| /* |
| * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/intmath.h" |
| #include "libavutil/libm.h" |
| #include "libavutil/log.h" |
| #include "libavutil/opt.h" |
| #include "avcodec.h" |
| #include "internal.h" |
| #include "snow_dwt.h" |
| #include "snow.h" |
| |
| #include "rangecoder.h" |
| #include "mathops.h" |
| |
| #include "mpegvideo.h" |
| #include "h263.h" |
| |
| #define FF_ME_ITER 50 |
| |
| static av_cold int encode_init(AVCodecContext *avctx) |
| { |
| SnowContext *s = avctx->priv_data; |
| int plane_index, ret; |
| int i; |
| |
| #if FF_API_PRIVATE_OPT |
| FF_DISABLE_DEPRECATION_WARNINGS |
| if (avctx->prediction_method) |
| s->pred = avctx->prediction_method; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| if(s->pred == DWT_97 |
| && (avctx->flags & AV_CODEC_FLAG_QSCALE) |
| && avctx->global_quality == 0){ |
| av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n"); |
| return -1; |
| } |
| #if FF_API_MOTION_EST |
| FF_DISABLE_DEPRECATION_WARNINGS |
| if (avctx->me_method == ME_ITER) |
| s->motion_est = FF_ME_ITER; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type |
| |
| s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4; |
| s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0; |
| |
| for(plane_index=0; plane_index<3; plane_index++){ |
| s->plane[plane_index].diag_mc= 1; |
| s->plane[plane_index].htaps= 6; |
| s->plane[plane_index].hcoeff[0]= 40; |
| s->plane[plane_index].hcoeff[1]= -10; |
| s->plane[plane_index].hcoeff[2]= 2; |
| s->plane[plane_index].fast_mc= 1; |
| } |
| |
| if ((ret = ff_snow_common_init(avctx)) < 0) { |
| return ret; |
| } |
| ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx); |
| |
| ff_snow_alloc_blocks(s); |
| |
| s->version=0; |
| |
| s->m.avctx = avctx; |
| s->m.bit_rate= avctx->bit_rate; |
| |
| s->m.me.temp = |
| s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t)); |
| s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); |
| s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t)); |
| s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t)); |
| if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad) |
| return AVERROR(ENOMEM); |
| |
| ff_h263_encode_init(&s->m); //mv_penalty |
| |
| s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES); |
| |
| if(avctx->flags&AV_CODEC_FLAG_PASS1){ |
| if(!avctx->stats_out) |
| avctx->stats_out = av_mallocz(256); |
| |
| if (!avctx->stats_out) |
| return AVERROR(ENOMEM); |
| } |
| if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&CODEC_FLAG_QSCALE)){ |
| if(ff_rate_control_init(&s->m) < 0) |
| return -1; |
| } |
| s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|CODEC_FLAG_PASS2)); |
| |
| switch(avctx->pix_fmt){ |
| case AV_PIX_FMT_YUV444P: |
| // case AV_PIX_FMT_YUV422P: |
| case AV_PIX_FMT_YUV420P: |
| // case AV_PIX_FMT_YUV411P: |
| case AV_PIX_FMT_YUV410P: |
| s->nb_planes = 3; |
| s->colorspace_type= 0; |
| break; |
| case AV_PIX_FMT_GRAY8: |
| s->nb_planes = 1; |
| s->colorspace_type = 1; |
| break; |
| /* case AV_PIX_FMT_RGB32: |
| s->colorspace= 1; |
| break;*/ |
| default: |
| av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n"); |
| return -1; |
| } |
| avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); |
| |
| ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp); |
| ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp); |
| |
| s->input_picture = av_frame_alloc(); |
| if (!s->input_picture) |
| return AVERROR(ENOMEM); |
| |
| if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0) |
| return ret; |
| |
| if(s->motion_est == FF_ME_ITER){ |
| int size= s->b_width * s->b_height << 2*s->block_max_depth; |
| for(i=0; i<s->max_ref_frames; i++){ |
| s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2])); |
| s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t)); |
| if (!s->ref_mvs[i] || !s->ref_scores[i]) |
| return AVERROR(ENOMEM); |
| } |
| } |
| |
| return 0; |
| } |
| |
| //near copy & paste from dsputil, FIXME |
| static int pix_sum(uint8_t * pix, int line_size, int w, int h) |
| { |
| int s, i, j; |
| |
| s = 0; |
| for (i = 0; i < h; i++) { |
| for (j = 0; j < w; j++) { |
| s += pix[0]; |
| pix ++; |
| } |
| pix += line_size - w; |
| } |
| return s; |
| } |
| |
| //near copy & paste from dsputil, FIXME |
| static int pix_norm1(uint8_t * pix, int line_size, int w) |
| { |
| int s, i, j; |
| uint32_t *sq = ff_square_tab + 256; |
| |
| s = 0; |
| for (i = 0; i < w; i++) { |
| for (j = 0; j < w; j ++) { |
| s += sq[pix[0]]; |
| pix ++; |
| } |
| pix += line_size - w; |
| } |
| return s; |
| } |
| |
| static inline int get_penalty_factor(int lambda, int lambda2, int type){ |
| switch(type&0xFF){ |
| default: |
| case FF_CMP_SAD: |
| return lambda>>FF_LAMBDA_SHIFT; |
| case FF_CMP_DCT: |
| return (3*lambda)>>(FF_LAMBDA_SHIFT+1); |
| case FF_CMP_W53: |
| return (4*lambda)>>(FF_LAMBDA_SHIFT); |
| case FF_CMP_W97: |
| return (2*lambda)>>(FF_LAMBDA_SHIFT); |
