| /* |
| * G.723.1 compatible encoder |
| * Copyright (c) Mohamed Naufal <naufal22@gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * G.723.1 compatible encoder |
| */ |
| |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include "libavutil/channel_layout.h" |
| #include "libavutil/common.h" |
| #include "libavutil/mem.h" |
| #include "libavutil/opt.h" |
| |
| #include "avcodec.h" |
| #include "celp_math.h" |
| #include "g723_1.h" |
| #include "internal.h" |
| |
| #define BITSTREAM_WRITER_LE |
| #include "put_bits.h" |
| |
| static av_cold int g723_1_encode_init(AVCodecContext *avctx) |
| { |
| G723_1_Context *p = avctx->priv_data; |
| |
| if (avctx->sample_rate != 8000) { |
| av_log(avctx, AV_LOG_ERROR, "Only 8000Hz sample rate supported\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->channels != 1) { |
| av_log(avctx, AV_LOG_ERROR, "Only mono supported\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| if (avctx->bit_rate == 6300) { |
| p->cur_rate = RATE_6300; |
| } else if (avctx->bit_rate == 5300) { |
| av_log(avctx, AV_LOG_ERROR, "Bitrate not supported yet, use 6300\n"); |
| return AVERROR_PATCHWELCOME; |
| } else { |
| av_log(avctx, AV_LOG_ERROR, "Bitrate not supported, use 6300\n"); |
| return AVERROR(EINVAL); |
| } |
| avctx->frame_size = 240; |
| memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(int16_t)); |
| |
| return 0; |
| } |
| |
| /** |
| * Remove DC component from the input signal. |
| * |
| * @param buf input signal |
| * @param fir zero memory |
| * @param iir pole memory |
| */ |
| static void highpass_filter(int16_t *buf, int16_t *fir, int *iir) |
| { |
| int i; |
| for (i = 0; i < FRAME_LEN; i++) { |
| *iir = (buf[i] << 15) + ((-*fir) << 15) + MULL2(*iir, 0x7f00); |
| *fir = buf[i]; |
| buf[i] = av_clipl_int32((int64_t)*iir + (1 << 15)) >> 16; |
| } |
| } |
| |
| /** |
| * Estimate autocorrelation of the input vector. |
| * |
| * @param buf input buffer |
| * @param autocorr autocorrelation coefficients vector |
| */ |
| static void comp_autocorr(int16_t *buf, int16_t *autocorr) |
| { |
| int i, scale, temp; |
| int16_t vector[LPC_FRAME]; |
| |
| ff_g723_1_scale_vector(vector, buf, LPC_FRAME); |
| |
| /* Apply the Hamming window */ |
| for (i = 0; i < LPC_FRAME; i++) |
| vector[i] = (vector[i] * hamming_window[i] + (1 << 14)) >> 15; |
| |
| /* Compute the first autocorrelation coefficient */ |
| temp = ff_dot_product(vector, vector, LPC_FRAME); |
| |
| /* Apply a white noise correlation factor of (1025/1024) */ |
| temp += temp >> 10; |
| |
| /* Normalize */ |
| scale = ff_g723_1_normalize_bits(temp, 31); |
| autocorr[0] = av_clipl_int32((int64_t) (temp << scale) + |
| (1 << 15)) >> 16; |
| |
| /* Compute the remaining coefficients */ |
| if (!autocorr[0]) { |
| memset(autocorr + 1, 0, LPC_ORDER * sizeof(int16_t)); |
| } else { |
| for (i = 1; i <= LPC_ORDER; i++) { |
| temp = ff_dot_product(vector, vector + i, LPC_FRAME - i); |
| temp = MULL2((temp << scale), binomial_window[i - 1]); |
| autocorr[i] = av_clipl_int32((int64_t) temp + (1 << 15)) >> 16; |
| } |
| } |
| } |
| |
| /** |
| * Use Levinson-Durbin recursion to compute LPC coefficients from |
| * autocorrelation values. |
| * |
| * @param lpc LPC coefficients vector |
| * @param autocorr autocorrelation coefficients vector |
| * @param error prediction error |
| */ |
| static void levinson_durbin(int16_t *lpc, int16_t *autocorr, int16_t error) |
| { |
| int16_t vector[LPC_ORDER]; |
| int16_t partial_corr; |
| int i, j, temp; |
| |
| memset(lpc, 0, LPC_ORDER * sizeof(int16_t)); |
| |
| for (i = 0; i < LPC_ORDER; i++) { |
| /* Compute the partial correlation coefficient */ |
| temp = 0; |
| for (j = 0; j < i; j++) |
| temp -= lpc[j] * autocorr[i - j - 1]; |
| temp = ((autocorr[i] << 13) + temp) << 3; |
| |
| if (FFABS(temp) >= (error << 16)) |
| break; |
| |
| partial_corr = temp / (error << 1); |
| |
| lpc[i] = av_clipl_int32((int64_t) (partial_corr << 14) + |
| (1 << 15)) >> 16; |
| |
| /* Update the prediction error */ |
| temp = MULL2(temp, partial_corr); |
| error = av_clipl_int32((int64_t) (error << 16) - temp + |
| (1 << 15)) >> 16; |
| |
| memcpy(vector, lpc, i * sizeof(int16_t)); |
| for (j = 0; j < i; j++) { |
| temp = partial_corr * vector[i - j - 1] << 1; |
| lpc[j] = av_clipl_int32((int64_t) (lpc[j] << 16) - temp + |
| (1 << 15)) >> 16; |
| } |
| } |
| } |
