| /* |
| * Apple ProRes encoder |
| * |
| * Copyright (c) 2012 Konstantin Shishkov |
| * |
| * This encoder appears to be based on Anatoliy Wassermans considering |
| * similarities in the bugs. |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/opt.h" |
| #include "libavutil/pixdesc.h" |
| #include "avcodec.h" |
| #include "fdctdsp.h" |
| #include "put_bits.h" |
| #include "bytestream.h" |
| #include "internal.h" |
| #include "proresdata.h" |
| |
| #define CFACTOR_Y422 2 |
| #define CFACTOR_Y444 3 |
| |
| #define MAX_MBS_PER_SLICE 8 |
| |
| #define MAX_PLANES 4 |
| |
| enum { |
| PRORES_PROFILE_AUTO = -1, |
| PRORES_PROFILE_PROXY = 0, |
| PRORES_PROFILE_LT, |
| PRORES_PROFILE_STANDARD, |
| PRORES_PROFILE_HQ, |
| PRORES_PROFILE_4444, |
| }; |
| |
| enum { |
| QUANT_MAT_PROXY = 0, |
| QUANT_MAT_LT, |
| QUANT_MAT_STANDARD, |
| QUANT_MAT_HQ, |
| QUANT_MAT_DEFAULT, |
| }; |
| |
| static const uint8_t prores_quant_matrices[][64] = { |
| { // proxy |
| 4, 7, 9, 11, 13, 14, 15, 63, |
| 7, 7, 11, 12, 14, 15, 63, 63, |
| 9, 11, 13, 14, 15, 63, 63, 63, |
| 11, 11, 13, 14, 63, 63, 63, 63, |
| 11, 13, 14, 63, 63, 63, 63, 63, |
| 13, 14, 63, 63, 63, 63, 63, 63, |
| 13, 63, 63, 63, 63, 63, 63, 63, |
| 63, 63, 63, 63, 63, 63, 63, 63, |
| }, |
| { // LT |
| 4, 5, 6, 7, 9, 11, 13, 15, |
| 5, 5, 7, 8, 11, 13, 15, 17, |
| 6, 7, 9, 11, 13, 15, 15, 17, |
| 7, 7, 9, 11, 13, 15, 17, 19, |
| 7, 9, 11, 13, 14, 16, 19, 23, |
| 9, 11, 13, 14, 16, 19, 23, 29, |
| 9, 11, 13, 15, 17, 21, 28, 35, |
| 11, 13, 16, 17, 21, 28, 35, 41, |
| }, |
| { // standard |
| 4, 4, 5, 5, 6, 7, 7, 9, |
| 4, 4, 5, 6, 7, 7, 9, 9, |
| 5, 5, 6, 7, 7, 9, 9, 10, |
| 5, 5, 6, 7, 7, 9, 9, 10, |
| 5, 6, 7, 7, 8, 9, 10, 12, |
| 6, 7, 7, 8, 9, 10, 12, 15, |
| 6, 7, 7, 9, 10, 11, 14, 17, |
| 7, 7, 9, 10, 11, 14, 17, 21, |
| }, |
| { // high quality |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 5, |
| 4, 4, 4, 4, 4, 4, 5, 5, |
| 4, 4, 4, 4, 4, 5, 5, 6, |
| 4, 4, 4, 4, 5, 5, 6, 7, |
| 4, 4, 4, 4, 5, 6, 7, 7, |
| }, |
| { // codec default |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| 4, 4, 4, 4, 4, 4, 4, 4, |
| }, |
| }; |
| |
| #define NUM_MB_LIMITS 4 |
| static const int prores_mb_limits[NUM_MB_LIMITS] = { |
| 1620, // up to 720x576 |
| 2700, // up to 960x720 |
| 6075, // up to 1440x1080 |
| 9216, // up to 2048x1152 |
| }; |
| |
| static const struct prores_profile { |
| const char *full_name; |
| uint32_t tag; |
| int min_quant; |
| int max_quant; |
| int br_tab[NUM_MB_LIMITS]; |
| int quant; |
| } prores_profile_info[5] = { |
| { |
| .full_name = "proxy", |
| .tag = MKTAG('a', 'p', 'c', 'o'), |
| .min_quant = 4, |
| .max_quant = 8, |
| .br_tab = { 300, 242, 220, 194 }, |
| .quant = QUANT_MAT_PROXY, |
| }, |
| { |
| .full_name = "LT", |
| .tag = MKTAG('a', 'p', 'c', 's'), |
| .min_quant = 1, |
| .max_quant = 9, |
| .br_tab = { 720, 560, 490, 440 }, |
| .quant = QUANT_MAT_LT, |
| }, |
| { |
| .full_name = "standard", |
| .tag = MKTAG('a', 'p', 'c', 'n'), |
| .min_quant = 1, |
| .max_quant = 6, |
| .br_tab = { 1050, 808, 710, 632 }, |
| .quant = QUANT_MAT_STANDARD, |
| }, |
| { |
| .full_name = "high quality", |
| .tag = MKTAG('a', 'p', 'c', 'h'), |
| .min_quant = 1, |
| .max_quant = 6, |
| .br_tab = { 1566, 1216, 1070, 950 }, |
| .quant = QUANT_MAT_HQ, |
| }, |
| { |
| .full_name = "4444", |
| .tag = MKTAG('a', 'p', '4', 'h'), |
| .min_quant = 1, |
| .max_quant = 6, |
| .br_tab = { 2350, 1828, 1600, 1425 }, |
| .quant = QUANT_MAT_HQ, |
| } |
| }; |
| |
| #define TRELLIS_WIDTH 16 |
| #define SCORE_LIMIT INT_MAX / 2 |
| |
| struct TrellisNode { |
| int prev_node; |
| int quant; |
| int bits; |
| int score; |
| }; |
| |
| #define MAX_STORED_Q 16 |
| |
| typedef struct ProresThreadData { |
| DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; |
| DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16]; |
| int16_t custom_q[64]; |
| struct TrellisNode *nodes; |
| } ProresThreadData; |
| |
| typedef struct ProresContext { |
| AVClass *class; |
| DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE]; |
| DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16]; |
| int16_t quants[MAX_STORED_Q][64]; |
| int16_t custom_q[64]; |
| const uint8_t *quant_mat; |
| const uint8_t *scantable; |
| |
| void (*fdct)(FDCTDSPContext *fdsp, const uint16_t *src, |
| int linesize, int16_t *block); |
| FDCTDSPContext fdsp; |
| |
| const AVFrame *pic; |
| int mb_width, mb_height; |
| int mbs_per_slice; |
| int num_chroma_blocks, chroma_factor; |
| int slices_width; |
| int slices_per_picture; |
| int pictures_per_frame; // 1 for progressive, 2 for interlaced |
| int cur_picture_idx; |
| int num_planes; |
| int bits_per_mb; |
| int force_quant; |
| int alpha_bits; |
| int warn; |
| |
| char *vendor; |
| int quant_sel; |
| |
| int frame_size_upper_bound; |
| |
| int profile; |
| const struct prores_profile *profile_info; |
