| /* |
| * Copyright (c) CMU 1993 Computer Science, Speech Group |
| * Chengxiang Lu and Alex Hauptmann |
| * Copyright (c) 2005 Steve Underwood <steveu at coppice.org> |
| * Copyright (c) 2009 Kenan Gillet |
| * Copyright (c) 2010 Martin Storsjo |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * G.722 ADPCM audio encoder |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "avcodec.h" |
| #include "internal.h" |
| #include "g722.h" |
| #include "libavutil/common.h" |
| |
| #define FREEZE_INTERVAL 128 |
| |
| /* This is an arbitrary value. Allowing insanely large values leads to strange |
| problems, so we limit it to a reasonable value */ |
| #define MAX_FRAME_SIZE 32768 |
| |
| /* We clip the value of avctx->trellis to prevent data type overflows and |
| undefined behavior. Using larger values is insanely slow anyway. */ |
| #define MIN_TRELLIS 0 |
| #define MAX_TRELLIS 16 |
| |
| static av_cold int g722_encode_close(AVCodecContext *avctx) |
| { |
| G722Context *c = avctx->priv_data; |
| int i; |
| for (i = 0; i < 2; i++) { |
| av_freep(&c->paths[i]); |
| av_freep(&c->node_buf[i]); |
| av_freep(&c->nodep_buf[i]); |
| } |
| return 0; |
| } |
| |
| static av_cold int g722_encode_init(AVCodecContext * avctx) |
| { |
| G722Context *c = avctx->priv_data; |
| int ret; |
| |
| if (avctx->channels != 1) { |
| av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| c->band[0].scale_factor = 8; |
| c->band[1].scale_factor = 2; |
| c->prev_samples_pos = 22; |
| |
| if (avctx->trellis) { |
| int frontier = 1 << avctx->trellis; |
| int max_paths = frontier * FREEZE_INTERVAL; |
| int i; |
| for (i = 0; i < 2; i++) { |
| c->paths[i] = av_mallocz_array(max_paths, sizeof(**c->paths)); |
| c->node_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->node_buf)); |
| c->nodep_buf[i] = av_mallocz_array(frontier, 2 * sizeof(**c->nodep_buf)); |
| if (!c->paths[i] || !c->node_buf[i] || !c->nodep_buf[i]) { |
| ret = AVERROR(ENOMEM); |
| goto error; |
| } |
| } |
| } |
| |
| if (avctx->frame_size) { |
| /* validate frame size */ |
| if (avctx->frame_size & 1 || avctx->frame_size > MAX_FRAME_SIZE) { |
| int new_frame_size; |
| |
| if (avctx->frame_size == 1) |
| new_frame_size = 2; |
| else if (avctx->frame_size > MAX_FRAME_SIZE) |
| new_frame_size = MAX_FRAME_SIZE; |
| else |
| new_frame_size = avctx->frame_size - 1; |
| |
| av_log(avctx, AV_LOG_WARNING, "Requested frame size is not " |
| "allowed. Using %d instead of %d\n", new_frame_size, |
| avctx->frame_size); |
| avctx->frame_size = new_frame_size; |
| } |
| } else { |
| /* This is arbitrary. We use 320 because it's 20ms @ 16kHz, which is |
| a common packet size for VoIP applications */ |
| avctx->frame_size = 320; |
| } |
| avctx->initial_padding = 22; |
| |
| if (avctx->trellis) { |
| /* validate trellis */ |
| if (avctx->trellis < MIN_TRELLIS || avctx->trellis > MAX_TRELLIS) { |
| int new_trellis = av_clip(avctx->trellis, MIN_TRELLIS, MAX_TRELLIS); |
| av_log(avctx, AV_LOG_WARNING, "Requested trellis value is not " |
| "allowed. Using %d instead of %d\n", new_trellis, |
| avctx->trellis); |
| avctx->trellis = new_trellis; |
| } |
| } |
| |
| ff_g722dsp_init(&c->dsp); |
| |
| return 0; |
| error: |
| g722_encode_close(avctx); |
| return ret; |
| } |
| |
| static const int16_t low_quant[33] = { |
| 35, 72, 110, 150, 190, 233, 276, 323, |
| 370, 422, 473, 530, 587, 650, 714, 786, |
| 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, |
| 1765, 1980, 2195, 2557, 2919 |
| }; |
| |
| static inline void filter_samples(G722Context *c, const int16_t *samples, |
| int *xlow, int *xhigh) |
| { |
| int xout[2]; |
| c->prev_samples[c->prev_samples_pos++] = samples[0]; |
| c->prev_samples[c->prev_samples_pos++] = samples[1]; |
| c->dsp.apply_qmf(c->prev_samples + c->prev_samples_pos - 24, xout); |
| *xlow = xout[0] + xout[1] >> 14; |
| *xhigh = xout[0] - xout[1] >> 14; |
| if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { |
| memmove(c->prev_samples, |
| c->prev_samples + c->prev_samples_pos - 22, |
