cells->index = i; |
| free_cells->next = elbg->cells[elbg->nearest_cb[i]]; |
| elbg->cells[elbg->nearest_cb[i]] = free_cells; |
| free_cells++; |
| } |
| |
| do_shiftings(elbg); |
| |
| memset(size_part, 0, numCB*sizeof(int)); |
| |
| memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int)); |
| |
| for (i=0; i < numpoints; i++) { |
| size_part[elbg->nearest_cb[i]]++; |
| for (j=0; j < elbg->dim; j++) |
| elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] += |
| elbg->points[i*elbg->dim + j]; |
| } |
| |
| for (i=0; i < elbg->numCB; i++) |
| vect_division(elbg->codebook + i*elbg->dim, |
| elbg->codebook + i*elbg->dim, size_part[i], elbg->dim); |
| |
| } while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) && |
| (steps < max_steps)); |
| |
| out: |
| av_free(dist_cb); |
| av_free(size_part); |
| av_free(elbg->utility); |
| av_free(list_buffer); |
| av_free(elbg->cells); |
| av_free(elbg->utility_inc); |
| av_free(elbg->scratchbuf); |
| return ret; |
| } |