| |
| /** |
| * Calculate LPC coefficients for the current frame. |
| * |
| * @param buf current frame |
| * @param prev_data 2 trailing subframes of the previous frame |
| * @param lpc LPC coefficients vector |
| */ |
| static void comp_lpc_coeff(int16_t *buf, int16_t *lpc) |
| { |
| int16_t autocorr[(LPC_ORDER + 1) * SUBFRAMES]; |
| int16_t *autocorr_ptr = autocorr; |
| int16_t *lpc_ptr = lpc; |
| int i, j; |
| |
| for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { |
| comp_autocorr(buf + i, autocorr_ptr); |
| levinson_durbin(lpc_ptr, autocorr_ptr + 1, autocorr_ptr[0]); |
| |
| lpc_ptr += LPC_ORDER; |
| autocorr_ptr += LPC_ORDER + 1; |
| } |
| } |
| |
| static void lpc2lsp(int16_t *lpc, int16_t *prev_lsp, int16_t *lsp) |
| { |
| int f[LPC_ORDER + 2]; ///< coefficients of the sum and difference |
| ///< polynomials (F1, F2) ordered as |
| ///< f1[0], f2[0], ...., f1[5], f2[5] |
| |
| int max, shift, cur_val, prev_val, count, p; |
| int i, j; |
| int64_t temp; |
| |
| /* Initialize f1[0] and f2[0] to 1 in Q25 */ |
| for (i = 0; i < LPC_ORDER; i++) |
| lsp[i] = (lpc[i] * bandwidth_expand[i] + (1 << 14)) >> 15; |
| |
| /* Apply bandwidth expansion on the LPC coefficients */ |
| f[0] = f[1] = 1 << 25; |
| |
| /* Compute the remaining coefficients */ |
| for (i = 0; i < LPC_ORDER / 2; i++) { |
| /* f1 */ |
| f[2 * i + 2] = -f[2 * i] - ((lsp[i] + lsp[LPC_ORDER - 1 - i]) << 12); |
| /* f2 */ |
| f[2 * i + 3] = f[2 * i + 1] - ((lsp[i] - lsp[LPC_ORDER - 1 - i]) << 12); |
| } |
| |
| /* Divide f1[5] and f2[5] by 2 for use in polynomial evaluation */ |
| f[LPC_ORDER] >>= 1; |
| f[LPC_ORDER + 1] >>= 1; |
| |
| /* Normalize and shorten */ |
| max = FFABS(f[0]); |
| for (i = 1; i < LPC_ORDER + 2; i++) |
| max = FFMAX(max, FFABS(f[i])); |
| |
| shift = ff_g723_1_normalize_bits(max, 31); |
| |
| for (i = 0; i < LPC_ORDER + 2; i++) |
| f[i] = av_clipl_int32((int64_t) (f[i] << shift) + (1 << 15)) >> 16; |
| |
| /** |
| * Evaluate F1 and F2 at uniform intervals of pi/256 along the |
| * unit circle and check for zero crossings. |
| */ |
| p = 0; |
| temp = 0; |
| for (i = 0; i <= LPC_ORDER / 2; i++) |
| temp += f[2 * i] * cos_tab[0]; |
| prev_val = av_clipl_int32(temp << 1); |
| count = 0; |
| for (i = 1; i < COS_TBL_SIZE / 2; i++) { |
| /* Evaluate */ |
| temp = 0; |
| for (j = 0; j <= LPC_ORDER / 2; j++) |
| temp += f[LPC_ORDER - 2 * j + p] * cos_tab[i * j % COS_TBL_SIZE]; |
| cur_val = av_clipl_int32(temp << 1); |
| |
| /* Check for sign change, indicating a zero crossing */ |
| if ((cur_val ^ prev_val) < 0) { |
| int abs_cur = FFABS(cur_val); |
| int abs_prev = FFABS(prev_val); |
| int sum = abs_cur + abs_prev; |
| |
| shift = ff_g723_1_normalize_bits(sum, 31); |
| sum <<= shift; |
| abs_prev = abs_prev << shift >> 8; |
| lsp[count++] = ((i - 1) << 7) + (abs_prev >> 1) / (sum >> 16); |
| |
| if (count == LPC_ORDER) |
| break; |
| |
| /* Switch between sum and difference polynomials */ |
| p ^= 1; |
| |
| /* Evaluate */ |
| temp = 0; |
| for (j = 0; j <= LPC_ORDER / 2; j++) |
| temp += f[LPC_ORDER - 2 * j + p] * |
| cos_tab[i * j % COS_TBL_SIZE]; |
| cur_val = av_clipl_int32(temp << 1); |
| } |
| prev_val = cur_val; |
| } |
| |
| if (count != LPC_ORDER) |
| memcpy(lsp, prev_lsp, LPC_ORDER * sizeof(int16_t)); |
| } |
| |
| /** |
| * Quantize the current LSP subvector. |
| * |
| * @param num band number |
| * @param offset offset of the current subvector in an LPC_ORDER vector |
| * @param size size of the current subvector |
| */ |
| #define get_index(num, offset, size) \ |
| { \ |
| int error, max = -1; \ |
| int16_t temp[4]; \ |
| int i, j; \ |
| \ |
| for (i = 0; i < LSP_CB_SIZE; i++) { \ |
| for (j = 0; j < size; j++){ \ |
| temp[j] = (weight[j + (offset)] * lsp_band##num[i][j] + \ |
| (1 << 14)) >> 15; \ |
| } \ |
| error = ff_g723_1_dot_product(lsp + (offset), temp, size) << 1; \ |
| error -= ff_g723_1_dot_product(lsp_band##num[i], temp, size); \ |
| if (error > max) { \ |
| max = error; \ |
| lsp_index[num] = i; \ |
| } \ |
| } \ |
| } |
| |
| /** |
| * Vector quantize the LSP frequencies. |
| * |
| * @param lsp the current lsp vector |
| * @param prev_lsp the previous lsp vector |
| */ |
| static void lsp_quantize(uint8_t *lsp_index, int16_t *lsp, int16_t *prev_lsp) |
| { |
| int16_t weight[LPC_ORDER]; |
| int16_t min, max; |
| int shift, i; |
| |
| /* Calculate the VQ weighting vector */ |