| 22 * sizeof(c->prev_samples[0])); |
| c->prev_samples_pos = 22; |
| } |
| } |
| |
| static inline int encode_high(const struct G722Band *state, int xhigh) |
| { |
| int diff = av_clip_int16(xhigh - state->s_predictor); |
| int pred = 141 * state->scale_factor >> 8; |
| /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ |
| return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); |
| } |
| |
| static inline int encode_low(const struct G722Band* state, int xlow) |
| { |
| int diff = av_clip_int16(xlow - state->s_predictor); |
| /* = diff >= 0 ? diff : -(diff + 1) */ |
| int limit = diff ^ (diff >> (sizeof(diff)*8-1)); |
| int i = 0; |
| limit = limit + 1 << 10; |
| if (limit > low_quant[8] * state->scale_factor) |
| i = 9; |
| while (i < 29 && limit > low_quant[i] * state->scale_factor) |
| i++; |
| return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; |
| } |
| |
| static void g722_encode_trellis(G722Context *c, int trellis, |
| uint8_t *dst, int nb_samples, |
| const int16_t *samples) |
| { |
| int i, j, k; |
| int frontier = 1 << trellis; |
| struct TrellisNode **nodes[2]; |
| struct TrellisNode **nodes_next[2]; |
| int pathn[2] = {0, 0}, froze = -1; |
| struct TrellisPath *p[2]; |
| |
| for (i = 0; i < 2; i++) { |
| nodes[i] = c->nodep_buf[i]; |
| nodes_next[i] = c->nodep_buf[i] + frontier; |
| memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf[i])); |
| nodes[i][0] = c->node_buf[i] + frontier; |
| nodes[i][0]->ssd = 0; |
| nodes[i][0]->path = 0; |
| nodes[i][0]->state = c->band[i]; |
| } |
| |
| for (i = 0; i < nb_samples >> 1; i++) { |
| int xlow, xhigh; |
| struct TrellisNode *next[2]; |
| int heap_pos[2] = {0, 0}; |
| |
| for (j = 0; j < 2; j++) { |
| next[j] = c->node_buf[j] + frontier*(i & 1); |
| memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); |
| } |
| |
| filter_samples(c, &samples[2*i], &xlow, &xhigh); |
| |
| for (j = 0; j < frontier && nodes[0][j]; j++) { |
| /* Only k >> 2 affects the future adaptive state, therefore testing |
| * small steps that don't change k >> 2 is useless, the original |
| * value from encode_low is better than them. Since we step k |
| * in steps of 4, make sure range is a multiple of 4, so that |
| * we don't miss the original value from encode_low. */ |
| int range = j < frontier/2 ? 4 : 0; |
| struct TrellisNode *cur_node = nodes[0][j]; |
| |
| int ilow = encode_low(&cur_node->state, xlow); |
| |
| for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { |
| int decoded, dec_diff, pos; |
| uint32_t ssd; |
| struct TrellisNode* node; |
| |
| if (k < 0) |
| continue; |
| |
| decoded = av_clip_intp2((cur_node->state.scale_factor * |
| ff_g722_low_inv_quant6[k] >> 10) |
| + cur_node->state.s_predictor, 14); |
| dec_diff = xlow - decoded; |
| |
| #define STORE_NODE(index, UPDATE, VALUE)\ |
| ssd = cur_node->ssd + dec_diff*dec_diff;\ |
| /* Check for wraparound. Using 64 bit ssd counters would \ |
| * be simpler, but is slower on x86 32 bit. */\ |
| if (ssd < cur_node->ssd)\ |
| continue;\ |
| if (heap_pos[index] < frontier) {\ |
| pos = heap_pos[index]++;\ |
| av_assert2(pathn[index] < FREEZE_INTERVAL * frontier);\ |
| node = nodes_next[index][pos] = next[index]++;\ |
| node->path = pathn[index]++;\ |
| } else {\ |
| /* Try to replace one of the leaf nodes with the new \ |
| * one, but not always testing the same leaf position */\ |
| pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ |
| if (ssd >= nodes_next[index][pos]->ssd)\ |
| continue;\ |
| heap_pos[index]++;\ |
| node = nodes_next[index][pos];\ |
| }\ |
| node->ssd = ssd;\ |
| node->state = cur_node->state;\ |
| UPDATE;\ |
| c->paths[index][node->path].value = VALUE;\ |
| c->paths[index][node->path].prev = cur_node->path;\ |
| /* Sift the newly inserted node up in the heap to restore \ |
| * the heap property */\ |
| while (pos > 0) {\ |
| int parent = (pos - 1) >> 1;\ |
| if (nodes_next[index][parent]->ssd <= ssd)\ |
| break;\ |
| FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ |
| nodes_next[index][pos]);\ |
| pos = parent;\ |
