| /* |
| * Lagarith lossless decoder |
| * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Lagarith lossless decoder |
| * @author Nathan Caldwell |
| */ |
| |
| #include <inttypes.h> |
| |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "mathops.h" |
| #include "huffyuvdsp.h" |
| #include "lagarithrac.h" |
| #include "thread.h" |
| |
| enum LagarithFrameType { |
| FRAME_RAW = 1, /**< uncompressed */ |
| FRAME_U_RGB24 = 2, /**< unaligned RGB24 */ |
| FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */ |
| FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */ |
| FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */ |
| FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */ |
| FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */ |
| FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */ |
| FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */ |
| FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */ |
| FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */ |
| }; |
| |
| typedef struct LagarithContext { |
| AVCodecContext *avctx; |
| HuffYUVDSPContext hdsp; |
| int zeros; /**< number of consecutive zero bytes encountered */ |
| int zeros_rem; /**< number of zero bytes remaining to output */ |
| uint8_t *rgb_planes; |
| int rgb_planes_allocated; |
| int rgb_stride; |
| } LagarithContext; |
| |
| /** |
| * Compute the 52bit mantissa of 1/(double)denom. |
| * This crazy format uses floats in an entropy coder and we have to match x86 |
| * rounding exactly, thus ordinary floats aren't portable enough. |
| * @param denom denominator |
| * @return 52bit mantissa |
| * @see softfloat_mul |
| */ |
| static uint64_t softfloat_reciprocal(uint32_t denom) |
| { |
| int shift = av_log2(denom - 1) + 1; |
| uint64_t ret = (1ULL << 52) / denom; |
| uint64_t err = (1ULL << 52) - ret * denom; |
| ret <<= shift; |
| err <<= shift; |
| err += denom / 2; |
| return ret + err / denom; |
| } |
| |
| /** |
| * (uint32_t)(x*f), where f has the given mantissa, and exponent 0 |
| * Used in combination with softfloat_reciprocal computes x/(double)denom. |
| * @param x 32bit integer factor |
| * @param mantissa mantissa of f with exponent 0 |
| * @return 32bit integer value (x*f) |
| * @see softfloat_reciprocal |
| */ |
| static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa) |
| { |
| uint64_t l = x * (mantissa & 0xffffffff); |
| uint64_t h = x * (mantissa >> 32); |
| h += l >> 32; |
| l &= 0xffffffff; |
| l += 1 << av_log2(h >> 21); |
| h += l >> 32; |
| return h >> 20; |
| } |
| |
| static uint8_t lag_calc_zero_run(int8_t x) |
| { |
| return (x << 1) ^ (x >> 7); |
| } |
| |
| static int lag_decode_prob(GetBitContext *gb, uint32_t *value) |
| { |
| static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 }; |
| int i; |
| int bit = 0; |
| int bits = 0; |
| int prevbit = 0; |
| unsigned val; |
| |
| for (i = 0; i < 7; i++) { |
| if (prevbit && bit) |
| break; |
| prevbit = bit; |
| bit = get_bits1(gb); |
| if (bit && !prevbit) |
| bits += series[i]; |
| } |
| bits--; |
| if (bits < 0 || bits > 31) { |
| *value = 0; |
| return -1; |
| } else if (bits == 0) { |
| *value = 0; |
| return 0; |
| } |
| |
| val = get_bits_long(gb, bits); |
| val |= 1U << bits; |
| |
| *value = val - 1; |
| |
| return 0; |
| } |
| |
| static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb) |
| { |
| int i, j, scale_factor; |
| unsigned prob, cumulative_target; |
| unsigned cumul_prob = 0; |
| unsigned scaled_cumul_prob = 0; |
| |
| rac->prob[0] = 0; |
| rac->prob[257] = UINT_MAX; |
| /* Read probabilities from bitstream */ |
| for (i = 1; i < 257; i++) { |
| if (lag_decode_prob(gb, &rac->prob[i]) < 0) { |
| av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n"); |
| return -1; |
| } |
| if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) { |