| weight[0] = (1 << 20) / (lsp[1] - lsp[0]); |
| weight[LPC_ORDER - 1] = (1 << 20) / |
| (lsp[LPC_ORDER - 1] - lsp[LPC_ORDER - 2]); |
| |
| for (i = 1; i < LPC_ORDER - 1; i++) { |
| min = FFMIN(lsp[i] - lsp[i - 1], lsp[i + 1] - lsp[i]); |
| if (min > 0x20) |
| weight[i] = (1 << 20) / min; |
| else |
| weight[i] = INT16_MAX; |
| } |
| |
| /* Normalize */ |
| max = 0; |
| for (i = 0; i < LPC_ORDER; i++) |
| max = FFMAX(weight[i], max); |
| |
| shift = ff_g723_1_normalize_bits(max, 15); |
| for (i = 0; i < LPC_ORDER; i++) { |
| weight[i] <<= shift; |
| } |
| |
| /* Compute the VQ target vector */ |
| for (i = 0; i < LPC_ORDER; i++) { |
| lsp[i] -= dc_lsp[i] + |
| (((prev_lsp[i] - dc_lsp[i]) * 12288 + (1 << 14)) >> 15); |
| } |
| |
| get_index(0, 0, 3); |
| get_index(1, 3, 3); |
| get_index(2, 6, 4); |
| } |
| |
| /** |
| * Perform IIR filtering. |
| * |
| * @param fir_coef FIR coefficients |
| * @param iir_coef IIR coefficients |
| * @param src source vector |
| * @param dest destination vector |
| */ |
| static void iir_filter(int16_t *fir_coef, int16_t *iir_coef, |
| int16_t *src, int16_t *dest) |
| { |
| int m, n; |
| |
| for (m = 0; m < SUBFRAME_LEN; m++) { |
| int64_t filter = 0; |
| for (n = 1; n <= LPC_ORDER; n++) { |
| filter -= fir_coef[n - 1] * src[m - n] - |
| iir_coef[n - 1] * dest[m - n]; |
| } |
| |
| dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) + |
| (1 << 15)) >> 16; |
| } |
| } |
| |
| /** |
| * Apply the formant perceptual weighting filter. |
| * |
| * @param flt_coef filter coefficients |
| * @param unq_lpc unquantized lpc vector |
| */ |
| static void perceptual_filter(G723_1_Context *p, int16_t *flt_coef, |
| int16_t *unq_lpc, int16_t *buf) |
| { |
| int16_t vector[FRAME_LEN + LPC_ORDER]; |
| int i, j, k, l = 0; |
| |
| memcpy(buf, p->iir_mem, sizeof(int16_t) * LPC_ORDER); |
| memcpy(vector, p->fir_mem, sizeof(int16_t) * LPC_ORDER); |
| memcpy(vector + LPC_ORDER, buf + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
| |
| for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) { |
| for (k = 0; k < LPC_ORDER; k++) { |
| flt_coef[k + 2 * l] = (unq_lpc[k + l] * percept_flt_tbl[0][k] + |
| (1 << 14)) >> 15; |
| flt_coef[k + 2 * l + LPC_ORDER] = (unq_lpc[k + l] * |
| percept_flt_tbl[1][k] + |
| (1 << 14)) >> 15; |
| } |
| iir_filter(flt_coef + 2 * l, flt_coef + 2 * l + LPC_ORDER, |
| vector + i, buf + i); |
| l += LPC_ORDER; |
| } |
| memcpy(p->iir_mem, buf + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
| memcpy(p->fir_mem, vector + FRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
| } |
| |
| /** |
| * Estimate the open loop pitch period. |
| * |
| * @param buf perceptually weighted speech |
| * @param start estimation is carried out from this position |
| */ |
| static int estimate_pitch(int16_t *buf, int start) |
| { |
| int max_exp = 32; |
| int max_ccr = 0x4000; |
| int max_eng = 0x7fff; |
| int index = PITCH_MIN; |
| int offset = start - PITCH_MIN + 1; |
| |
| int ccr, eng, orig_eng, ccr_eng, exp; |
| int diff, temp; |
| |
| int i; |
| |
| orig_eng = ff_dot_product(buf + offset, buf + offset, HALF_FRAME_LEN); |
| |
| for (i = PITCH_MIN; i <= PITCH_MAX - 3; i++) { |
| offset--; |
| |
| /* Update energy and compute correlation */ |
| orig_eng += buf[offset] * buf[offset] - |
| buf[offset + HALF_FRAME_LEN] * buf[offset + HALF_FRAME_LEN]; |
| ccr = ff_dot_product(buf + start, buf + offset, HALF_FRAME_LEN); |
| if (ccr <= 0) |
| continue; |
| |
| /* Split into mantissa and exponent to maintain precision */ |
| exp = ff_g723_1_normalize_bits(ccr, 31); |
| ccr = av_clipl_int32((int64_t) (ccr << exp) + (1 << 15)) >> 16; |
| exp <<= 1; |
| ccr *= ccr; |
| temp = ff_g723_1_normalize_bits(ccr, 31); |
| ccr = ccr << temp >> 16; |
| exp += temp; |
| |
| temp = ff_g723_1_normalize_bits(orig_eng, 31); |
| eng = av_clipl_int32((int64_t) (orig_eng << temp) + (1 << 15)) >> 16; |
| exp -= temp; |
| |
| if (ccr >= eng) { |
| exp--; |
| ccr >>= 1; |
| } |
| if (exp > max_exp) |
| continue; |
| |
| if (exp + 1 < max_exp) |
| goto update; |
| |
| /* Equalize exponents before comparison */ |
| if (exp + 1 == max_exp) |
| temp = max_ccr >> 1; |
| else |
| temp = max_ccr; |
| ccr_eng = ccr * max_eng; |
| diff = ccr_eng - eng * temp; |
| if (diff > 0 && (i - index < PITCH_MIN || diff > ccr_eng >> 2)) { |
| update: |
| index = i; |