| |
| int *slice_q; |
| |
| ProresThreadData *tdata; |
| } ProresContext; |
| |
| static void get_slice_data(ProresContext *ctx, const uint16_t *src, |
| int linesize, int x, int y, int w, int h, |
| int16_t *blocks, uint16_t *emu_buf, |
| int mbs_per_slice, int blocks_per_mb, int is_chroma) |
| { |
| const uint16_t *esrc; |
| const int mb_width = 4 * blocks_per_mb; |
| int elinesize; |
| int i, j, k; |
| |
| for (i = 0; i < mbs_per_slice; i++, src += mb_width) { |
| if (x >= w) { |
| memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb |
| * sizeof(*blocks)); |
| return; |
| } |
| if (x + mb_width <= w && y + 16 <= h) { |
| esrc = src; |
| elinesize = linesize; |
| } else { |
| int bw, bh, pix; |
| |
| esrc = emu_buf; |
| elinesize = 16 * sizeof(*emu_buf); |
| |
| bw = FFMIN(w - x, mb_width); |
| bh = FFMIN(h - y, 16); |
| |
| for (j = 0; j < bh; j++) { |
| memcpy(emu_buf + j * 16, |
| (const uint8_t*)src + j * linesize, |
| bw * sizeof(*src)); |
| pix = emu_buf[j * 16 + bw - 1]; |
| for (k = bw; k < mb_width; k++) |
| emu_buf[j * 16 + k] = pix; |
| } |
| for (; j < 16; j++) |
| memcpy(emu_buf + j * 16, |
| emu_buf + (bh - 1) * 16, |
| mb_width * sizeof(*emu_buf)); |
| } |
| if (!is_chroma) { |
| ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); |
| blocks += 64; |
| if (blocks_per_mb > 2) { |
| ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); |
| blocks += 64; |
| } |
| ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); |
| blocks += 64; |
| if (blocks_per_mb > 2) { |
| ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); |
| blocks += 64; |
| } |
| } else { |
| ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks); |
| blocks += 64; |
| ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks); |
| blocks += 64; |
| if (blocks_per_mb > 2) { |
| ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks); |
| blocks += 64; |
| ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks); |
| blocks += 64; |
| } |
| } |
| |
| x += mb_width; |
| } |
| } |
| |
| static void get_alpha_data(ProresContext *ctx, const uint16_t *src, |
| int linesize, int x, int y, int w, int h, |
| int16_t *blocks, int mbs_per_slice, int abits) |
| { |
| const int slice_width = 16 * mbs_per_slice; |
| int i, j, copy_w, copy_h; |
| |
| copy_w = FFMIN(w - x, slice_width); |
| copy_h = FFMIN(h - y, 16); |
| for (i = 0; i < copy_h; i++) { |
| memcpy(blocks, src, copy_w * sizeof(*src)); |
| if (abits == 8) |
| for (j = 0; j < copy_w; j++) |
| blocks[j] >>= 2; |
| else |
| for (j = 0; j < copy_w; j++) |
| blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4); |
| for (j = copy_w; j < slice_width; j++) |
| blocks[j] = blocks[copy_w - 1]; |
| blocks += slice_width; |
| src += linesize >> 1; |
| } |
| for (; i < 16; i++) { |
| memcpy(blocks, blocks - slice_width, slice_width * sizeof(*blocks)); |
| blocks += slice_width; |
| } |
| } |
| |
| /** |
| * Write an unsigned rice/exp golomb codeword. |
| */ |
| static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val) |
| { |
| unsigned int rice_order, exp_order, switch_bits, switch_val; |
| int exponent; |
| |
| /* number of prefix bits to switch between Rice and expGolomb */ |
| switch_bits = (codebook & 3) + 1; |
| rice_order = codebook >> 5; /* rice code order */ |
| exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
| |
| switch_val = switch_bits << rice_order; |
| |
| if (val >= switch_val) { |
| val -= switch_val - (1 << exp_order); |
| exponent = av_log2(val); |
| |
| put_bits(pb, exponent - exp_order + switch_bits, 0); |
| put_bits(pb, exponent + 1, val); |
| } else { |
| exponent = val >> rice_order; |
| |
| if (exponent) |
| put_bits(pb, exponent, 0); |
| put_bits(pb, 1, 1); |
| if (rice_order) |
| put_sbits(pb, rice_order, val); |
| } |
| } |
| |
| #define GET_SIGN(x) ((x) >> 31) |
| #define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x)) |
| |
| static void encode_dcs(PutBitContext *pb, int16_t *blocks, |
| int blocks_per_slice, int scale) |
| { |
| int i; |
| int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
| |
| prev_dc = (blocks[0] - 0x4000) / scale; |
| encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc)); |
| sign = 0; |
| codebook = 3; |
| blocks += 64; |
| |
| for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
| dc = (blocks[0] - 0x4000) / scale; |
| delta = dc - prev_dc; |
| new_sign = GET_SIGN(delta); |
| delta = (delta ^ sign) - sign; |
| code = MAKE_CODE(delta); |
| encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code); |
| codebook = (code + (code & 1)) >> 1; |
| codebook = FFMIN(codebook, 3); |
| sign = new_sign; |
| prev_dc = dc; |
| } |
| } |
| |
| static void encode_acs(PutBitContext *pb, int16_t *blocks, |
| int blocks_per_slice, |
| int plane_size_factor, |
| const uint8_t *scan, const int16_t *qmat) |
| { |