| av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n"); |
| return -1; |
| } |
| cumul_prob += rac->prob[i]; |
| if (!rac->prob[i]) { |
| if (lag_decode_prob(gb, &prob)) { |
| av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n"); |
| return -1; |
| } |
| if (prob > 256 - i) |
| prob = 256 - i; |
| for (j = 0; j < prob; j++) |
| rac->prob[++i] = 0; |
| } |
| } |
| |
| if (!cumul_prob) { |
| av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n"); |
| return -1; |
| } |
| |
| /* Scale probabilities so cumulative probability is an even power of 2. */ |
| scale_factor = av_log2(cumul_prob); |
| |
| if (cumul_prob & (cumul_prob - 1)) { |
| uint64_t mul = softfloat_reciprocal(cumul_prob); |
| for (i = 1; i <= 128; i++) { |
| rac->prob[i] = softfloat_mul(rac->prob[i], mul); |
| scaled_cumul_prob += rac->prob[i]; |
| } |
| if (scaled_cumul_prob <= 0) { |
| av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| for (; i < 257; i++) { |
| rac->prob[i] = softfloat_mul(rac->prob[i], mul); |
| scaled_cumul_prob += rac->prob[i]; |
| } |
| |
| scale_factor++; |
| cumulative_target = 1 << scale_factor; |
| |
| if (scaled_cumul_prob > cumulative_target) { |
| av_log(rac->avctx, AV_LOG_ERROR, |
| "Scaled probabilities are larger than target!\n"); |
| return -1; |
| } |
| |
| scaled_cumul_prob = cumulative_target - scaled_cumul_prob; |
| |
| for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) { |
| if (rac->prob[i]) { |
| rac->prob[i]++; |
| scaled_cumul_prob--; |
| } |
| /* Comment from reference source: |
| * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way |
| * // since the compression change is negligible and fixing it |
| * // breaks backwards compatibility |
| * b =- (signed int)b; |
| * b &= 0xFF; |
| * } else { |
| * b++; |
| * b &= 0x7f; |
| * } |
| */ |
| } |
| } |
| |
| rac->scale = scale_factor; |
| |
| /* Fill probability array with cumulative probability for each symbol. */ |
| for (i = 1; i < 257; i++) |
| rac->prob[i] += rac->prob[i - 1]; |
| |
| return 0; |
| } |
| |
| static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, |
| uint8_t *diff, int w, int *left, |
| int *left_top) |
| { |
| /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h. |
| * However the &0xFF on the gradient predictor yealds incorrect output |
| * for lagarith. |
| */ |
| int i; |
| uint8_t l, lt; |
| |
| l = *left; |
| lt = *left_top; |
| |
| for (i = 0; i < w; i++) { |
| l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i]; |
| lt = src1[i]; |
| dst[i] = l; |
| } |
| |
| *left = l; |
| *left_top = lt; |
| } |
| |
| static void lag_pred_line(LagarithContext *l, uint8_t *buf, |
| int width, int stride, int line) |
| { |
| int L, TL; |
| |
| if (!line) { |
| /* Left prediction only for first line */ |
| L = l->hdsp.add_hfyu_left_pred(buf, buf, width, 0); |
| } else { |
| /* Left pixel is actually prev_row[width] */ |
| L = buf[width - stride - 1]; |
| |
| if (line == 1) { |
| /* Second line, left predict first pixel, the rest of the line is median predicted |
| * NOTE: In the case of RGB this pixel is top predicted */ |
| TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L; |
| } else { |
| /* Top left is 2 rows back, last pixel */ |
| TL = buf[width - (2 * stride) - 1]; |
| } |
| |
| add_lag_median_prediction(buf, buf - stride, buf, |
| width, &L, &TL); |
| } |
| } |
| |
| static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, |
| int width, int stride, int line, |
| int is_luma) |
| { |
| int L, TL; |
| |
| if (!line) { |
| L= buf[0]; |
| if (is_luma) |
| buf[0] = 0; |
| l->hdsp.add_hfyu_left_pred(buf, buf, width, 0); |
| if (is_luma) |
| buf[0] = L; |
| return; |
| } |
| if (line == 1) { |
| const int HEAD = is_luma ? 4 : 2; |
| int i; |
| |
| L = buf[width - stride - 1]; |
| TL = buf[HEAD - stride - 1]; |