| case FF_CMP_SATD: |
| case FF_CMP_DCT264: |
| return (2*lambda)>>FF_LAMBDA_SHIFT; |
| case FF_CMP_RD: |
| case FF_CMP_PSNR: |
| case FF_CMP_SSE: |
| case FF_CMP_NSSE: |
| return lambda2>>FF_LAMBDA_SHIFT; |
| case FF_CMP_BIT: |
| return 1; |
| } |
| } |
| |
| //FIXME copy&paste |
| #define P_LEFT P[1] |
| #define P_TOP P[2] |
| #define P_TOPRIGHT P[3] |
| #define P_MEDIAN P[4] |
| #define P_MV1 P[9] |
| #define FLAG_QPEL 1 //must be 1 |
| |
| static int encode_q_branch(SnowContext *s, int level, int x, int y){ |
| uint8_t p_buffer[1024]; |
| uint8_t i_buffer[1024]; |
| uint8_t p_state[sizeof(s->block_state)]; |
| uint8_t i_state[sizeof(s->block_state)]; |
| RangeCoder pc, ic; |
| uint8_t *pbbak= s->c.bytestream; |
| uint8_t *pbbak_start= s->c.bytestream_start; |
| int score, score2, iscore, i_len, p_len, block_s, sum, base_bits; |
| const int w= s->b_width << s->block_max_depth; |
| const int h= s->b_height << s->block_max_depth; |
| const int rem_depth= s->block_max_depth - level; |
| const int index= (x + y*w) << rem_depth; |
| const int block_w= 1<<(LOG2_MB_SIZE - level); |
| int trx= (x+1)<<rem_depth; |
| int try= (y+1)<<rem_depth; |
| const BlockNode *left = x ? &s->block[index-1] : &null_block; |
| const BlockNode *top = y ? &s->block[index-w] : &null_block; |
| const BlockNode *right = trx<w ? &s->block[index+1] : &null_block; |
| const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block; |
| const BlockNode *tl = y && x ? &s->block[index-w-1] : left; |
| const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt |
| int pl = left->color[0]; |
| int pcb= left->color[1]; |
| int pcr= left->color[2]; |
| int pmx, pmy; |
| int mx=0, my=0; |
| int l,cr,cb; |
| const int stride= s->current_picture->linesize[0]; |
| const int uvstride= s->current_picture->linesize[1]; |
| uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w, |
| s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift), |
| s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)}; |
| int P[10][2]; |
| int16_t last_mv[3][2]; |
| int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused |
| const int shift= 1+qpel; |
| MotionEstContext *c= &s->m.me; |
| int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); |
| int mx_context= av_log2(2*FFABS(left->mx - top->mx)); |
| int my_context= av_log2(2*FFABS(left->my - top->my)); |
| int s_context= 2*left->level + 2*top->level + tl->level + tr->level; |
| int ref, best_ref, ref_score, ref_mx, ref_my; |
| |
| av_assert0(sizeof(s->block_state) >= 256); |
| if(s->keyframe){ |
| set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); |
| return 0; |
| } |
| |
| // clip predictors / edge ? |
| |
| P_LEFT[0]= left->mx; |
| P_LEFT[1]= left->my; |
| P_TOP [0]= top->mx; |
| P_TOP [1]= top->my; |
| P_TOPRIGHT[0]= tr->mx; |
| P_TOPRIGHT[1]= tr->my; |
| |
| last_mv[0][0]= s->block[index].mx; |
| last_mv[0][1]= s->block[index].my; |
| last_mv[1][0]= right->mx; |
| last_mv[1][1]= right->my; |
| last_mv[2][0]= bottom->mx; |
| last_mv[2][1]= bottom->my; |
| |
| s->m.mb_stride=2; |
| s->m.mb_x= |
| s->m.mb_y= 0; |
| c->skip= 0; |
| |
| av_assert1(c-> stride == stride); |
| av_assert1(c->uvstride == uvstride); |
| |
| c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp); |
| c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp); |
| c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp); |
| c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV; |
| |
| c->xmin = - x*block_w - 16+3; |
| c->ymin = - y*block_w - 16+3; |
| c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; |
| c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3; |
| |
| if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift); |
| if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift); |
| if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift); |
| if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift); |
| if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift); |
| if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip |
| if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift); |
| |
| P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]); |
| P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]); |
| |
| if (!y) { |
| c->pred_x= P_LEFT[0]; |
| c->pred_y= P_LEFT[1]; |
| } else { |
| c->pred_x = P_MEDIAN[0]; |
| c->pred_y = P_MEDIAN[1]; |
| } |
| |
| score= INT_MAX; |
| best_ref= 0; |
| for(ref=0; ref<s->ref_frames; ref++){ |
| init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0); |
| |
| ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv, |
| (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w); |
| |
| av_assert2(ref_mx >= c->xmin); |
| av_assert2(ref_mx <= c->xmax); |
| av_assert2(ref_my >= c->ymin); |
| av_assert2(ref_my <= c->ymax); |
| |
| ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w); |
| ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0); |
