| /* |
| * audio resampling |
| * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * audio resampling |
| * @author Michael Niedermayer <michaelni@gmx.at> |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "avcodec.h" |
| #include "libavutil/common.h" |
| |
| #if FF_API_AVCODEC_RESAMPLE |
| |
| #ifndef CONFIG_RESAMPLE_HP |
| #define FILTER_SHIFT 15 |
| |
| typedef int16_t FELEM; |
| typedef int32_t FELEM2; |
| typedef int64_t FELEML; |
| #define FELEM_MAX INT16_MAX |
| #define FELEM_MIN INT16_MIN |
| #define WINDOW_TYPE 9 |
| #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE) |
| #define FILTER_SHIFT 30 |
| |
| #define FELEM int32_t |
| #define FELEM2 int64_t |
| #define FELEML int64_t |
| #define FELEM_MAX INT32_MAX |
| #define FELEM_MIN INT32_MIN |
| #define WINDOW_TYPE 12 |
| #else |
| #define FILTER_SHIFT 0 |
| |
| typedef double FELEM; |
| typedef double FELEM2; |
| typedef double FELEML; |
| #define WINDOW_TYPE 24 |
| #endif |
| |
| |
| typedef struct AVResampleContext{ |
| const AVClass *av_class; |
| FELEM *filter_bank; |
| int filter_length; |
| int ideal_dst_incr; |
| int dst_incr; |
| int index; |
| int frac; |
| int src_incr; |
| int compensation_distance; |
| int phase_shift; |
| int phase_mask; |
| int linear; |
| }AVResampleContext; |
| |
| /** |
| * 0th order modified bessel function of the first kind. |
| */ |
| static double bessel(double x){ |
| double v=1; |
| double lastv=0; |
| double t=1; |
| int i; |
| |
| x= x*x/4; |
| for(i=1; v != lastv; i++){ |
| lastv=v; |
| t *= x/(i*i); |
| v += t; |
| } |
| return v; |
| } |
| |
| /** |
| * Build a polyphase filterbank. |
| * @param factor resampling factor |
| * @param scale wanted sum of coefficients for each filter |
| * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16 |
| * @return 0 on success, negative on error |
| */ |
| static int build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){ |
| int ph, i; |
| double x, y, w; |
| double *tab = av_malloc_array(tap_count, sizeof(*tab)); |
| const int center= (tap_count-1)/2; |
| |
| if (!tab) |
| return AVERROR(ENOMEM); |
| |
| /* if upsampling, only need to interpolate, no filter */ |
| if (factor > 1.0) |
| factor = 1.0; |
| |
| for(ph=0;ph<phase_count;ph++) { |
| double norm = 0; |
| for(i=0;i<tap_count;i++) { |
| x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; |
| if (x == 0) y = 1.0; |
| else y = sin(x) / x; |
| switch(type){ |
| case 0:{ |
| const float d= -0.5; //first order derivative = -0.5 |
| x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); |
| if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x); |
| else y= d*(-4 + 8*x - 5*x*x + x*x*x); |
| break;} |
| case 1: |
| w = 2.0*x / (factor*tap_count) + M_PI; |
| y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w); |
| break; |
| default: |
| w = 2.0*x / (factor*tap_count*M_PI); |
| y *= bessel(type*sqrt(FFMAX(1-w*w, 0))); |
| break; |
| } |
| |
| tab[i] = y; |
| norm += y; |
| } |
| |
| /* normalize so that an uniform color remains the same */ |
| for(i=0;i<tap_count;i++) { |
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE |
| filter[ph * tap_count + i] = tab[i] / norm; |
| #else |
| filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX); |
| #endif |
| } |
| } |
| #if 0 |
| { |
| #define LEN 1024 |
| int j,k; |
| double sine[LEN + tap_count]; |
| double filtered[LEN]; |
| double maxff=-2, minff=2, maxsf=-2, minsf=2; |
| for(i=0; i<LEN; i++){ |
| double ss=0, sf=0, ff=0; |
| for(j=0; j<LEN+tap_count; j++) |
| sine[j]= cos(i*j*M_PI/LEN); |
| for(j=0; j<LEN; j++){ |
| double sum=0; |
| ph=0; |
| for(k=0; k<tap_count; k++) |
| sum += filter[ph * tap_count + k] * sine[k+j]; |
| filtered[j]= sum / (1<<FILTER_SHIFT); |
| ss+= sine[j + center] * sine[j + center]; |
| ff+= filtered[j] * filtered[j]; |
| sf+= sine[j + center] * filtered[j]; |
| } |
| ss= sqrt(2*ss/LEN); |
| ff= sqrt(2*ff/LEN); |
| sf= 2*sf/LEN; |
| maxff= FFMAX(maxff, ff); |
| minff= FFMIN(minff, ff); |
| maxsf= FFMAX(maxsf, sf); |
| minsf= FFMIN(minsf, sf); |
| if(i%11==0){ |
| av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf); |