| int idx, i; |
| int run, level, run_cb, lev_cb; |
| int max_coeffs, abs_level; |
| |
| max_coeffs = blocks_per_slice << 6; |
| run_cb = ff_prores_run_to_cb_index[4]; |
| lev_cb = ff_prores_lev_to_cb_index[2]; |
| run = 0; |
| |
| for (i = 1; i < 64; i++) { |
| for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
| level = blocks[idx] / qmat[scan[i]]; |
| if (level) { |
| abs_level = FFABS(level); |
| encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run); |
| encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb], |
| abs_level - 1); |
| put_sbits(pb, 1, GET_SIGN(level)); |
| |
| run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
| lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
| run = 0; |
| } else { |
| run++; |
| } |
| } |
| } |
| } |
| |
| static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb, |
| const uint16_t *src, int linesize, |
| int mbs_per_slice, int16_t *blocks, |
| int blocks_per_mb, int plane_size_factor, |
| const int16_t *qmat) |
| { |
| int blocks_per_slice, saved_pos; |
| |
| saved_pos = put_bits_count(pb); |
| blocks_per_slice = mbs_per_slice * blocks_per_mb; |
| |
| encode_dcs(pb, blocks, blocks_per_slice, qmat[0]); |
| encode_acs(pb, blocks, blocks_per_slice, plane_size_factor, |
| ctx->scantable, qmat); |
| flush_put_bits(pb); |
| |
| return (put_bits_count(pb) - saved_pos) >> 3; |
| } |
| |
| static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits) |
| { |
| const int dbits = (abits == 8) ? 4 : 7; |
| const int dsize = 1 << dbits - 1; |
| int diff = cur - prev; |
| |
| diff = av_mod_uintp2(diff, abits); |
| if (diff >= (1 << abits) - dsize) |
| diff -= 1 << abits; |
| if (diff < -dsize || diff > dsize || !diff) { |
| put_bits(pb, 1, 1); |
| put_bits(pb, abits, diff); |
| } else { |
| put_bits(pb, 1, 0); |
| put_bits(pb, dbits - 1, FFABS(diff) - 1); |
| put_bits(pb, 1, diff < 0); |
| } |
| } |
| |
| static void put_alpha_run(PutBitContext *pb, int run) |
| { |
| if (run) { |
| put_bits(pb, 1, 0); |
| if (run < 0x10) |
| put_bits(pb, 4, run); |
| else |
| put_bits(pb, 15, run); |
| } else { |
| put_bits(pb, 1, 1); |
| } |
| } |
| |
| // todo alpha quantisation for high quants |
| static int encode_alpha_plane(ProresContext *ctx, PutBitContext *pb, |
| int mbs_per_slice, uint16_t *blocks, |
| int quant) |
| { |
| const int abits = ctx->alpha_bits; |
| const int mask = (1 << abits) - 1; |
| const int num_coeffs = mbs_per_slice * 256; |
| int saved_pos = put_bits_count(pb); |
| int prev = mask, cur; |
| int idx = 0; |
| int run = 0; |
| |
| cur = blocks[idx++]; |
| put_alpha_diff(pb, cur, prev, abits); |
| prev = cur; |
| do { |
| cur = blocks[idx++]; |
| if (cur != prev) { |
| put_alpha_run (pb, run); |
| put_alpha_diff(pb, cur, prev, abits); |
| prev = cur; |
| run = 0; |
| } else { |
| run++; |
| } |
| } while (idx < num_coeffs); |
| if (run) |
| put_alpha_run(pb, run); |
| flush_put_bits(pb); |
| return (put_bits_count(pb) - saved_pos) >> 3; |
| } |
| |
| static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, |
| PutBitContext *pb, |
| int sizes[4], int x, int y, int quant, |
| int mbs_per_slice) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| int i, xp, yp; |
| int total_size = 0; |
| const uint16_t *src; |
| int slice_width_factor = av_log2(mbs_per_slice); |
| int num_cblocks, pwidth, linesize, line_add; |
| int plane_factor, is_chroma; |
| uint16_t *qmat; |
| |
| if (ctx->pictures_per_frame == 1) |
| line_add = 0; |
| else |
| line_add = ctx->cur_picture_idx ^ !pic->top_field_first; |
| |
| if (ctx->force_quant) { |
| qmat = ctx->quants[0]; |
| } else if (quant < MAX_STORED_Q) { |
| qmat = ctx->quants[quant]; |
| } else { |
| qmat = ctx->custom_q; |
| for (i = 0; i < 64; i++) |
| qmat[i] = ctx->quant_mat[i] * quant; |
| } |
| |
| for (i = 0; i < ctx->num_planes; i++) { |
| is_chroma = (i == 1 || i == 2); |
| plane_factor = slice_width_factor + 2; |
| if (is_chroma) |
| plane_factor += ctx->chroma_factor - 3; |
| if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) { |
| xp = x << 4; |
| yp = y << 4; |
| num_cblocks = 4; |
| pwidth = avctx->width; |
| } else { |
| xp = x << 3; |
| yp = y << 4; |
| num_cblocks = 2; |
| pwidth = avctx->width >> 1; |
| } |
| |
| linesize = pic->linesize[i] * ctx->pictures_per_frame; |
| src = (const uint16_t*)(pic->data[i] + yp * linesize + |
| line_add * pic->linesize[i]) + xp; |
| |
| if (i < 3) { |
| get_slice_data(ctx, src, linesize, xp, yp, |
| pwidth, avctx->height / ctx->pictures_per_frame, |
| ctx->blocks[0], ctx->emu_buf, |
| mbs_per_slice, num_cblocks, is_chroma); |
| sizes[i] = encode_slice_plane(ctx, pb, src, linesize, |
| mbs_per_slice, ctx->blocks[0], |
| num_cblocks, plane_factor, |
| qmat); |
| } else { |
| get_alpha_data(ctx, src, linesize, xp, yp, |
| pwidth, avctx->height / ctx->pictures_per_frame, |
