| /* |
| * OpenEXR (.exr) image decoder |
| * Copyright (c) 2009 Jimmy Christensen |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * OpenEXR decoder |
| * @author Jimmy Christensen |
| * |
| * For more information on the OpenEXR format, visit: |
| * http://openexr.com/ |
| * |
| * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger. |
| * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner. |
| */ |
| |
| #include <float.h> |
| #include <zlib.h> |
| |
| #include "libavutil/imgutils.h" |
| #include "libavutil/intfloat.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/color_utils.h" |
| |
| #include "avcodec.h" |
| #include "bytestream.h" |
| #include "get_bits.h" |
| #include "internal.h" |
| #include "mathops.h" |
| #include "thread.h" |
| |
| enum ExrCompr { |
| EXR_RAW, |
| EXR_RLE, |
| EXR_ZIP1, |
| EXR_ZIP16, |
| EXR_PIZ, |
| EXR_PXR24, |
| EXR_B44, |
| EXR_B44A, |
| EXR_UNKN, |
| }; |
| |
| enum ExrPixelType { |
| EXR_UINT, |
| EXR_HALF, |
| EXR_FLOAT, |
| EXR_UNKNOWN, |
| }; |
| |
| typedef struct EXRChannel { |
| int xsub, ysub; |
| enum ExrPixelType pixel_type; |
| } EXRChannel; |
| |
| typedef struct EXRThreadData { |
| uint8_t *uncompressed_data; |
| int uncompressed_size; |
| |
| uint8_t *tmp; |
| int tmp_size; |
| |
| uint8_t *bitmap; |
| uint16_t *lut; |
| } EXRThreadData; |
| |
| typedef struct EXRContext { |
| AVClass *class; |
| AVFrame *picture; |
| AVCodecContext *avctx; |
| |
| enum ExrCompr compression; |
| enum ExrPixelType pixel_type; |
| int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha |
| const AVPixFmtDescriptor *desc; |
| |
| int w, h; |
| uint32_t xmax, xmin; |
| uint32_t ymax, ymin; |
| uint32_t xdelta, ydelta; |
| int ysize; |
| |
| uint64_t scan_line_size; |
| int scan_lines_per_block; |
| |
| GetByteContext gb; |
| const uint8_t *buf; |
| int buf_size; |
| |
| EXRChannel *channels; |
| int nb_channels; |
| |
| EXRThreadData *thread_data; |
| |
| const char *layer; |
| |
| enum AVColorTransferCharacteristic apply_trc_type; |
| float gamma; |
| uint16_t gamma_table[65536]; |
| } EXRContext; |
| |
| /* -15 stored using a single precision bias of 127 */ |
| #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000 |
| |
| /* max exponent value in single precision that will be converted |
| * to Inf or Nan when stored as a half-float */ |
| #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000 |
| |
| /* 255 is the max exponent biased value */ |
| #define FLOAT_MAX_BIASED_EXP (0xFF << 23) |
| |
| #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10) |
| |
| /** |
| * Convert a half float as a uint16_t into a full float. |
| * |
| * @param hf half float as uint16_t |
| * |
| * @return float value |
| */ |
| static union av_intfloat32 exr_half2float(uint16_t hf) |
| { |
| unsigned int sign = (unsigned int) (hf >> 15); |
| unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1)); |
| unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP); |
| union av_intfloat32 f; |
| |
| if (exp == HALF_FLOAT_MAX_BIASED_EXP) { |
| // we have a half-float NaN or Inf |
| // half-float NaNs will be converted to a single precision NaN |
| // half-float Infs will be converted to a single precision Inf |
| exp = FLOAT_MAX_BIASED_EXP; |
| if (mantissa) |
| mantissa = (1 << 23) - 1; // set all bits to indicate a NaN |
| } else if (exp == 0x0) { |
| // convert half-float zero/denorm to single precision value |
| if (mantissa) { |
| mantissa <<= 1; |
| exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; |
| // check for leading 1 in denorm mantissa |
| while ((mantissa & (1 << 10))) { |
| // for every leading 0, decrement single precision exponent by 1 |
| // and shift half-float mantissa value to the left |
| mantissa <<= 1; |
| exp -= (1 << 23); |
| } |
| // clamp the mantissa to 10-bits |
| mantissa &= ((1 << 10) - 1); |
| // shift left to generate single-precision mantissa of 23-bits |
| mantissa <<= 13; |
| } |
| } else { |
| // shift left to generate single-precision mantissa of 23-bits |
| mantissa <<= 13; |
| // generate single precision biased exponent value |
| exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP; |
| } |
| |
| f.i = (sign << 31) | exp | mantissa; |
| |
| return f; |
| } |
| |
| |
| /** |
| * Convert from 32-bit float as uint32_t to uint16_t. |
| * |
| * @param v 32-bit float |
| * |
| * @return normalized 16-bit unsigned int |
| */ |
| static inline uint16_t exr_flt2uint(uint32_t v) |
| { |
| unsigned int exp = v >> 23; |
| // "HACK": negative values result in exp< 0, so clipping them to 0 |
| // is also handled by this condition, avoids explicit check for sign bit. |
| if (exp <= 127 + 7 - 24) // we would shift out all bits anyway |
| return 0; |
| if (exp >= 127) |
| return 0xffff; |
| v &= 0x007fffff; |
| return (v + (1 << 23)) >> (127 + 7 - exp); |
| } |
| |
| /** |
| * Convert from 16-bit float as uint16_t to uint16_t. |
| * |
| * @param v 16-bit float |