| for (i = 0; i < HEAD; i++) { |
| L += buf[i]; |
| buf[i] = L; |
| } |
| for (; i < width; i++) { |
| L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i]; |
| TL = buf[i - stride]; |
| buf[i] = L; |
| } |
| } else { |
| TL = buf[width - (2 * stride) - 1]; |
| L = buf[width - stride - 1]; |
| l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL); |
| } |
| } |
| |
| static int lag_decode_line(LagarithContext *l, lag_rac *rac, |
| uint8_t *dst, int width, int stride, |
| int esc_count) |
| { |
| int i = 0; |
| int ret = 0; |
| |
| if (!esc_count) |
| esc_count = -1; |
| |
| /* Output any zeros remaining from the previous run */ |
| handle_zeros: |
| if (l->zeros_rem) { |
| int count = FFMIN(l->zeros_rem, width - i); |
| memset(dst + i, 0, count); |
| i += count; |
| l->zeros_rem -= count; |
| } |
| |
| while (i < width) { |
| dst[i] = lag_get_rac(rac); |
| ret++; |
| |
| if (dst[i]) |
| l->zeros = 0; |
| else |
| l->zeros++; |
| |
| i++; |
| if (l->zeros == esc_count) { |
| int index = lag_get_rac(rac); |
| ret++; |
| |
| l->zeros = 0; |
| |
| l->zeros_rem = lag_calc_zero_run(index); |
| goto handle_zeros; |
| } |
| } |
| return ret; |
| } |
| |
| static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, |
| const uint8_t *src, const uint8_t *src_end, |
| int width, int esc_count) |
| { |
| int i = 0; |
| int count; |
| uint8_t zero_run = 0; |
| const uint8_t *src_start = src; |
| uint8_t mask1 = -(esc_count < 2); |
| uint8_t mask2 = -(esc_count < 3); |
| uint8_t *end = dst + (width - 2); |
| |
| avpriv_request_sample(l->avctx, "zero_run_line"); |
| |
| memset(dst, 0, width); |
| |
| output_zeros: |
| if (l->zeros_rem) { |
| count = FFMIN(l->zeros_rem, width - i); |
| if (end - dst < count) { |
| av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| memset(dst, 0, count); |
| l->zeros_rem -= count; |
| dst += count; |
| } |
| |
| while (dst < end) { |
| i = 0; |
| while (!zero_run && dst + i < end) { |
| i++; |
| if (i+2 >= src_end - src) |
| return AVERROR_INVALIDDATA; |
| zero_run = |
| !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2)); |
| } |
| if (zero_run) { |
| zero_run = 0; |
| i += esc_count; |
| memcpy(dst, src, i); |
| dst += i; |
| l->zeros_rem = lag_calc_zero_run(src[i]); |
| |
| src += i + 1; |
| goto output_zeros; |
| } else { |
| memcpy(dst, src, i); |
| src += i; |
| dst += i; |
| } |
| } |
| return src - src_start; |
| } |
| |
| |
| |
| static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, |
| int width, int height, int stride, |
| const uint8_t *src, int src_size) |
| { |
| int i = 0; |
| int read = 0; |
| uint32_t length; |
| uint32_t offset = 1; |
| int esc_count; |
| GetBitContext gb; |
| lag_rac rac; |
| const uint8_t *src_end = src + src_size; |
| int ret; |
| |
| rac.avctx = l->avctx; |
| l->zeros = 0; |
| |
| if(src_size < 2) |
| return AVERROR_INVALIDDATA; |
| |
| esc_count = src[0]; |
| if (esc_count < 4) { |
| length = width * height; |
| if(src_size < 5) |
| return AVERROR_INVALIDDATA; |
| if (esc_count && AV_RL32(src + 1) < length) { |
| length = AV_RL32(src + 1); |
| offset += 4; |
| } |
| |
| if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0) |
| return ret; |
| |
| if (lag_read_prob_header(&rac, &gb) < 0) |
| return -1; |
| |
| ff_lag_rac_init(&rac, &gb, length - stride); |
| |
| for (i = 0; i < height; i++) |
| read += lag_decode_line(l, &rac, dst + (i * stride), width, |
| stride, esc_count); |
| |
| if (read > length) |
| av_log(l->avctx, AV_LOG_WARNING, |
| "Output more bytes than length (%d of %"PRIu32")\n", read, |
| length); |
| } else if (esc_count < 8) { |
| esc_count -= 4; |
| src ++; |
| src_size --; |
| if (esc_count > 0) { |
| /* Zero run coding only, no range coding. */ |
| for (i = 0; i < height; i++) { |
| int res = lag_decode_zero_run_line(l, dst + (i * stride), src, |