| minff=minsf= 2; |
| maxff=maxsf= -2; |
| } |
| } |
| } |
| #endif |
| |
| av_free(tab); |
| return 0; |
| } |
| |
| AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){ |
| AVResampleContext *c= av_mallocz(sizeof(AVResampleContext)); |
| double factor= FFMIN(out_rate * cutoff / in_rate, 1.0); |
| int phase_count= 1<<phase_shift; |
| |
| if (!c) |
| return NULL; |
| |
| c->phase_shift= phase_shift; |
| c->phase_mask= phase_count-1; |
| c->linear= linear; |
| |
| c->filter_length= FFMAX((int)ceil(filter_size/factor), 1); |
| c->filter_bank= av_mallocz_array(c->filter_length, (phase_count+1)*sizeof(FELEM)); |
| if (!c->filter_bank) |
| goto error; |
| if (build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE)) |
| goto error; |
| memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM)); |
| c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1]; |
| |
| if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2)) |
| goto error; |
| c->ideal_dst_incr= c->dst_incr; |
| |
| c->index= -phase_count*((c->filter_length-1)/2); |
| |
| return c; |
| error: |
| av_free(c->filter_bank); |
| av_free(c); |
| return NULL; |
| } |
| |
| void av_resample_close(AVResampleContext *c){ |
| av_freep(&c->filter_bank); |
| av_freep(&c); |
| } |
| |
| void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){ |
| // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr; |
| c->compensation_distance= compensation_distance; |
| c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance; |
| } |
| |
| int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){ |
| int dst_index, i; |
| int index= c->index; |
| int frac= c->frac; |
| int dst_incr_frac= c->dst_incr % c->src_incr; |
| int dst_incr= c->dst_incr / c->src_incr; |
| int compensation_distance= c->compensation_distance; |
| |
| if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){ |
| int64_t index2= ((int64_t)index)<<32; |
| int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; |
| dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr); |
| |
| for(dst_index=0; dst_index < dst_size; dst_index++){ |
| dst[dst_index] = src[index2>>32]; |
| index2 += incr; |
| } |
| index += dst_index * dst_incr; |
| index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr; |
| frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr; |
| }else{ |
| for(dst_index=0; dst_index < dst_size; dst_index++){ |
| FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask); |
| int sample_index= index >> c->phase_shift; |
| FELEM2 val=0; |
| |
| if(sample_index < 0){ |
| for(i=0; i<c->filter_length; i++) |
| val += src[FFABS(sample_index + i) % src_size] * filter[i]; |
| }else if(sample_index + c->filter_length > src_size){ |
| break; |
| }else if(c->linear){ |
| FELEM2 v2=0; |
| for(i=0; i<c->filter_length; i++){ |
| val += src[sample_index + i] * (FELEM2)filter[i]; |
| v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length]; |
| } |
| val+=(v2-val)*(FELEML)frac / c->src_incr; |
| }else{ |
| for(i=0; i<c->filter_length; i++){ |
| val += src[sample_index + i] * (FELEM2)filter[i]; |
| } |
| } |
| |
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE |
| dst[dst_index] = av_clip_int16(lrintf(val)); |
| #else |
| val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT; |
| dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val; |
| #endif |
| |
| frac += dst_incr_frac; |
| index += dst_incr; |
| if(frac >= c->src_incr){ |
| frac -= c->src_incr; |
| index++; |
| } |
| |
| if(dst_index + 1 == compensation_distance){ |
| compensation_distance= 0; |
| dst_incr_frac= c->ideal_dst_incr % c->src_incr; |
| dst_incr= c->ideal_dst_incr / c->src_incr; |
| } |
| } |
| } |
| *consumed= FFMAX(index, 0) >> c->phase_shift; |
| if(index>=0) index &= c->phase_mask; |
| |
| if(compensation_distance){ |
| compensation_distance -= dst_index; |
| av_assert2(compensation_distance > 0); |
| } |
| if(update_ctx){ |
| c->frac= frac; |
| c->index= index; |
| c->dst_incr= dst_incr_frac + c->src_incr*dst_incr; |
| c->compensation_distance= compensation_distance; |
| } |
| |
| return dst_index; |
| } |
| |
| #endif |