| /* |
| * The simplest mpeg audio layer 2 encoder |
| * Copyright (c) 2000, 2001 Fabrice Bellard |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * The simplest mpeg audio layer 2 encoder. |
| */ |
| |
| #include "libavutil/channel_layout.h" |
| |
| #include "avcodec.h" |
| #include "internal.h" |
| #include "put_bits.h" |
| |
| #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */ |
| #define WFRAC_BITS 14 /* fractional bits for window */ |
| |
| #include "mpegaudio.h" |
| #include "mpegaudiodsp.h" |
| #include "mpegaudiodata.h" |
| #include "mpegaudiotab.h" |
| |
| /* currently, cannot change these constants (need to modify |
| quantization stage) */ |
| #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS) |
| |
| #define SAMPLES_BUF_SIZE 4096 |
| |
| typedef struct MpegAudioContext { |
| PutBitContext pb; |
| int nb_channels; |
| int lsf; /* 1 if mpeg2 low bitrate selected */ |
| int bitrate_index; /* bit rate */ |
| int freq_index; |
| int frame_size; /* frame size, in bits, without padding */ |
| /* padding computation */ |
| int frame_frac, frame_frac_incr, do_padding; |
| short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */ |
| int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */ |
| int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT]; |
| unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */ |
| /* code to group 3 scale factors */ |
| unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; |
| int sblimit; /* number of used subbands */ |
| const unsigned char *alloc_table; |
| int16_t filter_bank[512]; |
| int scale_factor_table[64]; |
| unsigned char scale_diff_table[128]; |
| #if USE_FLOATS |
| float scale_factor_inv_table[64]; |
| #else |
| int8_t scale_factor_shift[64]; |
| unsigned short scale_factor_mult[64]; |
| #endif |
| unsigned short total_quant_bits[17]; /* total number of bits per allocation group */ |
| } MpegAudioContext; |
| |
| static av_cold int MPA_encode_init(AVCodecContext *avctx) |
| { |
| MpegAudioContext *s = avctx->priv_data; |
| int freq = avctx->sample_rate; |
| int bitrate = avctx->bit_rate; |
| int channels = avctx->channels; |
| int i, v, table; |
| float a; |
| |
| if (channels <= 0 || channels > 2){ |
| av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels); |
| return AVERROR(EINVAL); |
| } |
| bitrate = bitrate / 1000; |
| s->nb_channels = channels; |
| avctx->frame_size = MPA_FRAME_SIZE; |
| avctx->initial_padding = 512 - 32 + 1; |
| |
| /* encoding freq */ |
| s->lsf = 0; |
| for(i=0;i<3;i++) { |
| if (avpriv_mpa_freq_tab[i] == freq) |
| break; |
| if ((avpriv_mpa_freq_tab[i] / 2) == freq) { |
| s->lsf = 1; |
| break; |
| } |
| } |
| if (i == 3){ |
| av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq); |
| return AVERROR(EINVAL); |
| } |
| s->freq_index = i; |
| |
| /* encoding bitrate & frequency */ |
| for(i=1;i<15;i++) { |
| if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate) |
| break; |
| } |
| if (i == 15 && !avctx->bit_rate) { |
| i = 14; |
| bitrate = avpriv_mpa_bitrate_tab[s->lsf][1][i]; |
| avctx->bit_rate = bitrate * 1000; |
| } |
| if (i == 15){ |
| av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate); |
| return AVERROR(EINVAL); |
| } |
| s->bitrate_index = i; |
| |