| * |
| * @return normalized 16-bit unsigned int |
| */ |
| static inline uint16_t exr_halflt2uint(uint16_t v) |
| { |
| unsigned exp = 14 - (v >> 10); |
| if (exp >= 14) { |
| if (exp == 14) |
| return (v >> 9) & 1; |
| else |
| return (v & 0x8000) ? 0 : 0xffff; |
| } |
| v <<= 6; |
| return (v + (1 << 16)) >> (exp + 1); |
| } |
| |
| static void predictor(uint8_t *src, int size) |
| { |
| uint8_t *t = src + 1; |
| uint8_t *stop = src + size; |
| |
| while (t < stop) { |
| int d = (int) t[-1] + (int) t[0] - 128; |
| t[0] = d; |
| ++t; |
| } |
| } |
| |
| static void reorder_pixels(uint8_t *src, uint8_t *dst, int size) |
| { |
| const int8_t *t1 = src; |
| const int8_t *t2 = src + (size + 1) / 2; |
| int8_t *s = dst; |
| int8_t *stop = s + size; |
| |
| while (1) { |
| if (s < stop) |
| *(s++) = *(t1++); |
| else |
| break; |
| |
| if (s < stop) |
| *(s++) = *(t2++); |
| else |
| break; |
| } |
| } |
| |
| static int zip_uncompress(const uint8_t *src, int compressed_size, |
| int uncompressed_size, EXRThreadData *td) |
| { |
| unsigned long dest_len = uncompressed_size; |
| |
| if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || |
| dest_len != uncompressed_size) |
| return AVERROR_INVALIDDATA; |
| |
| predictor(td->tmp, uncompressed_size); |
| reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); |
| |
| return 0; |
| } |
| |
| static int rle_uncompress(const uint8_t *src, int compressed_size, |
| int uncompressed_size, EXRThreadData *td) |
| { |
| uint8_t *d = td->tmp; |
| const int8_t *s = src; |
| int ssize = compressed_size; |
| int dsize = uncompressed_size; |
| uint8_t *dend = d + dsize; |
| int count; |
| |
| while (ssize > 0) { |
| count = *s++; |
| |
| if (count < 0) { |
| count = -count; |
| |
| if ((dsize -= count) < 0 || |
| (ssize -= count + 1) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| while (count--) |
| *d++ = *s++; |
| } else { |
| count++; |
| |
| if ((dsize -= count) < 0 || |
| (ssize -= 2) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| while (count--) |
| *d++ = *s; |
| |
| s++; |
| } |
| } |
| |
| if (dend != d) |
| return AVERROR_INVALIDDATA; |
| |
| predictor(td->tmp, uncompressed_size); |
| reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size); |
| |
| return 0; |
| } |
| |
| #define USHORT_RANGE (1 << 16) |
| #define BITMAP_SIZE (1 << 13) |
| |
| static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut) |
| { |
| int i, k = 0; |
| |
| for (i = 0; i < USHORT_RANGE; i++) |
| if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) |
| lut[k++] = i; |
| |
| i = k - 1; |
| |
| memset(lut + k, 0, (USHORT_RANGE - k) * 2); |
| |
| return i; |
| } |
| |
| static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize) |
| { |
| int i; |
| |
| for (i = 0; i < dsize; ++i) |
| dst[i] = lut[dst[i]]; |
| } |
| |
| #define HUF_ENCBITS 16 // literal (value) bit length |
| #define HUF_DECBITS 14 // decoding bit size (>= 8) |
| |
| #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size |
| #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size |
| #define HUF_DECMASK (HUF_DECSIZE - 1) |
| |
| typedef struct HufDec { |
| int len; |
| int lit; |
| int *p; |
| } HufDec; |
| |
| static void huf_canonical_code_table(uint64_t *hcode) |
| { |
| uint64_t c, n[59] = { 0 }; |
| int i; |
| |
| for (i = 0; i < HUF_ENCSIZE; ++i) |
| n[hcode[i]] += 1; |
| |
| c = 0; |
| for (i = 58; i > 0; --i) { |
| uint64_t nc = ((c + n[i]) >> 1); |
| n[i] = c; |
| c = nc; |
| } |
| |
| for (i = 0; i < HUF_ENCSIZE; ++i) { |
| int l = hcode[i]; |
| |
| if (l > 0) |
| hcode[i] = l | (n[l]++ << 6); |
| } |
| } |
| |
| #define SHORT_ZEROCODE_RUN 59 |
| #define LONG_ZEROCODE_RUN 63 |
| #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN) |
| #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN) |
| |
| static int huf_unpack_enc_table(GetByteContext *gb, |
| int32_t im, int32_t iM, uint64_t *hcode) |
| { |
| GetBitContext gbit; |
| int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb)); |
| if (ret < 0) |
| return ret; |
| |
| for (; im <= iM; im++) { |
| uint64_t l = hcode[im] = get_bits(&gbit, 6); |
| |
| if (l == LONG_ZEROCODE_RUN) { |
| int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN; |
| |
| if (im + zerun > iM + 1) |
| return AVERROR_INVALIDDATA; |
| |
| while (zerun--) |
| hcode[im++] = 0; |
| |
| im--; |
| } else if (l >= SHORT_ZEROCODE_RUN) { |
| int zerun = l - SHORT_ZEROCODE_RUN + 2; |
| |
| if (im + zerun > iM + 1) |
| return AVERROR_INVALIDDATA; |
| |
| while (zerun--) |
| hcode[im++] = 0; |
| |
| im--; |
| } |
| } |
| |
| bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8); |
| huf_canonical_code_table(hcode); |
| |
| return 0; |
| } |
| |
| static int huf_build_dec_table(const uint64_t *hcode, int im, |
| int iM, HufDec *hdecod) |
| { |
| for (; im <= iM; im++) { |
| uint64_t c = hcode[im] >> 6; |
| int i, l = hcode[im] & 63; |
| |
| if (c >> l) |
| return AVERROR_INVALIDDATA; |