| max_exp = exp; |
| max_ccr = ccr; |
| max_eng = eng; |
| } |
| } |
| return index; |
| } |
| |
| /** |
| * Compute harmonic noise filter parameters. |
| * |
| * @param buf perceptually weighted speech |
| * @param pitch_lag open loop pitch period |
| * @param hf harmonic filter parameters |
| */ |
| static void comp_harmonic_coeff(int16_t *buf, int16_t pitch_lag, HFParam *hf) |
| { |
| int ccr, eng, max_ccr, max_eng; |
| int exp, max, diff; |
| int energy[15]; |
| int i, j; |
| |
| for (i = 0, j = pitch_lag - 3; j <= pitch_lag + 3; i++, j++) { |
| /* Compute residual energy */ |
| energy[i << 1] = ff_dot_product(buf - j, buf - j, SUBFRAME_LEN); |
| /* Compute correlation */ |
| energy[(i << 1) + 1] = ff_dot_product(buf, buf - j, SUBFRAME_LEN); |
| } |
| |
| /* Compute target energy */ |
| energy[14] = ff_dot_product(buf, buf, SUBFRAME_LEN); |
| |
| /* Normalize */ |
| max = 0; |
| for (i = 0; i < 15; i++) |
| max = FFMAX(max, FFABS(energy[i])); |
| |
| exp = ff_g723_1_normalize_bits(max, 31); |
| for (i = 0; i < 15; i++) { |
| energy[i] = av_clipl_int32((int64_t)(energy[i] << exp) + |
| (1 << 15)) >> 16; |
| } |
| |
| hf->index = -1; |
| hf->gain = 0; |
| max_ccr = 1; |
| max_eng = 0x7fff; |
| |
| for (i = 0; i <= 6; i++) { |
| eng = energy[i << 1]; |
| ccr = energy[(i << 1) + 1]; |
| |
| if (ccr <= 0) |
| continue; |
| |
| ccr = (ccr * ccr + (1 << 14)) >> 15; |
| diff = ccr * max_eng - eng * max_ccr; |
| if (diff > 0) { |
| max_ccr = ccr; |
| max_eng = eng; |
| hf->index = i; |
| } |
| } |
| |
| if (hf->index == -1) { |
| hf->index = pitch_lag; |
| return; |
| } |
| |
| eng = energy[14] * max_eng; |
| eng = (eng >> 2) + (eng >> 3); |
| ccr = energy[(hf->index << 1) + 1] * energy[(hf->index << 1) + 1]; |
| if (eng < ccr) { |
| eng = energy[(hf->index << 1) + 1]; |
| |
| if (eng >= max_eng) |
| hf->gain = 0x2800; |
| else |
| hf->gain = ((eng << 15) / max_eng * 0x2800 + (1 << 14)) >> 15; |
| } |
| hf->index += pitch_lag - 3; |
| } |
| |
| /** |
| * Apply the harmonic noise shaping filter. |
| * |
| * @param hf filter parameters |
| */ |
| static void harmonic_filter(HFParam *hf, const int16_t *src, int16_t *dest) |
| { |
| int i; |
| |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| int64_t temp = hf->gain * src[i - hf->index] << 1; |
| dest[i] = av_clipl_int32((src[i] << 16) - temp + (1 << 15)) >> 16; |
| } |
| } |
| |
| static void harmonic_noise_sub(HFParam *hf, const int16_t *src, int16_t *dest) |
| { |
| int i; |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| int64_t temp = hf->gain * src[i - hf->index] << 1; |
| dest[i] = av_clipl_int32(((dest[i] - src[i]) << 16) + temp + |
| (1 << 15)) >> 16; |
| } |
| } |
| |
| /** |
| * Combined synthesis and formant perceptual weighting filer. |
| * |
| * @param qnt_lpc quantized lpc coefficients |
| * @param perf_lpc perceptual filter coefficients |
| * @param perf_fir perceptual filter fir memory |
| * @param perf_iir perceptual filter iir memory |
| * @param scale the filter output will be scaled by 2^scale |
| */ |
| static void synth_percept_filter(int16_t *qnt_lpc, int16_t *perf_lpc, |
| int16_t *perf_fir, int16_t *perf_iir, |
| const int16_t *src, int16_t *dest, int scale) |
| { |
| int i, j; |
| int16_t buf_16[SUBFRAME_LEN + LPC_ORDER]; |
| int64_t buf[SUBFRAME_LEN]; |
| |
| int16_t *bptr_16 = buf_16 + LPC_ORDER; |
| |
| memcpy(buf_16, perf_fir, sizeof(int16_t) * LPC_ORDER); |
| memcpy(dest - LPC_ORDER, perf_iir, sizeof(int16_t) * LPC_ORDER); |
| |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| int64_t temp = 0; |
| for (j = 1; j <= LPC_ORDER; j++) |
| temp -= qnt_lpc[j - 1] * bptr_16[i - j]; |
| |
| buf[i] = (src[i] << 15) + (temp << 3); |
| bptr_16[i] = av_clipl_int32(buf[i] + (1 << 15)) >> 16; |
| } |
| |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| int64_t fir = 0, iir = 0; |
| for (j = 1; j <= LPC_ORDER; j++) { |
| fir -= perf_lpc[j - 1] * bptr_16[i - j]; |
| iir += perf_lpc[j + LPC_ORDER - 1] * dest[i - j]; |
| } |
| dest[i] = av_clipl_int32(((buf[i] + (fir << 3)) << scale) + (iir << 3) + |
| (1 << 15)) >> 16; |
| } |
| memcpy(perf_fir, buf_16 + SUBFRAME_LEN, sizeof(int16_t) * LPC_ORDER); |
| memcpy(perf_iir, dest + SUBFRAME_LEN - LPC_ORDER, |
| sizeof(int16_t) * LPC_ORDER); |
| } |
| |
| /** |
| * Compute the adaptive codebook contribution. |
| * |
| * @param buf input signal |