| /* compute total header size & pad bit */ |
| |
| a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0); |
| s->frame_size = ((int)a) * 8; |
| |
| /* frame fractional size to compute padding */ |
| s->frame_frac = 0; |
| s->frame_frac_incr = (int)((a - floor(a)) * 65536.0); |
| |
| /* select the right allocation table */ |
| table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf); |
| |
| /* number of used subbands */ |
| s->sblimit = ff_mpa_sblimit_table[table]; |
| s->alloc_table = ff_mpa_alloc_tables[table]; |
| |
| ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n", |
| bitrate, freq, s->frame_size, table, s->frame_frac_incr); |
| |
| for(i=0;i<s->nb_channels;i++) |
| s->samples_offset[i] = 0; |
| |
| for(i=0;i<257;i++) { |
| int v; |
| v = ff_mpa_enwindow[i]; |
| #if WFRAC_BITS != 16 |
| v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); |
| #endif |
| s->filter_bank[i] = v; |
| if ((i & 63) != 0) |
| v = -v; |
| if (i != 0) |
| s->filter_bank[512 - i] = v; |
| } |
| |
| for(i=0;i<64;i++) { |
| v = (int)(exp2((3 - i) / 3.0) * (1 << 20)); |
| if (v <= 0) |
| v = 1; |
| s->scale_factor_table[i] = v; |
| #if USE_FLOATS |
| s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20); |
| #else |
| #define P 15 |
| s->scale_factor_shift[i] = 21 - P - (i / 3); |
| s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0); |
| #endif |
| } |
| for(i=0;i<128;i++) { |
| v = i - 64; |
| if (v <= -3) |
| v = 0; |
| else if (v < 0) |
| v = 1; |
| else if (v == 0) |
| v = 2; |
| else if (v < 3) |
| v = 3; |
| else |
| v = 4; |
| s->scale_diff_table[i] = v; |
| } |
| |
| for(i=0;i<17;i++) { |
| v = ff_mpa_quant_bits[i]; |
| if (v < 0) |
| v = -v; |
| else |
| v = v * 3; |
| s->total_quant_bits[i] = 12 * v; |
| } |
| |
| return 0; |
| } |
| |
| /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */ |
| static void idct32(int *out, int *tab) |
| { |
| int i, j; |
| int *t, *t1, xr; |
| const int *xp = costab32; |
| |
| for(j=31;j>=3;j-=2) tab[j] += tab[j - 2]; |
| |
| t = tab + 30; |
| t1 = tab + 2; |
| do { |
| t[0] += t[-4]; |
| t[1] += t[1 - 4]; |
| t -= 4; |
| } while (t != t1); |
| |
| t = tab + 28; |
| t1 = tab + 4; |
| do { |
| t[0] += t[-8]; |
| t[1] += t[1-8]; |
| t[2] += t[2-8]; |
| t[3] += t[3-8]; |
| t -= 8; |
| } while (t != t1); |
| |
| t = tab; |
| t1 = tab + 32; |
| do { |
| t[ 3] = -t[ 3]; |
| t[ 6] = -t[ 6]; |
| |
| t[11] = -t[11]; |
| t[12] = -t[12]; |
| t[13] = -t[13]; |
| t[15] = -t[15]; |
| t += 16; |
| } while (t != t1); |
| |
| |
| t = tab; |
| t1 = tab + 8; |
| do { |
| int x1, x2, x3, x4; |
| |
| x3 = MUL(t[16], FIX(M_SQRT2*0.5)); |
| x4 = t[0] - x3; |
| x3 = t[0] + x3; |
| |
| x2 = MUL(-(t[24] + t[8]), FIX(M_SQRT2*0.5)); |
| x1 = MUL((t[8] - x2), xp[0]); |
| x2 = MUL((t[8] + x2), xp[1]); |
| |
| t[ 0] = x3 + x1; |
| t[ 8] = x4 - x2; |
| t[16] = x4 + x2; |
| t[24] = x3 - x1; |
| t++; |
| } while (t != t1); |
| |
| xp += 2; |
| t = tab; |
| t1 = tab + 4; |
| do { |
| xr = MUL(t[28],xp[0]); |
| t[28] = (t[0] - xr); |
| t[0] = (t[0] + xr); |
| |
| xr = MUL(t[4],xp[1]); |
| t[ 4] = (t[24] - xr); |
| t[24] = (t[24] + xr); |
| |
| xr = MUL(t[20],xp[2]); |
| t[20] = (t[8] - xr); |
| t[ 8] = (t[8] + xr); |
| |
| xr = MUL(t[12],xp[3]); |
| t[12] = (t[16] - xr); |
| t[16] = (t[16] + xr); |