| |
| if (l > HUF_DECBITS) { |
| HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); |
| if (pl->len) |
| return AVERROR_INVALIDDATA; |
| |
| pl->lit++; |
| |
| pl->p = av_realloc(pl->p, pl->lit * sizeof(int)); |
| if (!pl->p) |
| return AVERROR(ENOMEM); |
| |
| pl->p[pl->lit - 1] = im; |
| } else if (l) { |
| HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); |
| |
| for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) { |
| if (pl->len || pl->p) |
| return AVERROR_INVALIDDATA; |
| pl->len = l; |
| pl->lit = im; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define get_char(c, lc, gb) \ |
| { \ |
| c = (c << 8) | bytestream2_get_byte(gb); \ |
| lc += 8; \ |
| } |
| |
| #define get_code(po, rlc, c, lc, gb, out, oe, outb) \ |
| { \ |
| if (po == rlc) { \ |
| if (lc < 8) \ |
| get_char(c, lc, gb); \ |
| lc -= 8; \ |
| \ |
| cs = c >> lc; \ |
| \ |
| if (out + cs > oe || out == outb) \ |
| return AVERROR_INVALIDDATA; \ |
| \ |
| s = out[-1]; \ |
| \ |
| while (cs-- > 0) \ |
| *out++ = s; \ |
| } else if (out < oe) { \ |
| *out++ = po; \ |
| } else { \ |
| return AVERROR_INVALIDDATA; \ |
| } \ |
| } |
| |
| static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, |
| GetByteContext *gb, int nbits, |
| int rlc, int no, uint16_t *out) |
| { |
| uint64_t c = 0; |
| uint16_t *outb = out; |
| uint16_t *oe = out + no; |
| const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size |
| uint8_t cs, s; |
| int i, lc = 0; |
| |
| while (gb->buffer < ie) { |
| get_char(c, lc, gb); |
| |
| while (lc >= HUF_DECBITS) { |
| const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; |
| |
| if (pl.len) { |
| lc -= pl.len; |
| get_code(pl.lit, rlc, c, lc, gb, out, oe, outb); |
| } else { |
| int j; |
| |
| if (!pl.p) |
| return AVERROR_INVALIDDATA; |
| |
| for (j = 0; j < pl.lit; j++) { |
| int l = hcode[pl.p[j]] & 63; |
| |
| while (lc < l && bytestream2_get_bytes_left(gb) > 0) |
| get_char(c, lc, gb); |
| |
| if (lc >= l) { |
| if ((hcode[pl.p[j]] >> 6) == |
| ((c >> (lc - l)) & ((1LL << l) - 1))) { |
| lc -= l; |
| get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb); |
| break; |
| } |
| } |
| } |
| |
| if (j == pl.lit) |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| } |
| |
| i = (8 - nbits) & 7; |
| c >>= i; |
| lc -= i; |
| |
| while (lc > 0) { |
| const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; |
| |
| if (pl.len) { |
| lc -= pl.len; |
| get_code(pl.lit, rlc, c, lc, gb, out, oe, outb); |
| } else { |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| if (out - outb != no) |
| return AVERROR_INVALIDDATA; |
| return 0; |
| } |
| |
| static int huf_uncompress(GetByteContext *gb, |
| uint16_t *dst, int dst_size) |
| { |
| int32_t src_size, im, iM; |
| uint32_t nBits; |
| uint64_t *freq; |
| HufDec *hdec; |
| int ret, i; |
| |
| src_size = bytestream2_get_le32(gb); |
| im = bytestream2_get_le32(gb); |
| iM = bytestream2_get_le32(gb); |
| bytestream2_skip(gb, 4); |
| nBits = bytestream2_get_le32(gb); |
| if (im < 0 || im >= HUF_ENCSIZE || |
| iM < 0 || iM >= HUF_ENCSIZE || |
| src_size < 0) |
| return AVERROR_INVALIDDATA; |
| |
| bytestream2_skip(gb, 4); |
| |
| freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq)); |
| hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec)); |
| if (!freq || !hdec) { |
| ret = AVERROR(ENOMEM); |
| goto fail; |
| } |
| |
| if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0) |
| goto fail; |
| |
| if (nBits > 8 * bytestream2_get_bytes_left(gb)) { |
| ret = AVERROR_INVALIDDATA; |
| goto fail; |
| } |
| |
| if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0) |
| goto fail; |
| ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst); |
| |
| fail: |
| for (i = 0; i < HUF_DECSIZE; i++) |
| if (hdec) |
| av_freep(&hdec[i].p); |
| |
| av_free(freq); |
| av_free(hdec); |
| |
| return ret; |
| } |
| |
| static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) |
| { |
| int16_t ls = l; |
| int16_t hs = h; |
| int hi = hs; |
| int ai = ls + (hi & 1) + (hi >> 1); |
| int16_t as = ai; |
| int16_t bs = ai - hi; |
| |
| *a = as; |
| *b = bs; |
| } |
| |
| #define NBITS 16 |
| #define A_OFFSET (1 << (NBITS - 1)) |
| #define MOD_MASK ((1 << NBITS) - 1) |
| |
| static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b) |
| { |
| int m = l; |
| int d = h; |
| int bb = (m - (d >> 1)) & MOD_MASK; |
| int aa = (d + bb - A_OFFSET) & MOD_MASK; |
| *b = bb; |
| *a = aa; |
| } |
| |
| static void wav_decode(uint16_t *in, int nx, int ox, |
| int ny, int oy, uint16_t mx) |
| { |
| int w14 = (mx < (1 << 14)); |
| int n = (nx > ny) ? ny : nx; |
| int p = 1; |
| int p2; |
| |
| while (p <= n) |
| p <<= 1; |
| |
| p >>= 1; |
| p2 = p; |
| p >>= 1; |
| |
| while (p >= 1) { |
| uint16_t *py = in; |
| uint16_t *ey = in + oy * (ny - p2); |
| uint16_t i00, i01, i10, i11; |
| int oy1 = oy * p; |
| int oy2 = oy * p2; |
| int ox1 = ox * p; |
| int ox2 = ox * p2; |