| ctx->blocks[0], mbs_per_slice, ctx->alpha_bits); |
| sizes[i] = encode_alpha_plane(ctx, pb, mbs_per_slice, |
| ctx->blocks[0], quant); |
| } |
| total_size += sizes[i]; |
| if (put_bits_left(pb) < 0) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Underestimated required buffer size.\n"); |
| return AVERROR_BUG; |
| } |
| } |
| return total_size; |
| } |
| |
| static inline int estimate_vlc(unsigned codebook, int val) |
| { |
| unsigned int rice_order, exp_order, switch_bits, switch_val; |
| int exponent; |
| |
| /* number of prefix bits to switch between Rice and expGolomb */ |
| switch_bits = (codebook & 3) + 1; |
| rice_order = codebook >> 5; /* rice code order */ |
| exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
| |
| switch_val = switch_bits << rice_order; |
| |
| if (val >= switch_val) { |
| val -= switch_val - (1 << exp_order); |
| exponent = av_log2(val); |
| |
| return exponent * 2 - exp_order + switch_bits + 1; |
| } else { |
| return (val >> rice_order) + rice_order + 1; |
| } |
| } |
| |
| static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice, |
| int scale) |
| { |
| int i; |
| int codebook = 3, code, dc, prev_dc, delta, sign, new_sign; |
| int bits; |
| |
| prev_dc = (blocks[0] - 0x4000) / scale; |
| bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc)); |
| sign = 0; |
| codebook = 3; |
| blocks += 64; |
| *error += FFABS(blocks[0] - 0x4000) % scale; |
| |
| for (i = 1; i < blocks_per_slice; i++, blocks += 64) { |
| dc = (blocks[0] - 0x4000) / scale; |
| *error += FFABS(blocks[0] - 0x4000) % scale; |
| delta = dc - prev_dc; |
| new_sign = GET_SIGN(delta); |
| delta = (delta ^ sign) - sign; |
| code = MAKE_CODE(delta); |
| bits += estimate_vlc(ff_prores_dc_codebook[codebook], code); |
| codebook = (code + (code & 1)) >> 1; |
| codebook = FFMIN(codebook, 3); |
| sign = new_sign; |
| prev_dc = dc; |
| } |
| |
| return bits; |
| } |
| |
| static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice, |
| int plane_size_factor, |
| const uint8_t *scan, const int16_t *qmat) |
| { |
| int idx, i; |
| int run, level, run_cb, lev_cb; |
| int max_coeffs, abs_level; |
| int bits = 0; |
| |
| max_coeffs = blocks_per_slice << 6; |
| run_cb = ff_prores_run_to_cb_index[4]; |
| lev_cb = ff_prores_lev_to_cb_index[2]; |
| run = 0; |
| |
| for (i = 1; i < 64; i++) { |
| for (idx = scan[i]; idx < max_coeffs; idx += 64) { |
| level = blocks[idx] / qmat[scan[i]]; |
| *error += FFABS(blocks[idx]) % qmat[scan[i]]; |
| if (level) { |
| abs_level = FFABS(level); |
| bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run); |
| bits += estimate_vlc(ff_prores_ac_codebook[lev_cb], |
| abs_level - 1) + 1; |
| |
| run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
| lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)]; |
| run = 0; |
| } else { |
| run++; |
| } |
| } |
| } |
| |
| return bits; |
| } |
| |
| static int estimate_slice_plane(ProresContext *ctx, int *error, int plane, |
| const uint16_t *src, int linesize, |
| int mbs_per_slice, |
| int blocks_per_mb, int plane_size_factor, |
| const int16_t *qmat, ProresThreadData *td) |
| { |
| int blocks_per_slice; |
| int bits; |
| |
| blocks_per_slice = mbs_per_slice * blocks_per_mb; |
| |
| bits = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]); |
| bits += estimate_acs(error, td->blocks[plane], blocks_per_slice, |
| plane_size_factor, ctx->scantable, qmat); |
| |
| return FFALIGN(bits, 8); |
| } |
| |
| static int est_alpha_diff(int cur, int prev, int abits) |
| { |
| const int dbits = (abits == 8) ? 4 : 7; |
| const int dsize = 1 << dbits - 1; |
| int diff = cur - prev; |
| |
| diff = av_mod_uintp2(diff, abits); |
| if (diff >= (1 << abits) - dsize) |
| diff -= 1 << abits; |
| if (diff < -dsize || diff > dsize || !diff) |
| return abits + 1; |
| else |
| return dbits + 1; |
| } |
| |
| static int estimate_alpha_plane(ProresContext *ctx, int *error, |
| const uint16_t *src, int linesize, |
| int mbs_per_slice, int quant, |
| int16_t *blocks) |
| { |
| const int abits = ctx->alpha_bits; |
| const int mask = (1 << abits) - 1; |
| const int num_coeffs = mbs_per_slice * 256; |
| int prev = mask, cur; |
| int idx = 0; |
| int run = 0; |
| int bits; |
| |
| *error = 0; |
| cur = blocks[idx++]; |
| bits = est_alpha_diff(cur, prev, abits); |
| prev = cur; |
| do { |
| cur = blocks[idx++]; |
| if (cur != prev) { |
| if (!run) |
| bits++; |
| else if (run < 0x10) |
| bits += 4; |
| else |
| bits += 15; |
| bits += est_alpha_diff(cur, prev, abits); |
| prev = cur; |
| run = 0; |
| } else { |
| run++; |
| } |
| } while (idx < num_coeffs); |
| |
| if (run) { |
| if (run < 0x10) |
| bits += 4; |
| else |
| bits += 15; |
| } |
| |
| return bits; |
| } |
| |
| static int find_slice_quant(AVCodecContext *avctx, |
| int trellis_node, int x, int y, int mbs_per_slice, |