| } |
| STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k); |
| } |
| } |
| |
| for (j = 0; j < frontier && nodes[1][j]; j++) { |
| int ihigh; |
| struct TrellisNode *cur_node = nodes[1][j]; |
| |
| /* We don't try to get any initial guess for ihigh via |
| * encode_high - since there's only 4 possible values, test |
| * them all. Testing all of these gives a much, much larger |
| * gain than testing a larger range around ilow. */ |
| for (ihigh = 0; ihigh < 4; ihigh++) { |
| int dhigh, decoded, dec_diff, pos; |
| uint32_t ssd; |
| struct TrellisNode* node; |
| |
| dhigh = cur_node->state.scale_factor * |
| ff_g722_high_inv_quant[ihigh] >> 10; |
| decoded = av_clip_intp2(dhigh + cur_node->state.s_predictor, 14); |
| dec_diff = xhigh - decoded; |
| |
| STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh); |
| } |
| } |
| |
| for (j = 0; j < 2; j++) { |
| FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); |
| |
| if (nodes[j][0]->ssd > (1 << 16)) { |
| for (k = 1; k < frontier && nodes[j][k]; k++) |
| nodes[j][k]->ssd -= nodes[j][0]->ssd; |
| nodes[j][0]->ssd = 0; |
| } |
| } |
| |
| if (i == froze + FREEZE_INTERVAL) { |
| p[0] = &c->paths[0][nodes[0][0]->path]; |
| p[1] = &c->paths[1][nodes[1][0]->path]; |
| for (j = i; j > froze; j--) { |
| dst[j] = p[1]->value << 6 | p[0]->value; |
| p[0] = &c->paths[0][p[0]->prev]; |
| p[1] = &c->paths[1][p[1]->prev]; |
| } |
| froze = i; |
| pathn[0] = pathn[1] = 0; |
| memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); |
| memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); |
| } |
| } |
| |
| p[0] = &c->paths[0][nodes[0][0]->path]; |
| p[1] = &c->paths[1][nodes[1][0]->path]; |
| for (j = i; j > froze; j--) { |
| dst[j] = p[1]->value << 6 | p[0]->value; |
| p[0] = &c->paths[0][p[0]->prev]; |
| p[1] = &c->paths[1][p[1]->prev]; |
| } |
| c->band[0] = nodes[0][0]->state; |
| c->band[1] = nodes[1][0]->state; |
| } |
| |
| static av_always_inline void encode_byte(G722Context *c, uint8_t *dst, |
| const int16_t *samples) |
| { |
| int xlow, xhigh, ilow, ihigh; |
| filter_samples(c, samples, &xlow, &xhigh); |
| ihigh = encode_high(&c->band[1], xhigh); |
| ilow = encode_low (&c->band[0], xlow); |
| ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor * |
| ff_g722_high_inv_quant[ihigh] >> 10, ihigh); |
| ff_g722_update_low_predictor(&c->band[0], ilow >> 2); |
| *dst = ihigh << 6 | ilow; |
| } |
| |
| static void g722_encode_no_trellis(G722Context *c, |
| uint8_t *dst, int nb_samples, |
| const int16_t *samples) |
| { |
| int i; |
| for (i = 0; i < nb_samples; i += 2) |
| encode_byte(c, dst++, &samples[i]); |
| } |
| |
| static int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| G722Context *c = avctx->priv_data; |
| const int16_t *samples = (const int16_t *)frame->data[0]; |
| int nb_samples, out_size, ret; |
| |
| out_size = (frame->nb_samples + 1) / 2; |
| if ((ret = ff_alloc_packet2(avctx, avpkt, out_size, 0)) < 0) |
| return ret; |
| |
| nb_samples = frame->nb_samples - (frame->nb_samples & 1); |
| |
| if (avctx->trellis) |
| g722_encode_trellis(c, avctx->trellis, avpkt->data, nb_samples, samples); |
| else |
| g722_encode_no_trellis(c, avpkt->data, nb_samples, samples); |
| |
| /* handle last frame with odd frame_size */ |
| if (nb_samples < frame->nb_samples) { |
| int16_t last_samples[2] = { samples[nb_samples], samples[nb_samples] }; |
| encode_byte(c, &avpkt->data[nb_samples >> 1], last_samples); |
| } |
| |
| if (frame->pts != AV_NOPTS_VALUE) |
| avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding); |
| *got_packet_ptr = 1; |
| return 0; |
| } |
| |
| AVCodec ff_adpcm_g722_encoder = { |
| .name = "g722", |
| .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_ADPCM_G722, |
| .priv_data_size = sizeof(G722Context), |
| .init = g722_encode_init, |
| .close = g722_encode_close, |
| .encode2 = g722_encode_frame, |
| .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME, |
| .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, |
| AV_SAMPLE_FMT_NONE }, |
| }; |