| |
| for (; py <= ey; py += oy2) { |
| uint16_t *px = py; |
| uint16_t *ex = py + ox * (nx - p2); |
| |
| for (; px <= ex; px += ox2) { |
| uint16_t *p01 = px + ox1; |
| uint16_t *p10 = px + oy1; |
| uint16_t *p11 = p10 + ox1; |
| |
| if (w14) { |
| wdec14(*px, *p10, &i00, &i10); |
| wdec14(*p01, *p11, &i01, &i11); |
| wdec14(i00, i01, px, p01); |
| wdec14(i10, i11, p10, p11); |
| } else { |
| wdec16(*px, *p10, &i00, &i10); |
| wdec16(*p01, *p11, &i01, &i11); |
| wdec16(i00, i01, px, p01); |
| wdec16(i10, i11, p10, p11); |
| } |
| } |
| |
| if (nx & p) { |
| uint16_t *p10 = px + oy1; |
| |
| if (w14) |
| wdec14(*px, *p10, &i00, p10); |
| else |
| wdec16(*px, *p10, &i00, p10); |
| |
| *px = i00; |
| } |
| } |
| |
| if (ny & p) { |
| uint16_t *px = py; |
| uint16_t *ex = py + ox * (nx - p2); |
| |
| for (; px <= ex; px += ox2) { |
| uint16_t *p01 = px + ox1; |
| |
| if (w14) |
| wdec14(*px, *p01, &i00, p01); |
| else |
| wdec16(*px, *p01, &i00, p01); |
| |
| *px = i00; |
| } |
| } |
| |
| p2 = p; |
| p >>= 1; |
| } |
| } |
| |
| static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, |
| int dsize, EXRThreadData *td) |
| { |
| GetByteContext gb; |
| uint16_t maxval, min_non_zero, max_non_zero; |
| uint16_t *ptr; |
| uint16_t *tmp = (uint16_t *)td->tmp; |
| uint8_t *out; |
| int ret, i, j; |
| |
| if (!td->bitmap) |
| td->bitmap = av_malloc(BITMAP_SIZE); |
| if (!td->lut) |
| td->lut = av_malloc(1 << 17); |
| if (!td->bitmap || !td->lut) { |
| av_freep(&td->bitmap); |
| av_freep(&td->lut); |
| return AVERROR(ENOMEM); |
| } |
| |
| bytestream2_init(&gb, src, ssize); |
| min_non_zero = bytestream2_get_le16(&gb); |
| max_non_zero = bytestream2_get_le16(&gb); |
| |
| if (max_non_zero >= BITMAP_SIZE) |
| return AVERROR_INVALIDDATA; |
| |
| memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE)); |
| if (min_non_zero <= max_non_zero) |
| bytestream2_get_buffer(&gb, td->bitmap + min_non_zero, |
| max_non_zero - min_non_zero + 1); |
| memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero); |
| |
| maxval = reverse_lut(td->bitmap, td->lut); |
| |
| ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t)); |
| if (ret) |
| return ret; |
| |
| ptr = tmp; |
| for (i = 0; i < s->nb_channels; i++) { |
| EXRChannel *channel = &s->channels[i]; |
| int size = channel->pixel_type; |
| |
| for (j = 0; j < size; j++) |
| wav_decode(ptr + j, s->xdelta, size, s->ysize, |
| s->xdelta * size, maxval); |
| ptr += s->xdelta * s->ysize * size; |
| } |
| |
| apply_lut(td->lut, tmp, dsize / sizeof(uint16_t)); |
| |
| out = td->uncompressed_data; |
| for (i = 0; i < s->ysize; i++) |
| for (j = 0; j < s->nb_channels; j++) { |
| uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta; |
| memcpy(out, in, s->xdelta * 2); |
| out += s->xdelta * 2; |
| } |
| |
| return 0; |
| } |
| |
| static int pxr24_uncompress(EXRContext *s, const uint8_t *src, |
| int compressed_size, int uncompressed_size, |
| EXRThreadData *td) |
| { |
| unsigned long dest_len = uncompressed_size; |
| const uint8_t *in = td->tmp; |
| uint8_t *out; |
| int c, i, j; |
| |
| if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK || |
| dest_len != uncompressed_size) |
| return AVERROR_INVALIDDATA; |
| |
| out = td->uncompressed_data; |
| for (i = 0; i < s->ysize; i++) |
| for (c = 0; c < s->nb_channels; c++) { |
| EXRChannel *channel = &s->channels[c]; |
| const uint8_t *ptr[4]; |
| uint32_t pixel = 0; |
| |
| switch (channel->pixel_type) { |
| case EXR_FLOAT: |
| ptr[0] = in; |
| ptr[1] = ptr[0] + s->xdelta; |
| ptr[2] = ptr[1] + s->xdelta; |
| in = ptr[2] + s->xdelta; |
| |
| for (j = 0; j < s->xdelta; ++j) { |
| uint32_t diff = (*(ptr[0]++) << 24) | |
| (*(ptr[1]++) << 16) | |
| (*(ptr[2]++) << 8); |
| pixel += diff; |
| bytestream_put_le32(&out, pixel); |
| } |
| break; |
| case EXR_HALF: |
| ptr[0] = in; |
| ptr[1] = ptr[0] + s->xdelta; |
| in = ptr[1] + s->xdelta; |
| for (j = 0; j < s->xdelta; j++) { |
| uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++); |
| |
| pixel += diff; |
| bytestream_put_le16(&out, pixel); |
| } |
| break; |
| default: |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int decode_block(AVCodecContext *avctx, void *tdata, |
| int jobnr, int threadnr) |
| { |
| EXRContext *s = avctx->priv_data; |
| AVFrame *const p = s->picture; |
| EXRThreadData *td = &s->thread_data[threadnr]; |
| const uint8_t *channel_buffer[4] = { 0 }; |
| const uint8_t *buf = s->buf; |
| uint64_t line_offset, uncompressed_size; |
| uint32_t xdelta = s->xdelta; |
| uint16_t *ptr_x; |
| uint8_t *ptr; |
| uint32_t data_size, line; |
| const uint8_t *src; |
| int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; |
| int bxmin = s->xmin * 2 * s->desc->nb_components; |
| int i, x, buf_size = s->buf_size; |
| float one_gamma = 1.0f / s->gamma; |
| avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type); |
| int ret; |
| |
| line_offset = AV_RL64(s->gb.buffer + jobnr * 8); |