| * @param index the current subframe index |
| */ |
| static void acb_search(G723_1_Context *p, int16_t *residual, |
| int16_t *impulse_resp, const int16_t *buf, |
| int index) |
| { |
| int16_t flt_buf[PITCH_ORDER][SUBFRAME_LEN]; |
| |
| const int16_t *cb_tbl = adaptive_cb_gain85; |
| |
| int ccr_buf[PITCH_ORDER * SUBFRAMES << 2]; |
| |
| int pitch_lag = p->pitch_lag[index >> 1]; |
| int acb_lag = 1; |
| int acb_gain = 0; |
| int odd_frame = index & 1; |
| int iter = 3 + odd_frame; |
| int count = 0; |
| int tbl_size = 85; |
| |
| int i, j, k, l, max; |
| int64_t temp; |
| |
| if (!odd_frame) { |
| if (pitch_lag == PITCH_MIN) |
| pitch_lag++; |
| else |
| pitch_lag = FFMIN(pitch_lag, PITCH_MAX - 5); |
| } |
| |
| for (i = 0; i < iter; i++) { |
| ff_g723_1_get_residual(residual, p->prev_excitation, pitch_lag + i - 1); |
| |
| for (j = 0; j < SUBFRAME_LEN; j++) { |
| temp = 0; |
| for (k = 0; k <= j; k++) |
| temp += residual[PITCH_ORDER - 1 + k] * impulse_resp[j - k]; |
| flt_buf[PITCH_ORDER - 1][j] = av_clipl_int32((temp << 1) + |
| (1 << 15)) >> 16; |
| } |
| |
| for (j = PITCH_ORDER - 2; j >= 0; j--) { |
| flt_buf[j][0] = ((residual[j] << 13) + (1 << 14)) >> 15; |
| for (k = 1; k < SUBFRAME_LEN; k++) { |
| temp = (flt_buf[j + 1][k - 1] << 15) + |
| residual[j] * impulse_resp[k]; |
| flt_buf[j][k] = av_clipl_int32((temp << 1) + (1 << 15)) >> 16; |
| } |
| } |
| |
| /* Compute crosscorrelation with the signal */ |
| for (j = 0; j < PITCH_ORDER; j++) { |
| temp = ff_dot_product(buf, flt_buf[j], SUBFRAME_LEN); |
| ccr_buf[count++] = av_clipl_int32(temp << 1); |
| } |
| |
| /* Compute energies */ |
| for (j = 0; j < PITCH_ORDER; j++) { |
| ccr_buf[count++] = ff_g723_1_dot_product(flt_buf[j], flt_buf[j], |
| SUBFRAME_LEN); |
| } |
| |
| for (j = 1; j < PITCH_ORDER; j++) { |
| for (k = 0; k < j; k++) { |
| temp = ff_dot_product(flt_buf[j], flt_buf[k], SUBFRAME_LEN); |
| ccr_buf[count++] = av_clipl_int32(temp << 2); |
| } |
| } |
| } |
| |
| /* Normalize and shorten */ |
| max = 0; |
| for (i = 0; i < 20 * iter; i++) |
| max = FFMAX(max, FFABS(ccr_buf[i])); |
| |
| temp = ff_g723_1_normalize_bits(max, 31); |
| |
| for (i = 0; i < 20 * iter; i++) |
| ccr_buf[i] = av_clipl_int32((int64_t) (ccr_buf[i] << temp) + |
| (1 << 15)) >> 16; |
| |
| max = 0; |
| for (i = 0; i < iter; i++) { |
| /* Select quantization table */ |
| if (!odd_frame && pitch_lag + i - 1 >= SUBFRAME_LEN - 2 || |
| odd_frame && pitch_lag >= SUBFRAME_LEN - 2) { |
| cb_tbl = adaptive_cb_gain170; |
| tbl_size = 170; |
| } |
| |
| for (j = 0, k = 0; j < tbl_size; j++, k += 20) { |
| temp = 0; |
| for (l = 0; l < 20; l++) |
| temp += ccr_buf[20 * i + l] * cb_tbl[k + l]; |
| temp = av_clipl_int32(temp); |
| |
| if (temp > max) { |
| max = temp; |
| acb_gain = j; |
| acb_lag = i; |
| } |
| } |
| } |
| |
| if (!odd_frame) { |
| pitch_lag += acb_lag - 1; |
| acb_lag = 1; |
| } |
| |
| p->pitch_lag[index >> 1] = pitch_lag; |
| p->subframe[index].ad_cb_lag = acb_lag; |
| p->subframe[index].ad_cb_gain = acb_gain; |
| } |
| |
| /** |
| * Subtract the adaptive codebook contribution from the input |
| * to obtain the residual. |
| * |
| * @param buf target vector |
| */ |
| static void sub_acb_contrib(const int16_t *residual, const int16_t *impulse_resp, |
| int16_t *buf) |
| { |
| int i, j; |
| /* Subtract adaptive CB contribution to obtain the residual */ |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| int64_t temp = buf[i] << 14; |
| for (j = 0; j <= i; j++) |
| temp -= residual[j] * impulse_resp[i - j]; |
| |
| buf[i] = av_clipl_int32((temp << 2) + (1 << 15)) >> 16; |
| } |
| } |
| |
| /** |
| * Quantize the residual signal using the fixed codebook (MP-MLQ). |
| * |
| * @param optim optimized fixed codebook parameters |
| * @param buf excitation vector |
| */ |
| static void get_fcb_param(FCBParam *optim, int16_t *impulse_resp, |
| int16_t *buf, int pulse_cnt, int pitch_lag) |
| { |
| FCBParam param; |
| int16_t impulse_r[SUBFRAME_LEN]; |
| int16_t temp_corr[SUBFRAME_LEN]; |
| int16_t impulse_corr[SUBFRAME_LEN]; |
| |
| int ccr1[SUBFRAME_LEN]; |
| int ccr2[SUBFRAME_LEN]; |
| int amp, err, max, max_amp_index, min, scale, i, j, k, l; |
| |
| int64_t temp; |
| |
| /* Update impulse response */ |
| memcpy(impulse_r, impulse_resp, sizeof(int16_t) * SUBFRAME_LEN); |
| param.dirac_train = 0; |
| if (pitch_lag < SUBFRAME_LEN - 2) { |