| src_end, width, esc_count); |
| if (res < 0) |
| return res; |
| src += res; |
| } |
| } else { |
| if (src_size < width * height) |
| return AVERROR_INVALIDDATA; // buffer not big enough |
| /* Plane is stored uncompressed */ |
| for (i = 0; i < height; i++) { |
| memcpy(dst + (i * stride), src, width); |
| src += width; |
| } |
| } |
| } else if (esc_count == 0xff) { |
| /* Plane is a solid run of given value */ |
| for (i = 0; i < height; i++) |
| memset(dst + i * stride, src[1], width); |
| /* Do not apply prediction. |
| Note: memset to 0 above, setting first value to src[1] |
| and applying prediction gives the same result. */ |
| return 0; |
| } else { |
| av_log(l->avctx, AV_LOG_ERROR, |
| "Invalid zero run escape code! (%#x)\n", esc_count); |
| return -1; |
| } |
| |
| if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) { |
| for (i = 0; i < height; i++) { |
| lag_pred_line(l, dst, width, stride, i); |
| dst += stride; |
| } |
| } else { |
| for (i = 0; i < height; i++) { |
| lag_pred_line_yuy2(l, dst, width, stride, i, |
| width == l->avctx->width); |
| dst += stride; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Decode a frame. |
| * @param avctx codec context |
| * @param data output AVFrame |
| * @param data_size size of output data or 0 if no picture is returned |
| * @param avpkt input packet |
| * @return number of consumed bytes on success or negative if decode fails |
| */ |
| static int lag_decode_frame(AVCodecContext *avctx, |
| void *data, int *got_frame, AVPacket *avpkt) |
| { |
| const uint8_t *buf = avpkt->data; |
| unsigned int buf_size = avpkt->size; |
| LagarithContext *l = avctx->priv_data; |
| ThreadFrame frame = { .f = data }; |
| AVFrame *const p = data; |
| uint8_t frametype = 0; |
| uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; |
| uint32_t offs[4]; |
| uint8_t *srcs[4], *dst; |
| int i, j, planes = 3; |
| int ret; |
| |
| p->key_frame = 1; |
| |
| frametype = buf[0]; |
| |
| offset_gu = AV_RL32(buf + 1); |
| offset_bv = AV_RL32(buf + 5); |
| |
| switch (frametype) { |
| case FRAME_SOLID_RGBA: |
| avctx->pix_fmt = AV_PIX_FMT_RGB32; |
| case FRAME_SOLID_GRAY: |
| if (frametype == FRAME_SOLID_GRAY) |
| if (avctx->bits_per_coded_sample == 24) { |
| avctx->pix_fmt = AV_PIX_FMT_RGB24; |
| } else { |
| avctx->pix_fmt = AV_PIX_FMT_0RGB32; |
| planes = 4; |
| } |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) |
| return ret; |
| |
| dst = p->data[0]; |
| if (frametype == FRAME_SOLID_RGBA) { |
| for (j = 0; j < avctx->height; j++) { |
| for (i = 0; i < avctx->width; i++) |
| AV_WN32(dst + i * 4, offset_gu); |
| dst += p->linesize[0]; |
| } |
| } else { |
| for (j = 0; j < avctx->height; j++) { |
| memset(dst, buf[1], avctx->width * planes); |
| dst += p->linesize[0]; |
| } |
| } |
| break; |
| case FRAME_SOLID_COLOR: |
| if (avctx->bits_per_coded_sample == 24) { |
| avctx->pix_fmt = AV_PIX_FMT_RGB24; |
| } else { |
| avctx->pix_fmt = AV_PIX_FMT_RGB32; |
| offset_gu |= 0xFFU << 24; |
| } |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame,0)) < 0) |
| return ret; |
| |
| dst = p->data[0]; |
| for (j = 0; j < avctx->height; j++) { |
| for (i = 0; i < avctx->width; i++) |
| if (avctx->bits_per_coded_sample == 24) { |
| AV_WB24(dst + i * 3, offset_gu); |
| } else { |
| AV_WN32(dst + i * 4, offset_gu); |
| } |
| dst += p->linesize[0]; |
| } |
| break; |
| case FRAME_ARITH_RGBA: |
| avctx->pix_fmt = AV_PIX_FMT_RGB32; |
| planes = 4; |
| offset_ry += 4; |
| offs[3] = AV_RL32(buf + 9); |
| case FRAME_ARITH_RGB24: |
| case FRAME_U_RGB24: |
| if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24) |
| avctx->pix_fmt = AV_PIX_FMT_RGB24; |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) |
| return ret; |
| |
| offs[0] = offset_bv; |
| offs[1] = offset_gu; |
| offs[2] = offset_ry; |