| // Check if the buffer has the required bytes needed from the offset |
| if (line_offset > buf_size - 8) |
| return AVERROR_INVALIDDATA; |
| |
| src = buf + line_offset + 8; |
| line = AV_RL32(src - 8); |
| if (line < s->ymin || line > s->ymax) |
| return AVERROR_INVALIDDATA; |
| |
| data_size = AV_RL32(src - 4); |
| if (data_size <= 0 || data_size > buf_size) |
| return AVERROR_INVALIDDATA; |
| |
| s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); |
| uncompressed_size = s->scan_line_size * s->ysize; |
| if ((s->compression == EXR_RAW && (data_size != uncompressed_size || |
| line_offset > buf_size - uncompressed_size)) || |
| (s->compression != EXR_RAW && (data_size > uncompressed_size || |
| line_offset > buf_size - data_size))) { |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (data_size < uncompressed_size) { |
| av_fast_padded_malloc(&td->uncompressed_data, |
| &td->uncompressed_size, uncompressed_size); |
| av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size); |
| if (!td->uncompressed_data || !td->tmp) |
| return AVERROR(ENOMEM); |
| |
| ret = AVERROR_INVALIDDATA; |
| switch (s->compression) { |
| case EXR_ZIP1: |
| case EXR_ZIP16: |
| ret = zip_uncompress(src, data_size, uncompressed_size, td); |
| break; |
| case EXR_PIZ: |
| ret = piz_uncompress(s, src, data_size, uncompressed_size, td); |
| break; |
| case EXR_PXR24: |
| ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td); |
| break; |
| case EXR_RLE: |
| ret = rle_uncompress(src, data_size, uncompressed_size, td); |
| } |
| if (ret < 0) { |
| av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n"); |
| return ret; |
| } |
| src = td->uncompressed_data; |
| } |
| |
| channel_buffer[0] = src + xdelta * s->channel_offsets[0]; |
| channel_buffer[1] = src + xdelta * s->channel_offsets[1]; |
| channel_buffer[2] = src + xdelta * s->channel_offsets[2]; |
| if (s->channel_offsets[3] >= 0) |
| channel_buffer[3] = src + xdelta * s->channel_offsets[3]; |
| |
| ptr = p->data[0] + line * p->linesize[0]; |
| for (i = 0; |
| i < s->scan_lines_per_block && line + i <= s->ymax; |
| i++, ptr += p->linesize[0]) { |
| const uint8_t *r, *g, *b, *a; |
| |
| r = channel_buffer[0]; |
| g = channel_buffer[1]; |
| b = channel_buffer[2]; |
| if (channel_buffer[3]) |
| a = channel_buffer[3]; |
| |
| ptr_x = (uint16_t *) ptr; |
| |
| // Zero out the start if xmin is not 0 |
| memset(ptr_x, 0, bxmin); |
| ptr_x += s->xmin * s->desc->nb_components; |
| if (s->pixel_type == EXR_FLOAT) { |
| // 32-bit |
| if (trc_func) { |
| for (x = 0; x < xdelta; x++) { |
| union av_intfloat32 t; |
| t.i = bytestream_get_le32(&r); |
| t.f = trc_func(t.f); |
| *ptr_x++ = exr_flt2uint(t.i); |
| |
| t.i = bytestream_get_le32(&g); |
| t.f = trc_func(t.f); |
| *ptr_x++ = exr_flt2uint(t.i); |
| |
| t.i = bytestream_get_le32(&b); |
| t.f = trc_func(t.f); |
| *ptr_x++ = exr_flt2uint(t.i); |
| if (channel_buffer[3]) |
| *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); |
| } |
| } else { |
| for (x = 0; x < xdelta; x++) { |
| union av_intfloat32 t; |
| t.i = bytestream_get_le32(&r); |
| if (t.f > 0.0f) /* avoid negative values */ |
| t.f = powf(t.f, one_gamma); |
| *ptr_x++ = exr_flt2uint(t.i); |
| |
| t.i = bytestream_get_le32(&g); |
| if (t.f > 0.0f) |
| t.f = powf(t.f, one_gamma); |
| *ptr_x++ = exr_flt2uint(t.i); |
| |
| t.i = bytestream_get_le32(&b); |
| if (t.f > 0.0f) |
| t.f = powf(t.f, one_gamma); |
| *ptr_x++ = exr_flt2uint(t.i); |
| if (channel_buffer[3]) |
| *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a)); |
| } |
| } |
| } else { |
| // 16-bit |
| for (x = 0; x < xdelta; x++) { |
| *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)]; |
| *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)]; |
| *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)]; |
| if (channel_buffer[3]) |
| *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a)); |
| } |
| } |
| |
| // Zero out the end if xmax+1 is not w |
| memset(ptr_x, 0, axmax); |
| |
| channel_buffer[0] += s->scan_line_size; |
| channel_buffer[1] += s->scan_line_size; |
| channel_buffer[2] += s->scan_line_size; |
| if (channel_buffer[3]) |
| channel_buffer[3] += s->scan_line_size; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Check if the variable name corresponds to its data type. |
| * |
| * @param s the EXRContext |
| * @param value_name name of the variable to check |
| * @param value_type type of the variable to check |
| * @param minimum_length minimum length of the variable data |
| * |
| * @return bytes to read containing variable data |
| * -1 if variable is not found |
| * 0 if buffer ended prematurely |
| */ |
| static int check_header_variable(EXRContext *s, |
| const char *value_name, |
| const char *value_type, |
| unsigned int minimum_length) |
| { |
| int var_size = -1; |
| |
| if (bytestream2_get_bytes_left(&s->gb) >= minimum_length && |
| !strcmp(s->gb.buffer, value_name)) { |