| param.dirac_train = 1; |
| ff_g723_1_gen_dirac_train(impulse_r, pitch_lag); |
| } |
| |
| for (i = 0; i < SUBFRAME_LEN; i++) |
| temp_corr[i] = impulse_r[i] >> 1; |
| |
| /* Compute impulse response autocorrelation */ |
| temp = ff_g723_1_dot_product(temp_corr, temp_corr, SUBFRAME_LEN); |
| |
| scale = ff_g723_1_normalize_bits(temp, 31); |
| impulse_corr[0] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; |
| |
| for (i = 1; i < SUBFRAME_LEN; i++) { |
| temp = ff_g723_1_dot_product(temp_corr + i, temp_corr, |
| SUBFRAME_LEN - i); |
| impulse_corr[i] = av_clipl_int32((temp << scale) + (1 << 15)) >> 16; |
| } |
| |
| /* Compute crosscorrelation of impulse response with residual signal */ |
| scale -= 4; |
| for (i = 0; i < SUBFRAME_LEN; i++) { |
| temp = ff_g723_1_dot_product(buf + i, impulse_r, SUBFRAME_LEN - i); |
| if (scale < 0) |
| ccr1[i] = temp >> -scale; |
| else |
| ccr1[i] = av_clipl_int32(temp << scale); |
| } |
| |
| /* Search loop */ |
| for (i = 0; i < GRID_SIZE; i++) { |
| /* Maximize the crosscorrelation */ |
| max = 0; |
| for (j = i; j < SUBFRAME_LEN; j += GRID_SIZE) { |
| temp = FFABS(ccr1[j]); |
| if (temp >= max) { |
| max = temp; |
| param.pulse_pos[0] = j; |
| } |
| } |
| |
| /* Quantize the gain (max crosscorrelation/impulse_corr[0]) */ |
| amp = max; |
| min = 1 << 30; |
| max_amp_index = GAIN_LEVELS - 2; |
| for (j = max_amp_index; j >= 2; j--) { |
| temp = av_clipl_int32((int64_t) fixed_cb_gain[j] * |
| impulse_corr[0] << 1); |
| temp = FFABS(temp - amp); |
| if (temp < min) { |
| min = temp; |
| max_amp_index = j; |
| } |
| } |
| |
| max_amp_index--; |
| /* Select additional gain values */ |
| for (j = 1; j < 5; j++) { |
| for (k = i; k < SUBFRAME_LEN; k += GRID_SIZE) { |
| temp_corr[k] = 0; |
| ccr2[k] = ccr1[k]; |
| } |
| param.amp_index = max_amp_index + j - 2; |
| amp = fixed_cb_gain[param.amp_index]; |
| |
| param.pulse_sign[0] = (ccr2[param.pulse_pos[0]] < 0) ? -amp : amp; |
| temp_corr[param.pulse_pos[0]] = 1; |
| |
| for (k = 1; k < pulse_cnt; k++) { |
| max = INT_MIN; |
| for (l = i; l < SUBFRAME_LEN; l += GRID_SIZE) { |
| if (temp_corr[l]) |
| continue; |
| temp = impulse_corr[FFABS(l - param.pulse_pos[k - 1])]; |
| temp = av_clipl_int32((int64_t) temp * |
| param.pulse_sign[k - 1] << 1); |
| ccr2[l] -= temp; |
| temp = FFABS(ccr2[l]); |
| if (temp > max) { |
| max = temp; |
| param.pulse_pos[k] = l; |
| } |
| } |
| |
| param.pulse_sign[k] = (ccr2[param.pulse_pos[k]] < 0) ? |
| -amp : amp; |
| temp_corr[param.pulse_pos[k]] = 1; |
| } |
| |
| /* Create the error vector */ |
| memset(temp_corr, 0, sizeof(int16_t) * SUBFRAME_LEN); |
| |
| for (k = 0; k < pulse_cnt; k++) |
| temp_corr[param.pulse_pos[k]] = param.pulse_sign[k]; |
| |
| for (k = SUBFRAME_LEN - 1; k >= 0; k--) { |
| temp = 0; |
| for (l = 0; l <= k; l++) { |
| int prod = av_clipl_int32((int64_t) temp_corr[l] * |
| impulse_r[k - l] << 1); |
| temp = av_clipl_int32(temp + prod); |
| } |
| temp_corr[k] = temp << 2 >> 16; |
| } |
| |
| /* Compute square of error */ |
| err = 0; |
| for (k = 0; k < SUBFRAME_LEN; k++) { |
| int64_t prod; |
| prod = av_clipl_int32((int64_t) buf[k] * temp_corr[k] << 1); |
| err = av_clipl_int32(err - prod); |
| prod = av_clipl_int32((int64_t) temp_corr[k] * temp_corr[k]); |
| err = av_clipl_int32(err + prod); |
| } |
| |
| /* Minimize */ |
| if (err < optim->min_err) { |
| optim->min_err = err; |
| optim->grid_index = i; |
| optim->amp_index = param.amp_index; |
| optim->dirac_train = param.dirac_train; |
| |
| for (k = 0; k < pulse_cnt; k++) { |
| optim->pulse_sign[k] = param.pulse_sign[k]; |
| optim->pulse_pos[k] = param.pulse_pos[k]; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Encode the pulse position and gain of the current subframe. |
| * |
| * @param optim optimized fixed CB parameters |
| * @param buf excitation vector |
| */ |
| static void pack_fcb_param(G723_1_Subframe *subfrm, FCBParam *optim, |
| int16_t *buf, int pulse_cnt) |
| { |
| int i, j; |
| |
| j = PULSE_MAX - pulse_cnt; |
| |
| subfrm->pulse_sign = 0; |
| subfrm->pulse_pos = 0; |
| |
| for (i = 0; i < SUBFRAME_LEN >> 1; i++) { |
| int val = buf[optim->grid_index + (i << 1)]; |
| if (!val) { |
| subfrm->pulse_pos += combinatorial_table[j][i]; |
| } else { |
| subfrm->pulse_sign <<= 1; |
| if (val < 0) |
| subfrm->pulse_sign++; |
| j++; |
| |
| if (j == PULSE_MAX) |
