| /* |
| * MDCT/IMDCT transforms |
| * Copyright (c) 2002 Fabrice Bellard |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #include "libavutil/common.h" |
| #include "libavutil/libm.h" |
| #include "libavutil/mathematics.h" |
| #include "fft.h" |
| #include "fft-internal.h" |
| |
| /** |
| * @file |
| * MDCT/IMDCT transforms. |
| */ |
| |
| #if FFT_FLOAT |
| # define RSCALE(x) (x) |
| #else |
| #if FFT_FIXED_32 |
| # define RSCALE(x) (((x) + 32) >> 6) |
| #else /* FFT_FIXED_32 */ |
| # define RSCALE(x) ((x) >> 1) |
| #endif /* FFT_FIXED_32 */ |
| #endif |
| |
| /** |
| * init MDCT or IMDCT computation. |
| */ |
| av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale) |
| { |
| int n, n4, i; |
| double alpha, theta; |
| int tstep; |
| |
| memset(s, 0, sizeof(*s)); |
| n = 1 << nbits; |
| s->mdct_bits = nbits; |
| s->mdct_size = n; |
| n4 = n >> 2; |
| s->mdct_permutation = FF_MDCT_PERM_NONE; |
| |
| if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0) |
| goto fail; |
| |
| s->tcos = av_malloc_array(n/2, sizeof(FFTSample)); |
| if (!s->tcos) |
| goto fail; |
| |
| switch (s->mdct_permutation) { |
| case FF_MDCT_PERM_NONE: |
| s->tsin = s->tcos + n4; |
| tstep = 1; |
| break; |
| case FF_MDCT_PERM_INTERLEAVE: |
| s->tsin = s->tcos + 1; |
| tstep = 2; |
| break; |
| default: |
| goto fail; |
| } |
| |
| theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0); |
| scale = sqrt(fabs(scale)); |
| for(i=0;i<n4;i++) { |
| alpha = 2 * M_PI * (i + theta) / n; |
| #if FFT_FIXED_32 |
| s->tcos[i*tstep] = lrint(-cos(alpha) * 2147483648.0); |
| s->tsin[i*tstep] = lrint(-sin(alpha) * 2147483648.0); |
| #else |
| s->tcos[i*tstep] = FIX15(-cos(alpha) * scale); |
| s->tsin[i*tstep] = FIX15(-sin(alpha) * scale); |
| #endif |
| } |
| return 0; |
| fail: |
| ff_mdct_end(s); |
| return -1; |
| } |
| |
| /** |
| * Compute the middle half of the inverse MDCT of size N = 2^nbits, |
| * thus excluding the parts that can be derived by symmetry |
| * @param output N/2 samples |
| * @param input N/2 samples |
| */ |
| void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input) |
| { |
| int k, n8, n4, n2, n, j; |
| const uint16_t *revtab = s->revtab; |
| const FFTSample *tcos = s->tcos; |
| const FFTSample *tsin = s->tsin; |
| const FFTSample *in1, *in2; |
| FFTComplex *z = (FFTComplex *)output; |
| |
| n = 1 << s->mdct_bits; |
| n2 = n >> 1; |
| n4 = n >> 2; |
| n8 = n >> 3; |
| |
| /* pre rotation */ |
| in1 = input; |
| in2 = input + n2 - 1; |
| for(k = 0; k < n4; k++) { |
| j=revtab[k]; |
| CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]); |
| in1 += 2; |
| in2 -= 2; |
| } |
| s->fft_calc(s, z); |
| |
| /* post rotation + reordering */ |
| for(k = 0; k < n8; k++) { |
| FFTSample r0, i0, r1, i1; |
| CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]); |
| CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]); |
| z[n8-k-1].re = r0; |
| z[n8-k-1].im = i0; |
| z[n8+k ].re = r1; |
| z[n8+k ].im = i1; |
| } |
| } |
| |
| /** |
| * Compute inverse MDCT of size N = 2^nbits |
| * @param output N samples |
| * @param input N/2 samples |
| */ |
| void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input) |
| { |
| int k; |
| int n = 1 << s->mdct_bits; |
| int n2 = n >> 1; |
| int n4 = n >> 2; |
| |
| ff_imdct_half_c(s, output+n4, input); |
| |
| for(k = 0; k < n4; k++) { |
| output[k] = -output[n2-k-1]; |
| output[n-k-1] = output[n2+k]; |
| } |
| } |
| |
| /** |
| * Compute MDCT of size N = 2^nbits |
| * @param input N samples |
| * @param out N/2 samples |
| */ |
| void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input) |
| { |
| int i, j, n, n8, n4, n2, n3; |
| FFTDouble re, im; |
| const uint16_t *revtab = s->revtab; |
| const FFTSample *tcos = s->tcos; |
| const FFTSample *tsin = s->tsin; |
| FFTComplex *x = (FFTComplex *)out; |
| |
| n = 1 << s->mdct_bits; |
| n2 = n >> 1; |
| n4 = n >> 2; |
| n8 = n >> 3; |
| n3 = 3 * n4; |
| |
| /* pre rotation */ |
| for(i=0;i<n8;i++) { |
| re = RSCALE(-input[2*i+n3] - input[n3-1-2*i]); |
| im = RSCALE(-input[n4+2*i] + input[n4-1-2*i]); |
| j = revtab[i]; |
| CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]); |
| |
| re = RSCALE( input[2*i] - input[n2-1-2*i]); |
| im = RSCALE(-input[n2+2*i] - input[ n-1-2*i]); |
| j = revtab[n8 + i]; |
| CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]); |
| } |
| |
| s->fft_calc(s, x); |
| |
| /* post rotation */ |
| for(i=0;i<n8;i++) { |
| FFTSample r0, i0, r1, i1; |
| CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]); |
| CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]); |
| x[n8-i-1].re = r0; |
| x[n8-i-1].im = i0; |
| x[n8+i ].re = r1; |
| x[n8+i ].im = i1; |
| } |
| } |
| |
| av_cold void ff_mdct_end(FFTContext *s) |
| { |
| av_freep(&s->tcos); |
| ff_fft_end(s); |
| } |