| ref_score+= 2*av_log2(2*ref)*c->penalty_factor; |
| if(s->ref_mvs[ref]){ |
| s->ref_mvs[ref][index][0]= ref_mx; |
| s->ref_mvs[ref][index][1]= ref_my; |
| s->ref_scores[ref][index]= ref_score; |
| } |
| if(score > ref_score){ |
| score= ref_score; |
| best_ref= ref; |
| mx= ref_mx; |
| my= ref_my; |
| } |
| } |
| //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2 |
| |
| // subpel search |
| base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start); |
| pc= s->c; |
| pc.bytestream_start= |
| pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo |
| memcpy(p_state, s->block_state, sizeof(s->block_state)); |
| |
| if(level!=s->block_max_depth) |
| put_rac(&pc, &p_state[4 + s_context], 1); |
| put_rac(&pc, &p_state[1 + left->type + top->type], 0); |
| if(s->ref_frames > 1) |
| put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0); |
| pred_mv(s, &pmx, &pmy, best_ref, left, top, tr); |
| put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1); |
| put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1); |
| p_len= pc.bytestream - pc.bytestream_start; |
| score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT; |
| |
| block_s= block_w*block_w; |
| sum = pix_sum(current_data[0], stride, block_w, block_w); |
| l= (sum + block_s/2)/block_s; |
| iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s; |
| |
| if (s->nb_planes > 2) { |
| block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift); |
| sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift); |
| cb= (sum + block_s/2)/block_s; |
| // iscore += pix_norm1(¤t_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s; |
| sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift); |
| cr= (sum + block_s/2)/block_s; |
| // iscore += pix_norm1(¤t_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s; |
| }else |
| cb = cr = 0; |
| |
| ic= s->c; |
| ic.bytestream_start= |
| ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo |
| memcpy(i_state, s->block_state, sizeof(s->block_state)); |
| if(level!=s->block_max_depth) |
| put_rac(&ic, &i_state[4 + s_context], 1); |
| put_rac(&ic, &i_state[1 + left->type + top->type], 1); |
| put_symbol(&ic, &i_state[32], l-pl , 1); |
| if (s->nb_planes > 2) { |
| put_symbol(&ic, &i_state[64], cb-pcb, 1); |
| put_symbol(&ic, &i_state[96], cr-pcr, 1); |
| } |
| i_len= ic.bytestream - ic.bytestream_start; |
| iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT; |
| |
| av_assert1(iscore < 255*255*256 + s->lambda2*10); |
| av_assert1(iscore >= 0); |
| av_assert1(l>=0 && l<=255); |
| av_assert1(pl>=0 && pl<=255); |
| |
| if(level==0){ |
| int varc= iscore >> 8; |
| int vard= score >> 8; |
| if (vard <= 64 || vard < varc) |
| c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc); |
| else |
| c->scene_change_score+= s->m.qscale; |
| } |
| |
| if(level!=s->block_max_depth){ |
| put_rac(&s->c, &s->block_state[4 + s_context], 0); |
| score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0); |
| score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0); |
| score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1); |
| score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1); |
| score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead |
| |
| if(score2 < score && score2 < iscore) |
| return score2; |
| } |
| |
| if(iscore < score){ |
| pred_mv(s, &pmx, &pmy, 0, left, top, tr); |
| memcpy(pbbak, i_buffer, i_len); |
| s->c= ic; |
| s->c.bytestream_start= pbbak_start; |
| s->c.bytestream= pbbak + i_len; |
| set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA); |
| memcpy(s->block_state, i_state, sizeof(s->block_state)); |
| return iscore; |
| }else{ |
| memcpy(pbbak, p_buffer, p_len); |
| s->c= pc; |
| s->c.bytestream_start= pbbak_start; |
| s->c.bytestream= pbbak + p_len; |
| set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0); |
| memcpy(s->block_state, p_state, sizeof(s->block_state)); |
| return score; |
| } |
| } |
| |
| static void encode_q_branch2(SnowContext *s, int level, int x, int y){ |
| const int w= s->b_width << s->block_max_depth; |
| const int rem_depth= s->block_max_depth - level; |
| const int index= (x + y*w) << rem_depth; |
| int trx= (x+1)<<rem_depth; |
| BlockNode *b= &s->block[index]; |
| const BlockNode *left = x ? &s->block[index-1] : &null_block; |
| const BlockNode *top = y ? &s->block[index-w] : &null_block; |
| const BlockNode *tl = y && x ? &s->block[index-w-1] : left; |
| const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt |
| int pl = left->color[0]; |
| int pcb= left->color[1]; |
| int pcr= left->color[2]; |
| int pmx, pmy; |
| int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref); |
| int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref; |
| int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref; |
| int s_context= 2*left->level + 2*top->level + tl->level + tr->level; |
| |
| if(s->keyframe){ |
| set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA); |