| break; |
| } |
| } |
| subfrm->amp_index = optim->amp_index; |
| subfrm->grid_index = optim->grid_index; |
| subfrm->dirac_train = optim->dirac_train; |
| } |
| |
| /** |
| * Compute the fixed codebook excitation. |
| * |
| * @param buf target vector |
| * @param impulse_resp impulse response of the combined filter |
| */ |
| static void fcb_search(G723_1_Context *p, int16_t *impulse_resp, |
| int16_t *buf, int index) |
| { |
| FCBParam optim; |
| int pulse_cnt = pulses[index]; |
| int i; |
| |
| optim.min_err = 1 << 30; |
| get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, SUBFRAME_LEN); |
| |
| if (p->pitch_lag[index >> 1] < SUBFRAME_LEN - 2) { |
| get_fcb_param(&optim, impulse_resp, buf, pulse_cnt, |
| p->pitch_lag[index >> 1]); |
| } |
| |
| /* Reconstruct the excitation */ |
| memset(buf, 0, sizeof(int16_t) * SUBFRAME_LEN); |
| for (i = 0; i < pulse_cnt; i++) |
| buf[optim.pulse_pos[i]] = optim.pulse_sign[i]; |
| |
| pack_fcb_param(&p->subframe[index], &optim, buf, pulse_cnt); |
| |
| if (optim.dirac_train) |
| ff_g723_1_gen_dirac_train(buf, p->pitch_lag[index >> 1]); |
| } |
| |
| /** |
| * Pack the frame parameters into output bitstream. |
| * |
| * @param frame output buffer |
| * @param size size of the buffer |
| */ |
| static int pack_bitstream(G723_1_Context *p, AVPacket *avpkt) |
| { |
| PutBitContext pb; |
| int info_bits = 0; |
| int i, temp; |
| |
| init_put_bits(&pb, avpkt->data, avpkt->size); |
| |
| put_bits(&pb, 2, info_bits); |
| |
| put_bits(&pb, 8, p->lsp_index[2]); |
| put_bits(&pb, 8, p->lsp_index[1]); |
| put_bits(&pb, 8, p->lsp_index[0]); |
| |
| put_bits(&pb, 7, p->pitch_lag[0] - PITCH_MIN); |
| put_bits(&pb, 2, p->subframe[1].ad_cb_lag); |
| put_bits(&pb, 7, p->pitch_lag[1] - PITCH_MIN); |
| put_bits(&pb, 2, p->subframe[3].ad_cb_lag); |
| |
| /* Write 12 bit combined gain */ |
| for (i = 0; i < SUBFRAMES; i++) { |
| temp = p->subframe[i].ad_cb_gain * GAIN_LEVELS + |
| p->subframe[i].amp_index; |
| if (p->cur_rate == RATE_6300) |
| temp += p->subframe[i].dirac_train << 11; |
| put_bits(&pb, 12, temp); |
| } |
| |
| put_bits(&pb, 1, p->subframe[0].grid_index); |
| put_bits(&pb, 1, p->subframe[1].grid_index); |
| put_bits(&pb, 1, p->subframe[2].grid_index); |
| put_bits(&pb, 1, p->subframe[3].grid_index); |
| |
| if (p->cur_rate == RATE_6300) { |
| skip_put_bits(&pb, 1); /* reserved bit */ |
| |
| /* Write 13 bit combined position index */ |
| temp = (p->subframe[0].pulse_pos >> 16) * 810 + |
| (p->subframe[1].pulse_pos >> 14) * 90 + |
| (p->subframe[2].pulse_pos >> 16) * 9 + |
| (p->subframe[3].pulse_pos >> 14); |
| put_bits(&pb, 13, temp); |
| |
| put_bits(&pb, 16, p->subframe[0].pulse_pos & 0xffff); |
| put_bits(&pb, 14, p->subframe[1].pulse_pos & 0x3fff); |
| put_bits(&pb, 16, p->subframe[2].pulse_pos & 0xffff); |
| put_bits(&pb, 14, p->subframe[3].pulse_pos & 0x3fff); |
| |
| put_bits(&pb, 6, p->subframe[0].pulse_sign); |
| put_bits(&pb, 5, p->subframe[1].pulse_sign); |
| put_bits(&pb, 6, p->subframe[2].pulse_sign); |
| put_bits(&pb, 5, p->subframe[3].pulse_sign); |
| } |
| |
| flush_put_bits(&pb); |
| return frame_size[info_bits]; |
| } |
| |
| static int g723_1_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| G723_1_Context *p = avctx->priv_data; |
| int16_t unq_lpc[LPC_ORDER * SUBFRAMES]; |
| int16_t qnt_lpc[LPC_ORDER * SUBFRAMES]; |
| int16_t cur_lsp[LPC_ORDER]; |
| int16_t weighted_lpc[LPC_ORDER * SUBFRAMES << 1]; |
| int16_t vector[FRAME_LEN + PITCH_MAX]; |
| int offset, ret, i, j; |
| int16_t *in, *start; |
| HFParam hf[4]; |
| |
| /* duplicate input */ |
| start = in = av_malloc(frame->nb_samples * sizeof(int16_t)); |
| if (!in) |
| return AVERROR(ENOMEM); |
| memcpy(in, frame->data[0], frame->nb_samples * sizeof(int16_t)); |
| |
| highpass_filter(in, &p->hpf_fir_mem, &p->hpf_iir_mem); |
| |
| memcpy(vector, p->prev_data, HALF_FRAME_LEN * sizeof(int16_t)); |
| memcpy(vector + HALF_FRAME_LEN, in, FRAME_LEN * sizeof(int16_t)); |
| |
| comp_lpc_coeff(vector, unq_lpc); |
| lpc2lsp(&unq_lpc[LPC_ORDER * 3], p->prev_lsp, cur_lsp); |
| lsp_quantize(p->lsp_index, cur_lsp, p->prev_lsp); |
| |
| /* Update memory */ |
| memcpy(vector + LPC_ORDER, p->prev_data + SUBFRAME_LEN, |
| sizeof(int16_t) * SUBFRAME_LEN); |
| memcpy(vector + LPC_ORDER + SUBFRAME_LEN, in, |
| sizeof(int16_t) * (HALF_FRAME_LEN + SUBFRAME_LEN)); |