| |
| l->rgb_stride = FFALIGN(avctx->width, 16); |
| av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated, |
| l->rgb_stride * avctx->height * planes + 1); |
| if (!l->rgb_planes) { |
| av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n"); |
| return AVERROR(ENOMEM); |
| } |
| for (i = 0; i < planes; i++) |
| srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride; |
| for (i = 0; i < planes; i++) |
| if (buf_size <= offs[i]) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Invalid frame offsets\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| for (i = 0; i < planes; i++) |
| lag_decode_arith_plane(l, srcs[i], |
| avctx->width, avctx->height, |
| -l->rgb_stride, buf + offs[i], |
| buf_size - offs[i]); |
| dst = p->data[0]; |
| for (i = 0; i < planes; i++) |
| srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height; |
| for (j = 0; j < avctx->height; j++) { |
| for (i = 0; i < avctx->width; i++) { |
| uint8_t r, g, b, a; |
| r = srcs[0][i]; |
| g = srcs[1][i]; |
| b = srcs[2][i]; |
| r += g; |
| b += g; |
| if (frametype == FRAME_ARITH_RGBA) { |
| a = srcs[3][i]; |
| AV_WN32(dst + i * 4, MKBETAG(a, r, g, b)); |
| } else { |
| dst[i * 3 + 0] = r; |
| dst[i * 3 + 1] = g; |
| dst[i * 3 + 2] = b; |
| } |
| } |
| dst += p->linesize[0]; |
| for (i = 0; i < planes; i++) |
| srcs[i] += l->rgb_stride; |
| } |
| break; |
| case FRAME_ARITH_YUY2: |
| avctx->pix_fmt = AV_PIX_FMT_YUV422P; |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) |
| return ret; |
| |
| if (offset_ry >= buf_size || |
| offset_gu >= buf_size || |
| offset_bv >= buf_size) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Invalid frame offsets\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, |
| p->linesize[0], buf + offset_ry, |
| buf_size - offset_ry); |
| lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2, |
| avctx->height, p->linesize[1], |
| buf + offset_gu, buf_size - offset_gu); |
| lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2, |
| avctx->height, p->linesize[2], |
| buf + offset_bv, buf_size - offset_bv); |
| break; |
| case FRAME_ARITH_YV12: |
| avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
| |
| if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) |
| return ret; |
| if (buf_size <= offset_ry || buf_size <= offset_gu || buf_size <= offset_bv) { |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (offset_ry >= buf_size || |
| offset_gu >= buf_size || |
| offset_bv >= buf_size) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Invalid frame offsets\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, |
| p->linesize[0], buf + offset_ry, |
| buf_size - offset_ry); |
| lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2, |
| (avctx->height + 1) / 2, p->linesize[2], |
| buf + offset_gu, buf_size - offset_gu); |
| lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2, |
| (avctx->height + 1) / 2, p->linesize[1], |
| buf + offset_bv, buf_size - offset_bv); |
| break; |
| default: |
| av_log(avctx, AV_LOG_ERROR, |
| "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| *got_frame = 1; |
| |
| return buf_size; |
| } |
| |
| static av_cold int lag_decode_init(AVCodecContext *avctx) |
| { |
| LagarithContext *l = avctx->priv_data; |
| l->avctx = avctx; |
| |
| ff_huffyuvdsp_init(&l->hdsp); |
| |
| return 0; |
| } |
| |
| static av_cold int lag_decode_end(AVCodecContext *avctx) |
| { |
| LagarithContext *l = avctx->priv_data; |
| |
| av_freep(&l->rgb_planes); |
| |
| return 0; |
| } |
| |
| AVCodec ff_lagarith_decoder = { |
| .name = "lagarith", |
| .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_LAGARITH, |
| .priv_data_size = sizeof(LagarithContext), |
| .init = lag_decode_init, |
| .close = lag_decode_end, |
| .decode = lag_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS, |
| }; |