| return; |
| } |
| |
| if(level!=s->block_max_depth){ |
| if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){ |
| put_rac(&s->c, &s->block_state[4 + s_context], 1); |
| }else{ |
| put_rac(&s->c, &s->block_state[4 + s_context], 0); |
| encode_q_branch2(s, level+1, 2*x+0, 2*y+0); |
| encode_q_branch2(s, level+1, 2*x+1, 2*y+0); |
| encode_q_branch2(s, level+1, 2*x+0, 2*y+1); |
| encode_q_branch2(s, level+1, 2*x+1, 2*y+1); |
| return; |
| } |
| } |
| if(b->type & BLOCK_INTRA){ |
| pred_mv(s, &pmx, &pmy, 0, left, top, tr); |
| put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1); |
| put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1); |
| if (s->nb_planes > 2) { |
| put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1); |
| put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1); |
| } |
| set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA); |
| }else{ |
| pred_mv(s, &pmx, &pmy, b->ref, left, top, tr); |
| put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0); |
| if(s->ref_frames > 1) |
| put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0); |
| put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1); |
| put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1); |
| set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0); |
| } |
| } |
| |
| static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){ |
| int i, x2, y2; |
| Plane *p= &s->plane[plane_index]; |
| const int block_size = MB_SIZE >> s->block_max_depth; |
| const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; |
| const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; |
| const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth]; |
| const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; |
| const int ref_stride= s->current_picture->linesize[plane_index]; |
| uint8_t *src= s-> input_picture->data[plane_index]; |
| IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned |
| const int b_stride = s->b_width << s->block_max_depth; |
| const int w= p->width; |
| const int h= p->height; |
| int index= mb_x + mb_y*b_stride; |
| BlockNode *b= &s->block[index]; |
| BlockNode backup= *b; |
| int ab=0; |
| int aa=0; |
| |
| av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above |
| |
| b->type|= BLOCK_INTRA; |
| b->color[plane_index]= 0; |
| memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM)); |
| |
| for(i=0; i<4; i++){ |
| int mb_x2= mb_x + (i &1) - 1; |
| int mb_y2= mb_y + (i>>1) - 1; |
| int x= block_w*mb_x2 + block_w/2; |
| int y= block_h*mb_y2 + block_h/2; |
| |
| add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc, |
| x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index); |
| |
| for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){ |
| for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){ |
| int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride; |
| int obmc_v= obmc[index]; |
| int d; |
| if(y<0) obmc_v += obmc[index + block_h*obmc_stride]; |
| if(x<0) obmc_v += obmc[index + block_w]; |
| if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride]; |
| if(x+block_w>w) obmc_v += obmc[index - block_w]; |
| //FIXME precalculate this or simplify it somehow else |
| |
| d = -dst[index] + (1<<(FRAC_BITS-1)); |
| dst[index] = d; |
| ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v; |
| aa += obmc_v * obmc_v; //FIXME precalculate this |
| } |
| } |
| } |
| *b= backup; |
| |
| return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping |
| } |
| |
| static inline int get_block_bits(SnowContext *s, int x, int y, int w){ |
| const int b_stride = s->b_width << s->block_max_depth; |
| const int b_height = s->b_height<< s->block_max_depth; |
| int index= x + y*b_stride; |
| const BlockNode *b = &s->block[index]; |
| const BlockNode *left = x ? &s->block[index-1] : &null_block; |
| const BlockNode *top = y ? &s->block[index-b_stride] : &null_block; |
| const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left; |
| const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl; |
| int dmx, dmy; |
| // int mx_context= av_log2(2*FFABS(left->mx - top->mx)); |
| // int my_context= av_log2(2*FFABS(left->my - top->my)); |
| |
| if(x<0 || x>=b_stride || y>=b_height) |
| return 0; |
| /* |
| 1 0 0 |
| 01X 1-2 1 |
| 001XX 3-6 2-3 |
| 0001XXX 7-14 4-7 |
| 00001XXXX 15-30 8-15 |
| */ |
| //FIXME try accurate rate |
| //FIXME intra and inter predictors if surrounding blocks are not the same type |
| if(b->type & BLOCK_INTRA){ |
| return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0])) |
| + av_log2(2*FFABS(left->color[1] - b->color[1])) |
| + av_log2(2*FFABS(left->color[2] - b->color[2]))); |
| }else{ |
| pred_mv(s, &dmx, &dmy, b->ref, left, top, tr); |
| dmx-= b->mx; |
| dmy-= b->my; |
| return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda |
| + av_log2(2*FFABS(dmy)) |
| + av_log2(2*b->ref)); |
| } |
| } |
| |