| memcpy(p->prev_data, in + HALF_FRAME_LEN, |
| sizeof(int16_t) * HALF_FRAME_LEN); |
| memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
| |
| perceptual_filter(p, weighted_lpc, unq_lpc, vector); |
| |
| memcpy(in, vector + LPC_ORDER, sizeof(int16_t) * FRAME_LEN); |
| memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); |
| memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); |
| |
| ff_g723_1_scale_vector(vector, vector, FRAME_LEN + PITCH_MAX); |
| |
| p->pitch_lag[0] = estimate_pitch(vector, PITCH_MAX); |
| p->pitch_lag[1] = estimate_pitch(vector, PITCH_MAX + HALF_FRAME_LEN); |
| |
| for (i = PITCH_MAX, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) |
| comp_harmonic_coeff(vector + i, p->pitch_lag[j >> 1], hf + j); |
| |
| memcpy(vector, p->prev_weight_sig, sizeof(int16_t) * PITCH_MAX); |
| memcpy(vector + PITCH_MAX, in, sizeof(int16_t) * FRAME_LEN); |
| memcpy(p->prev_weight_sig, vector + FRAME_LEN, sizeof(int16_t) * PITCH_MAX); |
| |
| for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) |
| harmonic_filter(hf + j, vector + PITCH_MAX + i, in + i); |
| |
| ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, 0); |
| ff_g723_1_lsp_interpolate(qnt_lpc, cur_lsp, p->prev_lsp); |
| |
| memcpy(p->prev_lsp, cur_lsp, sizeof(int16_t) * LPC_ORDER); |
| |
| offset = 0; |
| for (i = 0; i < SUBFRAMES; i++) { |
| int16_t impulse_resp[SUBFRAME_LEN]; |
| int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1]; |
| int16_t flt_in[SUBFRAME_LEN]; |
| int16_t zero[LPC_ORDER], fir[LPC_ORDER], iir[LPC_ORDER]; |
| |
| /** |
| * Compute the combined impulse response of the synthesis filter, |
| * formant perceptual weighting filter and harmonic noise shaping filter |
| */ |
| memset(zero, 0, sizeof(int16_t) * LPC_ORDER); |
| memset(vector, 0, sizeof(int16_t) * PITCH_MAX); |
| memset(flt_in, 0, sizeof(int16_t) * SUBFRAME_LEN); |
| |
| flt_in[0] = 1 << 13; /* Unit impulse */ |
| synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
| zero, zero, flt_in, vector + PITCH_MAX, 1); |
| harmonic_filter(hf + i, vector + PITCH_MAX, impulse_resp); |
| |
| /* Compute the combined zero input response */ |
| flt_in[0] = 0; |
| memcpy(fir, p->perf_fir_mem, sizeof(int16_t) * LPC_ORDER); |
| memcpy(iir, p->perf_iir_mem, sizeof(int16_t) * LPC_ORDER); |
| |
| synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
| fir, iir, flt_in, vector + PITCH_MAX, 0); |
| memcpy(vector, p->harmonic_mem, sizeof(int16_t) * PITCH_MAX); |
| harmonic_noise_sub(hf + i, vector + PITCH_MAX, in); |
| |
| acb_search(p, residual, impulse_resp, in, i); |
| ff_g723_1_gen_acb_excitation(residual, p->prev_excitation, |
| p->pitch_lag[i >> 1], &p->subframe[i], |
| p->cur_rate); |
| sub_acb_contrib(residual, impulse_resp, in); |
| |
| fcb_search(p, impulse_resp, in, i); |
| |
| /* Reconstruct the excitation */ |
| ff_g723_1_gen_acb_excitation(impulse_resp, p->prev_excitation, |
| p->pitch_lag[i >> 1], &p->subframe[i], |
| RATE_6300); |
| |
| memmove(p->prev_excitation, p->prev_excitation + SUBFRAME_LEN, |
| sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); |
| for (j = 0; j < SUBFRAME_LEN; j++) |
| in[j] = av_clip_int16((in[j] << 1) + impulse_resp[j]); |
| memcpy(p->prev_excitation + PITCH_MAX - SUBFRAME_LEN, in, |
| sizeof(int16_t) * SUBFRAME_LEN); |
| |
| /* Update filter memories */ |
| synth_percept_filter(qnt_lpc + offset, weighted_lpc + (offset << 1), |
| p->perf_fir_mem, p->perf_iir_mem, |
| in, vector + PITCH_MAX, 0); |
| memmove(p->harmonic_mem, p->harmonic_mem + SUBFRAME_LEN, |
| sizeof(int16_t) * (PITCH_MAX - SUBFRAME_LEN)); |
| memcpy(p->harmonic_mem + PITCH_MAX - SUBFRAME_LEN, vector + PITCH_MAX, |
| sizeof(int16_t) * SUBFRAME_LEN); |
| |
| in += SUBFRAME_LEN; |
| offset += LPC_ORDER; |
| } |
| |
| av_free(start); |
| |
| if ((ret = ff_alloc_packet2(avctx, avpkt, 24, 0)) < 0) |
| return ret; |
| |
| *got_packet_ptr = 1; |
| avpkt->size = pack_bitstream(p, avpkt); |
| return 0; |
| } |
| |
| AVCodec ff_g723_1_encoder = { |
| .name = "g723_1", |
| .long_name = NULL_IF_CONFIG_SMALL("G.723.1"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_G723_1, |
| .priv_data_size = sizeof(G723_1_Context), |
| .init = g723_1_encode_init, |
| .encode2 = g723_1_encode_frame, |
| .sample_fmts = (const enum AVSampleFormat[]) { |
| AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE |
| }, |
| }; |