| t++; |
| } while (t != t1); |
| xp += 4; |
| |
| for (i = 0; i < 4; i++) { |
| xr = MUL(tab[30-i*4],xp[0]); |
| tab[30-i*4] = (tab[i*4] - xr); |
| tab[ i*4] = (tab[i*4] + xr); |
| |
| xr = MUL(tab[ 2+i*4],xp[1]); |
| tab[ 2+i*4] = (tab[28-i*4] - xr); |
| tab[28-i*4] = (tab[28-i*4] + xr); |
| |
| xr = MUL(tab[31-i*4],xp[0]); |
| tab[31-i*4] = (tab[1+i*4] - xr); |
| tab[ 1+i*4] = (tab[1+i*4] + xr); |
| |
| xr = MUL(tab[ 3+i*4],xp[1]); |
| tab[ 3+i*4] = (tab[29-i*4] - xr); |
| tab[29-i*4] = (tab[29-i*4] + xr); |
| |
| xp += 2; |
| } |
| |
| t = tab + 30; |
| t1 = tab + 1; |
| do { |
| xr = MUL(t1[0], *xp); |
| t1[0] = (t[0] - xr); |
| t[0] = (t[0] + xr); |
| t -= 2; |
| t1 += 2; |
| xp++; |
| } while (t >= tab); |
| |
| for(i=0;i<32;i++) { |
| out[i] = tab[bitinv32[i]]; |
| } |
| } |
| |
| #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS) |
| |
| static void filter(MpegAudioContext *s, int ch, const short *samples, int incr) |
| { |
| short *p, *q; |
| int sum, offset, i, j; |
| int tmp[64]; |
| int tmp1[32]; |
| int *out; |
| |
| offset = s->samples_offset[ch]; |
| out = &s->sb_samples[ch][0][0][0]; |
| for(j=0;j<36;j++) { |
| /* 32 samples at once */ |
| for(i=0;i<32;i++) { |
| s->samples_buf[ch][offset + (31 - i)] = samples[0]; |
| samples += incr; |
| } |
| |
| /* filter */ |
| p = s->samples_buf[ch] + offset; |
| q = s->filter_bank; |
| /* maxsum = 23169 */ |
| for(i=0;i<64;i++) { |
| sum = p[0*64] * q[0*64]; |
| sum += p[1*64] * q[1*64]; |
| sum += p[2*64] * q[2*64]; |
| sum += p[3*64] * q[3*64]; |
| sum += p[4*64] * q[4*64]; |
| sum += p[5*64] * q[5*64]; |
| sum += p[6*64] * q[6*64]; |
| sum += p[7*64] * q[7*64]; |
| tmp[i] = sum; |
| p++; |
| q++; |
| } |
| tmp1[0] = tmp[16] >> WSHIFT; |
| for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT; |
| for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT; |
| |
| idct32(out, tmp1); |
| |
| /* advance of 32 samples */ |
| offset -= 32; |
| out += 32; |
| /* handle the wrap around */ |
| if (offset < 0) { |
| memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32), |
| s->samples_buf[ch], (512 - 32) * 2); |
| offset = SAMPLES_BUF_SIZE - 512; |
| } |
| } |
| s->samples_offset[ch] = offset; |
| } |
| |
| static void compute_scale_factors(MpegAudioContext *s, |
| unsigned char scale_code[SBLIMIT], |
| unsigned char scale_factors[SBLIMIT][3], |
| int sb_samples[3][12][SBLIMIT], |
| int sblimit) |
| { |
| int *p, vmax, v, n, i, j, k, code; |
| int index, d1, d2; |
| unsigned char *sf = &scale_factors[0][0]; |
| |
| for(j=0;j<sblimit;j++) { |
| for(i=0;i<3;i++) { |
| /* find the max absolute value */ |
| p = &sb_samples[i][0][j]; |
| vmax = abs(*p); |
| for(k=1;k<12;k++) { |
| p += SBLIMIT; |
| v = abs(*p); |
| if (v > vmax) |
| vmax = v; |
| } |
| /* compute the scale factor index using log 2 computations */ |
| if (vmax > 1) { |
| n = av_log2(vmax); |
| /* n is the position of the MSB of vmax. now |
| use at most 2 compares to find the index */ |
| index = (21 - n) * 3 - 3; |
| if (index >= 0) { |
| while (vmax <= s->scale_factor_table[index+1]) |
| index++; |
| } else { |
| index = 0; /* very unlikely case of overflow */ |
| } |
| } else { |
| index = 62; /* value 63 is not allowed */ |
| } |
| |