| static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){ |
| Plane *p= &s->plane[plane_index]; |
| const int block_size = MB_SIZE >> s->block_max_depth; |
| const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; |
| const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; |
| const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; |
| const int ref_stride= s->current_picture->linesize[plane_index]; |
| uint8_t *dst= s->current_picture->data[plane_index]; |
| uint8_t *src= s-> input_picture->data[plane_index]; |
| IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; |
| uint8_t *cur = s->scratchbuf; |
| uint8_t *tmp = s->emu_edge_buffer; |
| const int b_stride = s->b_width << s->block_max_depth; |
| const int b_height = s->b_height<< s->block_max_depth; |
| const int w= p->width; |
| const int h= p->height; |
| int distortion; |
| int rate= 0; |
| const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); |
| int sx= block_w*mb_x - block_w/2; |
| int sy= block_h*mb_y - block_h/2; |
| int x0= FFMAX(0,-sx); |
| int y0= FFMAX(0,-sy); |
| int x1= FFMIN(block_w*2, w-sx); |
| int y1= FFMIN(block_h*2, h-sy); |
| int i,x,y; |
| |
| av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w |
| |
| ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h); |
| |
| for(y=y0; y<y1; y++){ |
| const uint8_t *obmc1= obmc_edged[y]; |
| const IDWTELEM *pred1 = pred + y*obmc_stride; |
| uint8_t *cur1 = cur + y*ref_stride; |
| uint8_t *dst1 = dst + sx + (sy+y)*ref_stride; |
| for(x=x0; x<x1; x++){ |
| #if FRAC_BITS >= LOG2_OBMC_MAX |
| int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX); |
| #else |
| int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS); |
| #endif |
| v = (v + pred1[x]) >> FRAC_BITS; |
| if(v&(~255)) v= ~(v>>31); |
| dst1[x] = v; |
| } |
| } |
| |
| /* copy the regions where obmc[] = (uint8_t)256 */ |
| if(LOG2_OBMC_MAX == 8 |
| && (mb_x == 0 || mb_x == b_stride-1) |
| && (mb_y == 0 || mb_y == b_height-1)){ |
| if(mb_x == 0) |
| x1 = block_w; |
| else |
| x0 = block_w; |
| if(mb_y == 0) |
| y1 = block_h; |
| else |
| y0 = block_h; |
| for(y=y0; y<y1; y++) |
| memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0); |
| } |
| |
| if(block_w==16){ |
| /* FIXME rearrange dsputil to fit 32x32 cmp functions */ |
| /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */ |
| /* FIXME cmps overlap but do not cover the wavelet's whole support. |
| * So improving the score of one block is not strictly guaranteed |
| * to improve the score of the whole frame, thus iterative motion |
| * estimation does not always converge. */ |
| if(s->avctx->me_cmp == FF_CMP_W97) |
| distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); |
| else if(s->avctx->me_cmp == FF_CMP_W53) |
| distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32); |
| else{ |
| distortion = 0; |
| for(i=0; i<4; i++){ |
| int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride; |
| distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16); |
| } |
| } |
| }else{ |
| av_assert2(block_w==8); |
| distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2); |
| } |
| |
| if(plane_index==0){ |
| for(i=0; i<4; i++){ |
| /* ..RRr |
| * .RXx. |
| * rxx.. |
| */ |
| rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1); |
| } |
| if(mb_x == b_stride-2) |
| rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1); |
| } |
| return distortion + rate*penalty_factor; |
| } |
| |
| static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){ |
| int i, y2; |
| Plane *p= &s->plane[plane_index]; |
| const int block_size = MB_SIZE >> s->block_max_depth; |
| const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size; |
| const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size; |
| const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth]; |
| const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size; |
| const int ref_stride= s->current_picture->linesize[plane_index]; |
| uint8_t *dst= s->current_picture->data[plane_index]; |
| uint8_t *src= s-> input_picture->data[plane_index]; |
| //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst |
| // const has only been removed from zero_dst to suppress a warning |
| static IDWTELEM zero_dst[4096]; //FIXME |
| const int b_stride = s->b_width << s->block_max_depth; |
| const int w= p->width; |
| const int h= p->height; |
| int distortion= 0; |
| int rate= 0; |
| const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp); |
| |
| av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below |
| |
| for(i=0; i<9; i++){ |
| int mb_x2= mb_x + (i%3) - 1; |
| int mb_y2= mb_y + (i/3) - 1; |
| int x= block_w*mb_x2 + block_w/2; |
| int y= block_h*mb_y2 + block_h/2; |
| |
| add_yblock(s, 0, NULL, zero_dst, dst, obmc, |
| x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index); |
| |
| //FIXME find a cleaner/simpler way to skip the outside stuff |
| for(y2= y; y2<0; y2++) |
| memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); |