| ProresThreadData *td) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| int i, q, pq, xp, yp; |
| const uint16_t *src; |
| int slice_width_factor = av_log2(mbs_per_slice); |
| int num_cblocks[MAX_PLANES], pwidth; |
| int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES]; |
| const int min_quant = ctx->profile_info->min_quant; |
| const int max_quant = ctx->profile_info->max_quant; |
| int error, bits, bits_limit; |
| int mbs, prev, cur, new_score; |
| int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH]; |
| int overquant; |
| uint16_t *qmat; |
| int linesize[4], line_add; |
| |
| if (ctx->pictures_per_frame == 1) |
| line_add = 0; |
| else |
| line_add = ctx->cur_picture_idx ^ !ctx->pic->top_field_first; |
| mbs = x + mbs_per_slice; |
| |
| for (i = 0; i < ctx->num_planes; i++) { |
| is_chroma[i] = (i == 1 || i == 2); |
| plane_factor[i] = slice_width_factor + 2; |
| if (is_chroma[i]) |
| plane_factor[i] += ctx->chroma_factor - 3; |
| if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) { |
| xp = x << 4; |
| yp = y << 4; |
| num_cblocks[i] = 4; |
| pwidth = avctx->width; |
| } else { |
| xp = x << 3; |
| yp = y << 4; |
| num_cblocks[i] = 2; |
| pwidth = avctx->width >> 1; |
| } |
| |
| linesize[i] = ctx->pic->linesize[i] * ctx->pictures_per_frame; |
| src = (const uint16_t *)(ctx->pic->data[i] + yp * linesize[i] + |
| line_add * ctx->pic->linesize[i]) + xp; |
| |
| if (i < 3) { |
| get_slice_data(ctx, src, linesize[i], xp, yp, |
| pwidth, avctx->height / ctx->pictures_per_frame, |
| td->blocks[i], td->emu_buf, |
| mbs_per_slice, num_cblocks[i], is_chroma[i]); |
| } else { |
| get_alpha_data(ctx, src, linesize[i], xp, yp, |
| pwidth, avctx->height / ctx->pictures_per_frame, |
| td->blocks[i], mbs_per_slice, ctx->alpha_bits); |
| } |
| } |
| |
| for (q = min_quant; q < max_quant + 2; q++) { |
| td->nodes[trellis_node + q].prev_node = -1; |
| td->nodes[trellis_node + q].quant = q; |
| } |
| |
| // todo: maybe perform coarser quantising to fit into frame size when needed |
| for (q = min_quant; q <= max_quant; q++) { |
| bits = 0; |
| error = 0; |
| for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) { |
| bits += estimate_slice_plane(ctx, &error, i, |
| src, linesize[i], |
| mbs_per_slice, |
| num_cblocks[i], plane_factor[i], |
| ctx->quants[q], td); |
| } |
| if (ctx->alpha_bits) |
| bits += estimate_alpha_plane(ctx, &error, src, linesize[3], |
| mbs_per_slice, q, td->blocks[3]); |
| if (bits > 65000 * 8) |
| error = SCORE_LIMIT; |
| |
| slice_bits[q] = bits; |
| slice_score[q] = error; |
| } |
| if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) { |
| slice_bits[max_quant + 1] = slice_bits[max_quant]; |
| slice_score[max_quant + 1] = slice_score[max_quant] + 1; |
| overquant = max_quant; |
| } else { |
| for (q = max_quant + 1; q < 128; q++) { |
| bits = 0; |
| error = 0; |
| if (q < MAX_STORED_Q) { |
| qmat = ctx->quants[q]; |
| } else { |
| qmat = td->custom_q; |
| for (i = 0; i < 64; i++) |
| qmat[i] = ctx->quant_mat[i] * q; |
| } |
| for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) { |
| bits += estimate_slice_plane(ctx, &error, i, |
| src, linesize[i], |
| mbs_per_slice, |
| num_cblocks[i], plane_factor[i], |
| qmat, td); |
| } |
| if (ctx->alpha_bits) |
| bits += estimate_alpha_plane(ctx, &error, src, linesize[3], |
| mbs_per_slice, q, td->blocks[3]); |
| if (bits <= ctx->bits_per_mb * mbs_per_slice) |
| break; |
| } |
| |
| slice_bits[max_quant + 1] = bits; |
| slice_score[max_quant + 1] = error; |
| overquant = q; |
| } |
| td->nodes[trellis_node + max_quant + 1].quant = overquant; |
| |
| bits_limit = mbs * ctx->bits_per_mb; |
| for (pq = min_quant; pq < max_quant + 2; pq++) { |
| prev = trellis_node - TRELLIS_WIDTH + pq; |
| |
| for (q = min_quant; q < max_quant + 2; q++) { |
| cur = trellis_node + q; |
| |
| bits = td->nodes[prev].bits + slice_bits[q]; |
| error = slice_score[q]; |
| if (bits > bits_limit) |
| error = SCORE_LIMIT; |
| |
| if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT) |
| new_score = td->nodes[prev].score + error; |
| else |
| new_score = SCORE_LIMIT; |
| if (td->nodes[cur].prev_node == -1 || |
| td->nodes[cur].score >= new_score) { |
| |
| td->nodes[cur].bits = bits; |
| td->nodes[cur].score = new_score; |
| td->nodes[cur].prev_node = prev; |
| } |
| } |
| } |
| |
| error = td->nodes[trellis_node + min_quant].score; |
| pq = trellis_node + min_quant; |
| for (q = min_quant + 1; q < max_quant + 2; q++) { |
| if (td->nodes[trellis_node + q].score <= error) { |
| error = td->nodes[trellis_node + q].score; |
| pq = trellis_node + q; |
| } |
| } |
| |
| return pq; |
| } |
| |
| static int find_quant_thread(AVCodecContext *avctx, void *arg, |
| int jobnr, int threadnr) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| ProresThreadData *td = ctx->tdata + threadnr; |