| ff_dlog(NULL, "%2d:%d in=%x %x %d\n", |
| j, i, vmax, s->scale_factor_table[index], index); |
| /* store the scale factor */ |
| av_assert2(index >=0 && index <= 63); |
| sf[i] = index; |
| } |
| |
| /* compute the transmission factor : look if the scale factors |
| are close enough to each other */ |
| d1 = s->scale_diff_table[sf[0] - sf[1] + 64]; |
| d2 = s->scale_diff_table[sf[1] - sf[2] + 64]; |
| |
| /* handle the 25 cases */ |
| switch(d1 * 5 + d2) { |
| case 0*5+0: |
| case 0*5+4: |
| case 3*5+4: |
| case 4*5+0: |
| case 4*5+4: |
| code = 0; |
| break; |
| case 0*5+1: |
| case 0*5+2: |
| case 4*5+1: |
| case 4*5+2: |
| code = 3; |
| sf[2] = sf[1]; |
| break; |
| case 0*5+3: |
| case 4*5+3: |
| code = 3; |
| sf[1] = sf[2]; |
| break; |
| case 1*5+0: |
| case 1*5+4: |
| case 2*5+4: |
| code = 1; |
| sf[1] = sf[0]; |
| break; |
| case 1*5+1: |
| case 1*5+2: |
| case 2*5+0: |
| case 2*5+1: |
| case 2*5+2: |
| code = 2; |
| sf[1] = sf[2] = sf[0]; |
| break; |
| case 2*5+3: |
| case 3*5+3: |
| code = 2; |
| sf[0] = sf[1] = sf[2]; |
| break; |
| case 3*5+0: |
| case 3*5+1: |
| case 3*5+2: |
| code = 2; |
| sf[0] = sf[2] = sf[1]; |
| break; |
| case 1*5+3: |
| code = 2; |
| if (sf[0] > sf[2]) |
| sf[0] = sf[2]; |
| sf[1] = sf[2] = sf[0]; |
| break; |
| default: |
| av_assert2(0); //cannot happen |
| code = 0; /* kill warning */ |
| } |
| |
| ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j, |
| sf[0], sf[1], sf[2], d1, d2, code); |
| scale_code[j] = code; |
| sf += 3; |
| } |
| } |
| |
| /* The most important function : psycho acoustic module. In this |
| encoder there is basically none, so this is the worst you can do, |
| but also this is the simpler. */ |
| static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT]) |
| { |
| int i; |
| |
| for(i=0;i<s->sblimit;i++) { |
| smr[i] = (int)(fixed_smr[i] * 10); |
| } |
| } |
| |
| |
| #define SB_NOTALLOCATED 0 |
| #define SB_ALLOCATED 1 |
| #define SB_NOMORE 2 |
| |
| /* Try to maximize the smr while using a number of bits inferior to |
| the frame size. I tried to make the code simpler, faster and |
| smaller than other encoders :-) */ |
| static void compute_bit_allocation(MpegAudioContext *s, |
| short smr1[MPA_MAX_CHANNELS][SBLIMIT], |
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], |
| int *padding) |
| { |
| int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size; |
| int incr; |
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; |
| unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT]; |
| const unsigned char *alloc; |
| |
| memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT); |
| memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT); |
| memset(bit_alloc, 0, s->nb_channels * SBLIMIT); |
| |
| /* compute frame size and padding */ |
| max_frame_size = s->frame_size; |
| s->frame_frac += s->frame_frac_incr; |
| if (s->frame_frac >= 65536) { |
| s->frame_frac -= 65536; |
| s->do_padding = 1; |
| max_frame_size += 8; |
| } else { |
| s->do_padding = 0; |
| } |
| |
| /* compute the header + bit alloc size */ |
| current_frame_size = 32; |
| alloc = s->alloc_table; |
| for(i=0;i<s->sblimit;i++) { |
| incr = alloc[0]; |
| current_frame_size += incr * s->nb_channels; |
| alloc += 1 << incr; |
| } |
| for(;;) { |