| for(y2= h; y2<y+block_h; y2++) |
| memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w); |
| if(x<0){ |
| for(y2= y; y2<y+block_h; y2++) |
| memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x); |
| } |
| if(x+block_w > w){ |
| for(y2= y; y2<y+block_h; y2++) |
| memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w); |
| } |
| |
| av_assert1(block_w== 8 || block_w==16); |
| distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h); |
| } |
| |
| if(plane_index==0){ |
| BlockNode *b= &s->block[mb_x+mb_y*b_stride]; |
| int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1); |
| |
| /* ..RRRr |
| * .RXXx. |
| * .RXXx. |
| * rxxx. |
| */ |
| if(merged) |
| rate = get_block_bits(s, mb_x, mb_y, 2); |
| for(i=merged?4:0; i<9; i++){ |
| static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}}; |
| rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1); |
| } |
| } |
| return distortion + rate*penalty_factor; |
| } |
| |
| static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){ |
| const int w= b->width; |
| const int h= b->height; |
| int x, y; |
| |
| if(1){ |
| int run=0; |
| int *runs = s->run_buffer; |
| int run_index=0; |
| int max_index; |
| |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int v, p=0; |
| int /*ll=0, */l=0, lt=0, t=0, rt=0; |
| v= src[x + y*stride]; |
| |
| if(y){ |
| t= src[x + (y-1)*stride]; |
| if(x){ |
| lt= src[x - 1 + (y-1)*stride]; |
| } |
| if(x + 1 < w){ |
| rt= src[x + 1 + (y-1)*stride]; |
| } |
| } |
| if(x){ |
| l= src[x - 1 + y*stride]; |
| /*if(x > 1){ |
| if(orientation==1) ll= src[y + (x-2)*stride]; |
| else ll= src[x - 2 + y*stride]; |
| }*/ |
| } |
| if(parent){ |
| int px= x>>1; |
| int py= y>>1; |
| if(px<b->parent->width && py<b->parent->height) |
| p= parent[px + py*2*stride]; |
| } |
| if(!(/*ll|*/l|lt|t|rt|p)){ |
| if(v){ |
| runs[run_index++]= run; |
| run=0; |
| }else{ |
| run++; |
| } |
| } |
| } |
| } |
| max_index= run_index; |
| runs[run_index++]= run; |
| run_index=0; |
| run= runs[run_index++]; |
| |
| put_symbol2(&s->c, b->state[30], max_index, 0); |
| if(run_index <= max_index) |
| put_symbol2(&s->c, b->state[1], run, 3); |
| |
| for(y=0; y<h; y++){ |
| if(s->c.bytestream_end - s->c.bytestream < w*40){ |
| av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); |
| return -1; |
| } |
| for(x=0; x<w; x++){ |
| int v, p=0; |
| int /*ll=0, */l=0, lt=0, t=0, rt=0; |
| v= src[x + y*stride]; |
| |
| if(y){ |
| t= src[x + (y-1)*stride]; |
| if(x){ |
| lt= src[x - 1 + (y-1)*stride]; |
| } |
| if(x + 1 < w){ |
| rt= src[x + 1 + (y-1)*stride]; |
| } |
| } |
| if(x){ |
| l= src[x - 1 + y*stride]; |
| /*if(x > 1){ |
| if(orientation==1) ll= src[y + (x-2)*stride]; |
| else ll= src[x - 2 + y*stride]; |
| }*/ |
| } |
| if(parent){ |
| int px= x>>1; |
| int py= y>>1; |
| if(px<b->parent->width && py<b->parent->height) |
| p= parent[px + py*2*stride]; |
| } |
| if(/*ll|*/l|lt|t|rt|p){ |
| int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); |
| |
| put_rac(&s->c, &b->state[0][context], !!v); |
| }else{ |
| if(!run){ |
| run= runs[run_index++]; |
| |
| if(run_index <= max_index) |
| put_symbol2(&s->c, b->state[1], run, 3); |
| av_assert2(v); |
| }else{ |
| run--; |
| av_assert2(!v); |
| } |
| } |
| if(v){ |
| int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p)); |
| int l2= 2*FFABS(l) + (l<0); |
| int t2= 2*FFABS(t) + (t<0); |
| |
| put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4); |
| put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0); |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){ |
| // encode_subband_qtree(s, b, src, parent, stride, orientation); |
| // encode_subband_z0run(s, b, src, parent, stride, orientation); |
| return encode_subband_c0run(s, b, src, parent, stride, orientation); |
| // encode_subband_dzr(s, b, src, parent, stride, orientation); |
| } |
| |
| static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ |
| const int b_stride= s->b_width << s->block_max_depth; |
| BlockNode *block= &s->block[mb_x + mb_y * b_stride]; |
| BlockNode backup= *block; |
| unsigned value; |
| int rd, index; |
| |
| av_assert2(mb_x>=0 && mb_y>=0); |
| av_assert2(mb_x<b_stride); |
| |
| if(intra){ |
| block->color[0] = p[0]; |
| block->color[1] = p[1]; |
| block->color[2] = p[2]; |
| block->type |= BLOCK_INTRA; |
| }else{ |
| index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1); |
| value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12); |
| if(s->me_cache[index] == value) |
| return 0; |
| s->me_cache[index]= value; |
| |
| block->mx= p[0]; |
| block->my= p[1]; |
| block->type &= ~BLOCK_INTRA; |
| } |
| |
| rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra; |
| |
| //FIXME chroma |
| if(rd < *best_rd){ |
| *best_rd= rd; |
| return 1; |
| }else{ |
| *block= backup; |
| return 0; |
| } |
| } |
| |
| /* special case for int[2] args we discard afterwards, |