| // found value_name, jump to value_type (null terminated strings) |
| s->gb.buffer += strlen(value_name) + 1; |
| if (!strcmp(s->gb.buffer, value_type)) { |
| s->gb.buffer += strlen(value_type) + 1; |
| var_size = bytestream2_get_le32(&s->gb); |
| // don't go read past boundaries |
| if (var_size > bytestream2_get_bytes_left(&s->gb)) |
| var_size = 0; |
| } else { |
| // value_type not found, reset the buffer |
| s->gb.buffer -= strlen(value_name) + 1; |
| av_log(s->avctx, AV_LOG_WARNING, |
| "Unknown data type %s for header variable %s.\n", |
| value_type, value_name); |
| } |
| } |
| |
| return var_size; |
| } |
| |
| static int decode_header(EXRContext *s) |
| { |
| int current_channel_offset = 0; |
| int magic_number, version, flags, i, sar = 0; |
| |
| s->xmin = ~0; |
| s->xmax = ~0; |
| s->ymin = ~0; |
| s->ymax = ~0; |
| s->xdelta = ~0; |
| s->ydelta = ~0; |
| s->channel_offsets[0] = -1; |
| s->channel_offsets[1] = -1; |
| s->channel_offsets[2] = -1; |
| s->channel_offsets[3] = -1; |
| s->pixel_type = EXR_UNKNOWN; |
| s->compression = EXR_UNKN; |
| s->nb_channels = 0; |
| s->w = 0; |
| s->h = 0; |
| |
| if (bytestream2_get_bytes_left(&s->gb) < 10) { |
| av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| magic_number = bytestream2_get_le32(&s->gb); |
| if (magic_number != 20000630) { |
| /* As per documentation of OpenEXR, it is supposed to be |
| * int 20000630 little-endian */ |
| av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| version = bytestream2_get_byte(&s->gb); |
| if (version != 2) { |
| avpriv_report_missing_feature(s->avctx, "Version %d", version); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| flags = bytestream2_get_le24(&s->gb); |
| if (flags & 0x02) { |
| avpriv_report_missing_feature(s->avctx, "Tile support"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| // Parse the header |
| while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) { |
| int var_size; |
| if ((var_size = check_header_variable(s, "channels", |
| "chlist", 38)) >= 0) { |
| GetByteContext ch_gb; |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| bytestream2_init(&ch_gb, s->gb.buffer, var_size); |
| |
| while (bytestream2_get_bytes_left(&ch_gb) >= 19) { |
| EXRChannel *channel; |
| enum ExrPixelType current_pixel_type; |
| int channel_index = -1; |
| int xsub, ysub; |
| |
| if (strcmp(s->layer, "") != 0) { |
| if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) { |
| ch_gb.buffer += strlen(s->layer); |
| if (*ch_gb.buffer == '.') |
| ch_gb.buffer++; /* skip dot if not given */ |
| av_log(s->avctx, AV_LOG_INFO, |
| "Layer %s.%s matched.\n", s->layer, ch_gb.buffer); |
| } |
| } |
| |
| if (!strcmp(ch_gb.buffer, "R") || |
| !strcmp(ch_gb.buffer, "X") || |
| !strcmp(ch_gb.buffer, "U")) |
| channel_index = 0; |
| else if (!strcmp(ch_gb.buffer, "G") || |
| !strcmp(ch_gb.buffer, "Y") || |
| !strcmp(ch_gb.buffer, "V")) |
| channel_index = 1; |
| else if (!strcmp(ch_gb.buffer, "B") || |
| !strcmp(ch_gb.buffer, "Z") || |
| !strcmp(ch_gb.buffer, "W")) |
| channel_index = 2; |
| else if (!strcmp(ch_gb.buffer, "A")) |
| channel_index = 3; |
| else |
| av_log(s->avctx, AV_LOG_WARNING, |
| "Unsupported channel %.256s.\n", ch_gb.buffer); |
| |
| /* skip until you get a 0 */ |
| while (bytestream2_get_bytes_left(&ch_gb) > 0 && |
| bytestream2_get_byte(&ch_gb)) |
| continue; |
| |
| if (bytestream2_get_bytes_left(&ch_gb) < 4) { |
| av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| current_pixel_type = bytestream2_get_le32(&ch_gb); |
| if (current_pixel_type >= EXR_UNKNOWN) { |
| avpriv_report_missing_feature(s->avctx, "Pixel type %d", |
| current_pixel_type); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| bytestream2_skip(&ch_gb, 4); |
| xsub = bytestream2_get_le32(&ch_gb); |
| ysub = bytestream2_get_le32(&ch_gb); |
| if (xsub != 1 || ysub != 1) { |
| avpriv_report_missing_feature(s->avctx, |
| "Subsampling %dx%d", |
| xsub, ysub); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (channel_index >= 0) { |
| if (s->pixel_type != EXR_UNKNOWN && |
| s->pixel_type != current_pixel_type) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "RGB channels not of the same depth.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->pixel_type = current_pixel_type; |
| s->channel_offsets[channel_index] = current_channel_offset; |
| } |
| |
| s->channels = av_realloc(s->channels, |
| ++s->nb_channels * sizeof(EXRChannel)); |
| if (!s->channels) |
| return AVERROR(ENOMEM); |
| channel = &s->channels[s->nb_channels - 1]; |
| channel->pixel_type = current_pixel_type; |
| channel->xsub = xsub; |
| channel->ysub = ysub; |
| |
| current_channel_offset += 1 << current_pixel_type; |
| } |
| |
| /* Check if all channels are set with an offset or if the channels |
| * are causing an overflow */ |
| if (FFMIN3(s->channel_offsets[0], |
| s->channel_offsets[1], |
| s->channel_offsets[2]) < 0) { |
| if (s->channel_offsets[0] < 0) |