| int mbs_per_slice = ctx->mbs_per_slice; |
| int x, y = jobnr, mb, q = 0; |
| |
| for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
| while (ctx->mb_width - x < mbs_per_slice) |
| mbs_per_slice >>= 1; |
| q = find_slice_quant(avctx, |
| (mb + 1) * TRELLIS_WIDTH, x, y, |
| mbs_per_slice, td); |
| } |
| |
| for (x = ctx->slices_width - 1; x >= 0; x--) { |
| ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant; |
| q = td->nodes[q].prev_node; |
| } |
| |
| return 0; |
| } |
| |
| static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
| const AVFrame *pic, int *got_packet) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp; |
| uint8_t *picture_size_pos; |
| PutBitContext pb; |
| int x, y, i, mb, q = 0; |
| int sizes[4] = { 0 }; |
| int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1); |
| int frame_size, picture_size, slice_size; |
| int pkt_size, ret; |
| int max_slice_size = (ctx->frame_size_upper_bound - 200) / (ctx->pictures_per_frame * ctx->slices_per_picture + 1); |
| uint8_t frame_flags; |
| |
| ctx->pic = pic; |
| pkt_size = ctx->frame_size_upper_bound; |
| |
| if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0) |
| return ret; |
| |
| orig_buf = pkt->data; |
| |
| // frame atom |
| orig_buf += 4; // frame size |
| bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID |
| buf = orig_buf; |
| |
| // frame header |
| tmp = buf; |
| buf += 2; // frame header size will be stored here |
| bytestream_put_be16 (&buf, 0); // version 1 |
| bytestream_put_buffer(&buf, ctx->vendor, 4); |
| bytestream_put_be16 (&buf, avctx->width); |
| bytestream_put_be16 (&buf, avctx->height); |
| |
| frame_flags = ctx->chroma_factor << 6; |
| if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) |
| frame_flags |= pic->top_field_first ? 0x04 : 0x08; |
| bytestream_put_byte (&buf, frame_flags); |
| |
| bytestream_put_byte (&buf, 0); // reserved |
| bytestream_put_byte (&buf, avctx->color_primaries); |
| bytestream_put_byte (&buf, avctx->color_trc); |
| bytestream_put_byte (&buf, avctx->colorspace); |
| bytestream_put_byte (&buf, 0x40 | (ctx->alpha_bits >> 3)); |
| bytestream_put_byte (&buf, 0); // reserved |
| if (ctx->quant_sel != QUANT_MAT_DEFAULT) { |
| bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present |
| // luma quantisation matrix |
| for (i = 0; i < 64; i++) |
| bytestream_put_byte(&buf, ctx->quant_mat[i]); |
| // chroma quantisation matrix |
| for (i = 0; i < 64; i++) |
| bytestream_put_byte(&buf, ctx->quant_mat[i]); |
| } else { |
| bytestream_put_byte (&buf, 0x00); // matrix flags - default matrices are used |
| } |
| bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size |
| |
| for (ctx->cur_picture_idx = 0; |
| ctx->cur_picture_idx < ctx->pictures_per_frame; |
| ctx->cur_picture_idx++) { |
| // picture header |
| picture_size_pos = buf + 1; |
| bytestream_put_byte (&buf, 0x40); // picture header size (in bits) |
| buf += 4; // picture data size will be stored here |
| bytestream_put_be16 (&buf, ctx->slices_per_picture); |
| bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs |
| |
| // seek table - will be filled during slice encoding |
| slice_sizes = buf; |
| buf += ctx->slices_per_picture * 2; |
| |
| // slices |
| if (!ctx->force_quant) { |
| ret = avctx->execute2(avctx, find_quant_thread, (void*)pic, NULL, |
| ctx->mb_height); |
| if (ret) |
| return ret; |
| } |
| |
| for (y = 0; y < ctx->mb_height; y++) { |
| int mbs_per_slice = ctx->mbs_per_slice; |
| for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) { |
| q = ctx->force_quant ? ctx->force_quant |
| : ctx->slice_q[mb + y * ctx->slices_width]; |
| |
| while (ctx->mb_width - x < mbs_per_slice) |
| mbs_per_slice >>= 1; |
| |
| bytestream_put_byte(&buf, slice_hdr_size << 3); |
| slice_hdr = buf; |
| buf += slice_hdr_size - 1; |
| if (pkt_size <= buf - orig_buf + 2 * max_slice_size) { |
| uint8_t *start = pkt->data; |
| // Recompute new size according to max_slice_size |
| // and deduce delta |
| int delta = 200 + (ctx->pictures_per_frame * |
| ctx->slices_per_picture + 1) * |
| max_slice_size - pkt_size; |
| |
| delta = FFMAX(delta, 2 * max_slice_size); |
| ctx->frame_size_upper_bound += delta; |
| |
| if (!ctx->warn) { |
| avpriv_request_sample(avctx, |
| "Packet too small: is %i," |
| " needs %i (slice: %i). " |
| "Correct allocation", |
| pkt_size, delta, max_slice_size); |
| ctx->warn = 1; |
| } |
| |
| ret = av_grow_packet(pkt, delta); |
| if (ret < 0) |
| return ret; |
| |
| pkt_size += delta; |
| // restore pointers |
| orig_buf = pkt->data + (orig_buf - start); |
| buf = pkt->data + (buf - start); |
| picture_size_pos = pkt->data + (picture_size_pos - start); |
| slice_sizes = pkt->data + (slice_sizes - start); |
| slice_hdr = pkt->data + (slice_hdr - start); |
| tmp = pkt->data + (tmp - start); |
| } |
| init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf))); |