| * fixes compilation problem with gcc 2.95 */ |
| static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){ |
| int p[2] = {p0, p1}; |
| return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd); |
| } |
| |
| static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){ |
| const int b_stride= s->b_width << s->block_max_depth; |
| BlockNode *block= &s->block[mb_x + mb_y * b_stride]; |
| BlockNode backup[4]; |
| unsigned value; |
| int rd, index; |
| |
| /* We don't initialize backup[] during variable declaration, because |
| * that fails to compile on MSVC: "cannot convert from 'BlockNode' to |
| * 'int16_t'". */ |
| backup[0] = block[0]; |
| backup[1] = block[1]; |
| backup[2] = block[b_stride]; |
| backup[3] = block[b_stride + 1]; |
| |
| av_assert2(mb_x>=0 && mb_y>=0); |
| av_assert2(mb_x<b_stride); |
| av_assert2(((mb_x|mb_y)&1) == 0); |
| |
| index= (p0 + 31*p1) & (ME_CACHE_SIZE-1); |
| value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12); |
| if(s->me_cache[index] == value) |
| return 0; |
| s->me_cache[index]= value; |
| |
| block->mx= p0; |
| block->my= p1; |
| block->ref= ref; |
| block->type &= ~BLOCK_INTRA; |
| block[1]= block[b_stride]= block[b_stride+1]= *block; |
| |
| rd= get_4block_rd(s, mb_x, mb_y, 0); |
| |
| //FIXME chroma |
| if(rd < *best_rd){ |
| *best_rd= rd; |
| return 1; |
| }else{ |
| block[0]= backup[0]; |
| block[1]= backup[1]; |
| block[b_stride]= backup[2]; |
| block[b_stride+1]= backup[3]; |
| return 0; |
| } |
| } |
| |
| static void iterative_me(SnowContext *s){ |
| int pass, mb_x, mb_y; |
| const int b_width = s->b_width << s->block_max_depth; |
| const int b_height= s->b_height << s->block_max_depth; |
| const int b_stride= b_width; |
| int color[3]; |
| |
| { |
| RangeCoder r = s->c; |
| uint8_t state[sizeof(s->block_state)]; |
| memcpy(state, s->block_state, sizeof(s->block_state)); |
| for(mb_y= 0; mb_y<s->b_height; mb_y++) |
| for(mb_x= 0; mb_x<s->b_width; mb_x++) |
| encode_q_branch(s, 0, mb_x, mb_y); |
| s->c = r; |
| memcpy(s->block_state, state, sizeof(s->block_state)); |
| } |
| |
| for(pass=0; pass<25; pass++){ |
| int change= 0; |
| |
| for(mb_y= 0; mb_y<b_height; mb_y++){ |
| for(mb_x= 0; mb_x<b_width; mb_x++){ |
| int dia_change, i, j, ref; |
| int best_rd= INT_MAX, ref_rd; |
| BlockNode backup, ref_b; |
| const int index= mb_x + mb_y * b_stride; |
| BlockNode *block= &s->block[index]; |
| BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL; |
| BlockNode *lb = mb_x ? &s->block[index -1] : NULL; |
| BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL; |
| BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL; |
| BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL; |
| BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL; |
| BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL; |
| BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL; |
| const int b_w= (MB_SIZE >> s->block_max_depth); |
| uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2]; |
| |
| if(pass && (block->type & BLOCK_OPT)) |
| continue; |
| block->type |= BLOCK_OPT; |
| |
| backup= *block; |
| |
| if(!s->me_cache_generation) |
| memset(s->me_cache, 0, sizeof(s->me_cache)); |
| s->me_cache_generation += 1<<22; |
| |
| //FIXME precalculate |
| { |
| int x, y; |
| for (y = 0; y < b_w * 2; y++) |
| memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2); |
| if(mb_x==0) |
| for(y=0; y<b_w*2; y++) |
| memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w); |
| if(mb_x==b_stride-1) |
| for(y=0; y<b_w*2; y++) |
| memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w); |
| if(mb_y==0){ |
| for(x=0; x<b_w*2; x++) |
| obmc_edged[0][x] += obmc_edged[b_w-1][x]; |
| for(y=1; y<b_w; y++) |
| memcpy(obmc_edged[y], obmc_edged[0], b_w*2); |
| } |
| if(mb_y==b_height-1){ |
| for(x=0; x<b_w*2; x++) |
| obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x]; |
| for(y=b_w; y<b_w*2-1; y++) |
| memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2); |
| } |
| } |
| |
| //skip stuff outside the picture |
| if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){ |
| uint8_t *src= s-> input_picture->data[0]; |
| uint8_t *dst= s->current_picture->data[0]; |
| const int stride= s->current_picture->linesize[0]; |
| const int block_w= MB_SIZE >> s->block_max_depth; |
| const int block_h= MB_SIZE >> s->block_max_depth; |
| const int sx= block_w*mb_x - block_w/2; |
| const int sy= block_h*mb_y - block_h/2; |
| const int w= s->plane[0].width; |
| const int h= s->plane[0].height; |
| int y; |
| |
| for(y=sy; y<0; y++) |
| memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); |
| for(y=h; y<sy+block_h*2; y++) |
| memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2); |
| if(sx<0){ |
| for(y=sy; y<sy+block_h*2; y++) |
| memcpy(dst + sx + y*stride, src + sx + y*stride, -sx); |
| } |
| if(sx+block_w*2 > w){ |
| for(y=sy; y<sy+block_h*2; y++) |
| memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w); |