| /* look for the subband with the largest signal to mask ratio */ |
| max_sb = -1; |
| max_ch = -1; |
| max_smr = INT_MIN; |
| for(ch=0;ch<s->nb_channels;ch++) { |
| for(i=0;i<s->sblimit;i++) { |
| if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) { |
| max_smr = smr[ch][i]; |
| max_sb = i; |
| max_ch = ch; |
| } |
| } |
| } |
| if (max_sb < 0) |
| break; |
| ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n", |
| current_frame_size, max_frame_size, max_sb, max_ch, |
| bit_alloc[max_ch][max_sb]); |
| |
| /* find alloc table entry (XXX: not optimal, should use |
| pointer table) */ |
| alloc = s->alloc_table; |
| for(i=0;i<max_sb;i++) { |
| alloc += 1 << alloc[0]; |
| } |
| |
| if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) { |
| /* nothing was coded for this band: add the necessary bits */ |
| incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6; |
| incr += s->total_quant_bits[alloc[1]]; |
| } else { |
| /* increments bit allocation */ |
| b = bit_alloc[max_ch][max_sb]; |
| incr = s->total_quant_bits[alloc[b + 1]] - |
| s->total_quant_bits[alloc[b]]; |
| } |
| |
| if (current_frame_size + incr <= max_frame_size) { |
| /* can increase size */ |
| b = ++bit_alloc[max_ch][max_sb]; |
| current_frame_size += incr; |
| /* decrease smr by the resolution we added */ |
| smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]]; |
| /* max allocation size reached ? */ |
| if (b == ((1 << alloc[0]) - 1)) |
| subband_status[max_ch][max_sb] = SB_NOMORE; |
| else |
| subband_status[max_ch][max_sb] = SB_ALLOCATED; |
| } else { |
| /* cannot increase the size of this subband */ |
| subband_status[max_ch][max_sb] = SB_NOMORE; |
| } |
| } |
| *padding = max_frame_size - current_frame_size; |
| av_assert0(*padding >= 0); |
| } |
| |
| /* |
| * Output the mpeg audio layer 2 frame. Note how the code is small |
| * compared to other encoders :-) |
| */ |
| static void encode_frame(MpegAudioContext *s, |
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT], |
| int padding) |
| { |
| int i, j, k, l, bit_alloc_bits, b, ch; |
| unsigned char *sf; |
| int q[3]; |
| PutBitContext *p = &s->pb; |
| |
| /* header */ |
| |
| put_bits(p, 12, 0xfff); |
| put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */ |
| put_bits(p, 2, 4-2); /* layer 2 */ |
| put_bits(p, 1, 1); /* no error protection */ |
| put_bits(p, 4, s->bitrate_index); |
| put_bits(p, 2, s->freq_index); |
| put_bits(p, 1, s->do_padding); /* use padding */ |
| put_bits(p, 1, 0); /* private_bit */ |
| put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO); |
| put_bits(p, 2, 0); /* mode_ext */ |
| put_bits(p, 1, 0); /* no copyright */ |
| put_bits(p, 1, 1); /* original */ |
| put_bits(p, 2, 0); /* no emphasis */ |
| |
| /* bit allocation */ |
| j = 0; |
| for(i=0;i<s->sblimit;i++) { |
| bit_alloc_bits = s->alloc_table[j]; |
| for(ch=0;ch<s->nb_channels;ch++) { |
| put_bits(p, bit_alloc_bits, bit_alloc[ch][i]); |
| } |
| j += 1 << bit_alloc_bits; |
| } |
| |
| /* scale codes */ |
| for(i=0;i<s->sblimit;i++) { |
| for(ch=0;ch<s->nb_channels;ch++) { |
| if (bit_alloc[ch][i]) |
| put_bits(p, 2, s->scale_code[ch][i]); |
| } |
| } |
| |
| /* scale factors */ |
| for(i=0;i<s->sblimit;i++) { |
| for(ch=0;ch<s->nb_channels;ch++) { |