| ret = encode_slice(avctx, pic, &pb, sizes, x, y, q, |
| mbs_per_slice); |
| if (ret < 0) |
| return ret; |
| |
| bytestream_put_byte(&slice_hdr, q); |
| slice_size = slice_hdr_size + sizes[ctx->num_planes - 1]; |
| for (i = 0; i < ctx->num_planes - 1; i++) { |
| bytestream_put_be16(&slice_hdr, sizes[i]); |
| slice_size += sizes[i]; |
| } |
| bytestream_put_be16(&slice_sizes, slice_size); |
| buf += slice_size - slice_hdr_size; |
| if (max_slice_size < slice_size) |
| max_slice_size = slice_size; |
| } |
| } |
| |
| picture_size = buf - (picture_size_pos - 1); |
| bytestream_put_be32(&picture_size_pos, picture_size); |
| } |
| |
| orig_buf -= 8; |
| frame_size = buf - orig_buf; |
| bytestream_put_be32(&orig_buf, frame_size); |
| |
| pkt->size = frame_size; |
| pkt->flags |= AV_PKT_FLAG_KEY; |
| *got_packet = 1; |
| |
| return 0; |
| } |
| |
| static av_cold int encode_close(AVCodecContext *avctx) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| int i; |
| |
| if (ctx->tdata) { |
| for (i = 0; i < avctx->thread_count; i++) |
| av_freep(&ctx->tdata[i].nodes); |
| } |
| av_freep(&ctx->tdata); |
| av_freep(&ctx->slice_q); |
| |
| return 0; |
| } |
| |
| static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src, |
| int linesize, int16_t *block) |
| { |
| int x, y; |
| const uint16_t *tsrc = src; |
| |
| for (y = 0; y < 8; y++) { |
| for (x = 0; x < 8; x++) |
| block[y * 8 + x] = tsrc[x]; |
| tsrc += linesize >> 1; |
| } |
| fdsp->fdct(block); |
| } |
| |
| static av_cold int encode_init(AVCodecContext *avctx) |
| { |
| ProresContext *ctx = avctx->priv_data; |
| int mps; |
| int i, j; |
| int min_quant, max_quant; |
| int interlaced = !!(avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT); |
| |
| avctx->bits_per_raw_sample = 10; |
| #if FF_API_CODED_FRAME |
| FF_DISABLE_DEPRECATION_WARNINGS |
| avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; |
| avctx->coded_frame->key_frame = 1; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| ctx->fdct = prores_fdct; |
| ctx->scantable = interlaced ? ff_prores_interlaced_scan |
| : ff_prores_progressive_scan; |
| ff_fdctdsp_init(&ctx->fdsp, avctx); |
| |
| mps = ctx->mbs_per_slice; |
| if (mps & (mps - 1)) { |
| av_log(avctx, AV_LOG_ERROR, |
| "there should be an integer power of two MBs per slice\n"); |
| return AVERROR(EINVAL); |
| } |
| if (ctx->profile == PRORES_PROFILE_AUTO) { |
| const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); |
| ctx->profile = (desc->flags & AV_PIX_FMT_FLAG_ALPHA || |
| !(desc->log2_chroma_w + desc->log2_chroma_h)) |
| ? PRORES_PROFILE_4444 : PRORES_PROFILE_HQ; |
| av_log(avctx, AV_LOG_INFO, "Autoselected %s. It can be overridden " |
| "through -profile option.\n", ctx->profile == PRORES_PROFILE_4444 |
| ? "4:4:4:4 profile because of the used input colorspace" |
| : "HQ profile to keep best quality"); |
| } |
| if (av_pix_fmt_desc_get(avctx->pix_fmt)->flags & AV_PIX_FMT_FLAG_ALPHA) { |
| if (ctx->profile != PRORES_PROFILE_4444) { |
| // force alpha and warn |
| av_log(avctx, AV_LOG_WARNING, "Profile selected will not " |
| "encode alpha. Override with -profile if needed.\n"); |
| ctx->alpha_bits = 0; |
| } |
| if (ctx->alpha_bits & 7) { |
| av_log(avctx, AV_LOG_ERROR, "alpha bits should be 0, 8 or 16\n"); |
| return AVERROR(EINVAL); |
| } |
| avctx->bits_per_coded_sample = 32; |
| } else { |
| ctx->alpha_bits = 0; |
| } |
| |
| ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10 |
| ? CFACTOR_Y422 |
| : CFACTOR_Y444; |
| ctx->profile_info = prores_profile_info + ctx->profile; |
| ctx->num_planes = 3 + !!ctx->alpha_bits; |
| |
| ctx->mb_width = FFALIGN(avctx->width, 16) >> 4; |
| |
| if (interlaced) |
| ctx->mb_height = FFALIGN(avctx->height, 32) >> 5; |
| else |
| ctx->mb_height = FFALIGN(avctx->height, 16) >> 4; |
| |
| ctx->slices_width = ctx->mb_width / mps; |
| ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps); |
| ctx->slices_per_picture = ctx->mb_height * ctx->slices_width; |
| ctx->pictures_per_frame = 1 + interlaced; |
| |
| if (ctx->quant_sel == -1) |
| ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant]; |
| else |
| ctx->quant_mat = prores_quant_matrices[ctx->quant_sel]; |
| |
| if (strlen(ctx->vendor) != 4) { |
| av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA; |
| if (!ctx->force_quant) { |
| if (!ctx->bits_per_mb) { |
| for (i = 0; i < NUM_MB_LIMITS - 1; i++) |
| if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height * |
| ctx->pictures_per_frame) |
| break; |
| ctx->bits_per_mb = ctx->profile_info->br_tab[i]; |
| } else if (ctx->bits_per_mb < 128) { |
| av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| min_quant = ctx->profile_info->min_quant; |
| max_quant = ctx->profile_info->max_quant; |
| for (i = min_quant; i < MAX_STORED_Q; i++) { |
| for (j = 0; j < 64; j++) |