| av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n"); |
| if (s->channel_offsets[1] < 0) |
| av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n"); |
| if (s->channel_offsets[2] < 0) |
| av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // skip one last byte and update main gb |
| s->gb.buffer = ch_gb.buffer + 1; |
| continue; |
| } else if ((var_size = check_header_variable(s, "dataWindow", "box2i", |
| 31)) >= 0) { |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| s->xmin = bytestream2_get_le32(&s->gb); |
| s->ymin = bytestream2_get_le32(&s->gb); |
| s->xmax = bytestream2_get_le32(&s->gb); |
| s->ymax = bytestream2_get_le32(&s->gb); |
| s->xdelta = (s->xmax - s->xmin) + 1; |
| s->ydelta = (s->ymax - s->ymin) + 1; |
| |
| continue; |
| } else if ((var_size = check_header_variable(s, "displayWindow", |
| "box2i", 34)) >= 0) { |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| bytestream2_skip(&s->gb, 8); |
| s->w = bytestream2_get_le32(&s->gb) + 1; |
| s->h = bytestream2_get_le32(&s->gb) + 1; |
| |
| continue; |
| } else if ((var_size = check_header_variable(s, "lineOrder", |
| "lineOrder", 25)) >= 0) { |
| int line_order; |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| line_order = bytestream2_get_byte(&s->gb); |
| av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order); |
| if (line_order > 2) { |
| av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| continue; |
| } else if ((var_size = check_header_variable(s, "pixelAspectRatio", |
| "float", 31)) >= 0) { |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| sar = bytestream2_get_le32(&s->gb); |
| |
| continue; |
| } else if ((var_size = check_header_variable(s, "compression", |
| "compression", 29)) >= 0) { |
| if (!var_size) |
| return AVERROR_INVALIDDATA; |
| |
| if (s->compression == EXR_UNKN) |
| s->compression = bytestream2_get_byte(&s->gb); |
| else |
| av_log(s->avctx, AV_LOG_WARNING, |
| "Found more than one compression attribute.\n"); |
| |
| continue; |
| } |
| |
| // Check if there are enough bytes for a header |
| if (bytestream2_get_bytes_left(&s->gb) <= 9) { |
| av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // Process unknown variables |
| for (i = 0; i < 2; i++) // value_name and value_type |
| while (bytestream2_get_byte(&s->gb) != 0); |
| |
| // Skip variable length |
| bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb)); |
| } |
| |
| ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255)); |
| |
| if (s->compression == EXR_UNKN) { |
| av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->scan_line_size = s->xdelta * current_channel_offset; |
| |
| if (bytestream2_get_bytes_left(&s->gb) <= 0) { |
| av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // aaand we are done |
| bytestream2_skip(&s->gb, 1); |
| return 0; |
| } |
| |
| static int decode_frame(AVCodecContext *avctx, void *data, |
| int *got_frame, AVPacket *avpkt) |
| { |
| EXRContext *s = avctx->priv_data; |
| ThreadFrame frame = { .f = data }; |
| AVFrame *picture = data; |
| uint8_t *ptr; |
| |
| int y, ret; |
| int out_line_size; |
| int scan_line_blocks; |
| |
| bytestream2_init(&s->gb, avpkt->data, avpkt->size); |
| |
| if ((ret = decode_header(s)) < 0) |
| return ret; |
| |
| switch (s->pixel_type) { |
| case EXR_FLOAT: |
| case EXR_HALF: |
| if (s->channel_offsets[3] >= 0) |
| avctx->pix_fmt = AV_PIX_FMT_RGBA64; |
| else |
| avctx->pix_fmt = AV_PIX_FMT_RGB48; |
| break; |
| case EXR_UINT: |
| avpriv_request_sample(avctx, "32-bit unsigned int"); |
| return AVERROR_PATCHWELCOME; |
| default: |
| av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED) |
| avctx->color_trc = s->apply_trc_type; |
| |
| switch (s->compression) { |
| case EXR_RAW: |
| case EXR_RLE: |
| case EXR_ZIP1: |
| s->scan_lines_per_block = 1; |
| break; |
| case EXR_PXR24: |
| case EXR_ZIP16: |
| s->scan_lines_per_block = 16; |
| break; |
| case EXR_PIZ: |
| s->scan_lines_per_block = 32; |
| break; |
| default: |
| avpriv_report_missing_feature(avctx, "Compression %d", s->compression); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /* Verify the xmin, xmax, ymin, ymax and xdelta before setting |
| * the actual image size. */ |
| if (s->xmin > s->xmax || |
| s->ymin > s->ymax || |
| s->xdelta != s->xmax - s->xmin + 1 || |
| s->xmax >= s->w || |
| s->ymax >= s->h) { |
| av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0) |
| return ret; |
| |
| s->desc = av_pix_fmt_desc_get(avctx->pix_fmt); |
| if (!s->desc) |
| return AVERROR_INVALIDDATA; |
| out_line_size = avctx->width * 2 * s->desc->nb_components; |
| scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / |
| s->scan_lines_per_block; |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) |
| return ret; |
| |
| if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8) |
| return AVERROR_INVALIDDATA; |
| |
| // save pointer we are going to use in decode_block |
| s->buf = avpkt->data; |