| if (bit_alloc[ch][i]) { |
| sf = &s->scale_factors[ch][i][0]; |
| switch(s->scale_code[ch][i]) { |
| case 0: |
| put_bits(p, 6, sf[0]); |
| put_bits(p, 6, sf[1]); |
| put_bits(p, 6, sf[2]); |
| break; |
| case 3: |
| case 1: |
| put_bits(p, 6, sf[0]); |
| put_bits(p, 6, sf[2]); |
| break; |
| case 2: |
| put_bits(p, 6, sf[0]); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* quantization & write sub band samples */ |
| |
| for(k=0;k<3;k++) { |
| for(l=0;l<12;l+=3) { |
| j = 0; |
| for(i=0;i<s->sblimit;i++) { |
| bit_alloc_bits = s->alloc_table[j]; |
| for(ch=0;ch<s->nb_channels;ch++) { |
| b = bit_alloc[ch][i]; |
| if (b) { |
| int qindex, steps, m, sample, bits; |
| /* we encode 3 sub band samples of the same sub band at a time */ |
| qindex = s->alloc_table[j+b]; |
| steps = ff_mpa_quant_steps[qindex]; |
| for(m=0;m<3;m++) { |
| sample = s->sb_samples[ch][k][l + m][i]; |
| /* divide by scale factor */ |
| #if USE_FLOATS |
| { |
| float a; |
| a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]]; |
| q[m] = (int)((a + 1.0) * steps * 0.5); |
| } |
| #else |
| { |
| int q1, e, shift, mult; |
| e = s->scale_factors[ch][i][k]; |
| shift = s->scale_factor_shift[e]; |
| mult = s->scale_factor_mult[e]; |
| |
| /* normalize to P bits */ |
| if (shift < 0) |
| q1 = sample << (-shift); |
| else |
| q1 = sample >> shift; |
| q1 = (q1 * mult) >> P; |
| q1 += 1 << P; |
| if (q1 < 0) |
| q1 = 0; |
| q[m] = (q1 * (unsigned)steps) >> (P + 1); |
| } |
| #endif |
| if (q[m] >= steps) |
| q[m] = steps - 1; |
| av_assert2(q[m] >= 0 && q[m] < steps); |
| } |
| bits = ff_mpa_quant_bits[qindex]; |
| if (bits < 0) { |
| /* group the 3 values to save bits */ |
| put_bits(p, -bits, |
| q[0] + steps * (q[1] + steps * q[2])); |
| } else { |
| put_bits(p, bits, q[0]); |
| put_bits(p, bits, q[1]); |
| put_bits(p, bits, q[2]); |
| } |
| } |
| } |
| /* next subband in alloc table */ |
| j += 1 << bit_alloc_bits; |
| } |
| } |
| } |
| |
| /* padding */ |
| for(i=0;i<padding;i++) |
| put_bits(p, 1, 0); |
| |
| /* flush */ |
| flush_put_bits(p); |
| } |
| |
| static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| MpegAudioContext *s = avctx->priv_data; |
| const int16_t *samples = (const int16_t *)frame->data[0]; |
| short smr[MPA_MAX_CHANNELS][SBLIMIT]; |
| unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; |
| int padding, i, ret; |
| |
| for(i=0;i<s->nb_channels;i++) { |
| filter(s, i, samples + i, s->nb_channels); |
| } |
| |
| for(i=0;i<s->nb_channels;i++) { |
| compute_scale_factors(s, s->scale_code[i], s->scale_factors[i], |
| s->sb_samples[i], s->sblimit); |
| } |
| for(i=0;i<s->nb_channels;i++) { |
| psycho_acoustic_model(s, smr[i]); |
| } |
| compute_bit_allocation(s, smr, bit_alloc, &padding); |
| |
| if ((ret = ff_alloc_packet2(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE, 0)) < 0) |
| return ret; |
| |
| init_put_bits(&s->pb, avpkt->data, avpkt->size); |
| |
| encode_frame(s, bit_alloc, padding); |
| |
| if (frame->pts != AV_NOPTS_VALUE) |
| avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding); |
| |
| avpkt->size = put_bits_count(&s->pb) / 8; |
| *got_packet_ptr = 1; |
| return 0; |
| } |
| |
| static const AVCodecDefault mp2_defaults[] = { |
| { "b", "0" }, |
| { NULL }, |
| }; |
| |