| ctx->quants[i][j] = ctx->quant_mat[j] * i; |
| } |
| |
| ctx->slice_q = av_malloc(ctx->slices_per_picture * sizeof(*ctx->slice_q)); |
| if (!ctx->slice_q) { |
| encode_close(avctx); |
| return AVERROR(ENOMEM); |
| } |
| |
| ctx->tdata = av_mallocz(avctx->thread_count * sizeof(*ctx->tdata)); |
| if (!ctx->tdata) { |
| encode_close(avctx); |
| return AVERROR(ENOMEM); |
| } |
| |
| for (j = 0; j < avctx->thread_count; j++) { |
| ctx->tdata[j].nodes = av_malloc((ctx->slices_width + 1) |
| * TRELLIS_WIDTH |
| * sizeof(*ctx->tdata->nodes)); |
| if (!ctx->tdata[j].nodes) { |
| encode_close(avctx); |
| return AVERROR(ENOMEM); |
| } |
| for (i = min_quant; i < max_quant + 2; i++) { |
| ctx->tdata[j].nodes[i].prev_node = -1; |
| ctx->tdata[j].nodes[i].bits = 0; |
| ctx->tdata[j].nodes[i].score = 0; |
| } |
| } |
| } else { |
| int ls = 0; |
| |
| if (ctx->force_quant > 64) { |
| av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| for (j = 0; j < 64; j++) { |
| ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant; |
| ls += av_log2((1 << 11) / ctx->quants[0][j]) * 2 + 1; |
| } |
| |
| ctx->bits_per_mb = ls * 8; |
| if (ctx->chroma_factor == CFACTOR_Y444) |
| ctx->bits_per_mb += ls * 4; |
| } |
| |
| ctx->frame_size_upper_bound = (ctx->pictures_per_frame * |
| ctx->slices_per_picture + 1) * |
| (2 + 2 * ctx->num_planes + |
| (mps * ctx->bits_per_mb) / 8) |
| + 200; |
| |
| if (ctx->alpha_bits) { |
| // The alpha plane is run-coded and might exceed the bit budget. |
| ctx->frame_size_upper_bound += (ctx->pictures_per_frame * |
| ctx->slices_per_picture + 1) * |
| /* num pixels per slice */ (ctx->mbs_per_slice * 256 * |
| /* bits per pixel */ (1 + ctx->alpha_bits + 1) + 7 >> 3); |
| } |
| |
| avctx->codec_tag = ctx->profile_info->tag; |
| |
| av_log(avctx, AV_LOG_DEBUG, |
| "profile %d, %d slices, interlacing: %s, %d bits per MB\n", |
| ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame, |
| interlaced ? "yes" : "no", ctx->bits_per_mb); |
| av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n", |
| ctx->frame_size_upper_bound); |
| |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(ProresContext, x) |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| |
| static const AVOption options[] = { |
| { "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice), |
| AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE }, |
| { "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT, |
| { .i64 = PRORES_PROFILE_AUTO }, |
| PRORES_PROFILE_AUTO, PRORES_PROFILE_4444, VE, "profile" }, |
| { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_AUTO }, |
| 0, 0, VE, "profile" }, |
| { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY }, |
| 0, 0, VE, "profile" }, |
| { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT }, |
| 0, 0, VE, "profile" }, |
| { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD }, |
| 0, 0, VE, "profile" }, |
| { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ }, |
| 0, 0, VE, "profile" }, |
| { "4444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444 }, |
| 0, 0, VE, "profile" }, |
| { "vendor", "vendor ID", OFFSET(vendor), |
| AV_OPT_TYPE_STRING, { .str = "Lavc" }, CHAR_MIN, CHAR_MAX, VE }, |
| { "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb), |
| AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE }, |
| { "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT, |
| { .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, "quant_mat" }, |
| { "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, |
| 0, 0, VE, "quant_mat" }, |
| { "proxy", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY }, |
| 0, 0, VE, "quant_mat" }, |
| { "lt", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT }, |
| 0, 0, VE, "quant_mat" }, |
| { "standard", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD }, |
| 0, 0, VE, "quant_mat" }, |
| { "hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ }, |
| 0, 0, VE, "quant_mat" }, |
| { "default", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT }, |
| 0, 0, VE, "quant_mat" }, |
| { "alpha_bits", "bits for alpha plane", OFFSET(alpha_bits), AV_OPT_TYPE_INT, |
| { .i64 = 16 }, 0, 16, VE }, |
| { NULL } |
| }; |
| |
| static const AVClass proresenc_class = { |
| .class_name = "ProRes encoder", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_prores_ks_encoder = { |
| .name = "prores_ks", |
| .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_PRORES, |
| .priv_data_size = sizeof(ProresContext), |
| .init = encode_init, |
| .close = encode_close, |
| .encode2 = encode_frame, |
| .capabilities = AV_CODEC_CAP_SLICE_THREADS, |
| .pix_fmts = (const enum AVPixelFormat[]) { |
| AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, |
| AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE |
| }, |
| .priv_class = &proresenc_class, |
| }; |