| s->buf_size = avpkt->size; |
| ptr = picture->data[0]; |
| |
| // Zero out the start if ymin is not 0 |
| for (y = 0; y < s->ymin; y++) { |
| memset(ptr, 0, out_line_size); |
| ptr += picture->linesize[0]; |
| } |
| |
| s->picture = picture; |
| avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks); |
| |
| // Zero out the end if ymax+1 is not h |
| for (y = s->ymax + 1; y < avctx->height; y++) { |
| memset(ptr, 0, out_line_size); |
| ptr += picture->linesize[0]; |
| } |
| |
| picture->pict_type = AV_PICTURE_TYPE_I; |
| *got_frame = 1; |
| |
| return avpkt->size; |
| } |
| |
| static av_cold int decode_init(AVCodecContext *avctx) |
| { |
| EXRContext *s = avctx->priv_data; |
| uint32_t i; |
| union av_intfloat32 t; |
| float one_gamma = 1.0f / s->gamma; |
| avpriv_trc_function trc_func = NULL; |
| |
| s->avctx = avctx; |
| |
| trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type); |
| if (trc_func) { |
| for (i = 0; i < 65536; ++i) { |
| t = exr_half2float(i); |
| t.f = trc_func(t.f); |
| s->gamma_table[i] = exr_flt2uint(t.i); |
| } |
| } else { |
| if (one_gamma > 0.9999f && one_gamma < 1.0001f) { |
| for (i = 0; i < 65536; ++i) |
| s->gamma_table[i] = exr_halflt2uint(i); |
| } else { |
| for (i = 0; i < 65536; ++i) { |
| t = exr_half2float(i); |
| /* If negative value we reuse half value */ |
| if (t.f <= 0.0f) { |
| s->gamma_table[i] = exr_halflt2uint(i); |
| } else { |
| t.f = powf(t.f, one_gamma); |
| s->gamma_table[i] = exr_flt2uint(t.i); |
| } |
| } |
| } |
| } |
| |
| // allocate thread data, used for non EXR_RAW compreesion types |
| s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); |
| if (!s->thread_data) |
| return AVERROR_INVALIDDATA; |
| |
| return 0; |
| } |
| |
| #if HAVE_THREADS |
| static int decode_init_thread_copy(AVCodecContext *avctx) |
| { EXRContext *s = avctx->priv_data; |
| |
| // allocate thread data, used for non EXR_RAW compreesion types |
| s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData)); |
| if (!s->thread_data) |
| return AVERROR_INVALIDDATA; |
| |
| return 0; |
| } |
| #endif |
| |
| static av_cold int decode_end(AVCodecContext *avctx) |
| { |
| EXRContext *s = avctx->priv_data; |
| int i; |
| for (i = 0; i < avctx->thread_count; i++) { |
| EXRThreadData *td = &s->thread_data[i]; |
| av_freep(&td->uncompressed_data); |
| av_freep(&td->tmp); |
| av_freep(&td->bitmap); |
| av_freep(&td->lut); |
| } |
| |
| av_freep(&s->thread_data); |
| av_freep(&s->channels); |
| |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(EXRContext, x) |
| #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM |
| static const AVOption options[] = { |
| { "layer", "Set the decoding layer", OFFSET(layer), |
| AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD }, |
| { "gamma", "Set the float gamma value when decoding", OFFSET(gamma), |
| AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD }, |
| |
| // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option |
| { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type), |
| AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"}, |
| { "bt709", "BT.709", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "gamma", "gamma", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "gamma22", "BT.470 M", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "gamma28", "BT.470 BG", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "smpte170m", "SMPTE 170 M", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "smpte240m", "SMPTE 240 M", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "linear", "Linear", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "log", "Log", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "log_sqrt", "Log square root", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "iec61966_2_4", "IEC 61966-2-4", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "bt1361", "BT.1361", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "iec61966_2_1", "IEC 61966-2-1", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "bt2020_10bit", "BT.2020 - 10 bit", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "bt2020_12bit", "BT.2020 - 12 bit", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "smpte2084", "SMPTE ST 2084", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| { "smpte428_1", "SMPTE ST 428-1", 0, |
| AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"}, |
| |
| { NULL }, |
| }; |
| |
| static const AVClass exr_class = { |
| .class_name = "EXR", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_exr_decoder = { |
| .name = "exr", |
| .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_EXR, |
| .priv_data_size = sizeof(EXRContext), |
| .init = decode_init, |
| .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), |
| .close = decode_end, |
| .decode = decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | |
| AV_CODEC_CAP_SLICE_THREADS, |
| .priv_class = &exr_class, |
| }; |