| } |
| } |
| |
| // intra(black) = neighbors' contribution to the current block |
| for(i=0; i < s->nb_planes; i++) |
| color[i]= get_dc(s, mb_x, mb_y, i); |
| |
| // get previous score (cannot be cached due to OBMC) |
| if(pass > 0 && (block->type&BLOCK_INTRA)){ |
| int color0[3]= {block->color[0], block->color[1], block->color[2]}; |
| check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd); |
| }else |
| check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd); |
| |
| ref_b= *block; |
| ref_rd= best_rd; |
| for(ref=0; ref < s->ref_frames; ref++){ |
| int16_t (*mvr)[2]= &s->ref_mvs[ref][index]; |
| if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold |
| continue; |
| block->ref= ref; |
| best_rd= INT_MAX; |
| |
| check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd); |
| check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd); |
| if(tb) |
| check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd); |
| if(lb) |
| check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd); |
| if(rb) |
| check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd); |
| if(bb) |
| check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd); |
| |
| /* fullpel ME */ |
| //FIXME avoid subpel interpolation / round to nearest integer |
| do{ |
| int newx = block->mx; |
| int newy = block->my; |
| int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1); |
| dia_change=0; |
| for(i=0; i < dia_size; i++){ |
| for(j=0; j<i; j++){ |
| dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd); |
| dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd); |
| dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd); |
| dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd); |
| } |
| } |
| }while(dia_change); |
| /* subpel ME */ |
| do{ |
| static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},}; |
| dia_change=0; |
| for(i=0; i<8; i++) |
| dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd); |
| }while(dia_change); |
| //FIXME or try the standard 2 pass qpel or similar |
| |
| mvr[0][0]= block->mx; |
| mvr[0][1]= block->my; |
| if(ref_rd > best_rd){ |
| ref_rd= best_rd; |
| ref_b= *block; |
| } |
| } |
| best_rd= ref_rd; |
| *block= ref_b; |
| check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd); |
| //FIXME RD style color selection |
| if(!same_block(block, &backup)){ |
| if(tb ) tb ->type &= ~BLOCK_OPT; |
| if(lb ) lb ->type &= ~BLOCK_OPT; |
| if(rb ) rb ->type &= ~BLOCK_OPT; |
| if(bb ) bb ->type &= ~BLOCK_OPT; |
| if(tlb) tlb->type &= ~BLOCK_OPT; |
| if(trb) trb->type &= ~BLOCK_OPT; |
| if(blb) blb->type &= ~BLOCK_OPT; |
| if(brb) brb->type &= ~BLOCK_OPT; |
| change ++; |
| } |
| } |
| } |
| av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change); |
| if(!change) |
| break; |
| } |
| |
| if(s->block_max_depth == 1){ |
| int change= 0; |
| for(mb_y= 0; mb_y<b_height; mb_y+=2){ |
| for(mb_x= 0; mb_x<b_width; mb_x+=2){ |
| int i; |
| int best_rd, init_rd; |
| const int index= mb_x + mb_y * b_stride; |
| BlockNode *b[4]; |
| |
| b[0]= &s->block[index]; |
| b[1]= b[0]+1; |
| b[2]= b[0]+b_stride; |
| b[3]= b[2]+1; |
| if(same_block(b[0], b[1]) && |
| same_block(b[0], b[2]) && |
| same_block(b[0], b[3])) |
| continue; |
| |
| if(!s->me_cache_generation) |
| memset(s->me_cache, 0, sizeof(s->me_cache)); |
| s->me_cache_generation += 1<<22; |
| |
| init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0); |
| |
| //FIXME more multiref search? |
| check_4block_inter(s, mb_x, mb_y, |
| (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2, |
| (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd); |
| |
| for(i=0; i<4; i++) |
| if(!(b[i]->type&BLOCK_INTRA)) |
| check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd); |
| |
| if(init_rd != best_rd) |
| change++; |
| } |
| } |
| av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4); |
| } |
| } |
| |
| static void encode_blocks(SnowContext *s, int search){ |
| int x, y; |
| int w= s->b_width; |
| int h= s->b_height; |
| |
| if(s->motion_est == FF_ME_ITER && !s->keyframe && search) |
| iterative_me(s); |
| |
| for(y=0; y<h; y++){ |
| if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit |
| av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); |
| return; |
| } |
| for(x=0; x<w; x++){ |
| if(s->motion_est == FF_ME_ITER || !search) |
| encode_q_branch2(s, 0, x, y); |
| else |
| encode_q_branch (s, 0, x, y); |
| } |
| } |
| } |
| |
| static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){ |
| const int w= b->width; |
| const int h= b->height; |
| const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); |
| const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS); |
| int x,y, thres1, thres2; |
| |
| if(s->qlog == LOSSLESS_QLOG){ |
| for(y=0; y<h; y++) |
| for(x=0; x<w; x++) |
| dst[x + y*stride]= src[x + y*stride]; |
| return; |
| } |
| |
| bias= bias ? 0 : (3*qmul)>>3; |
| thres1= ((qmul - bias)>>QEXPSHIFT) - 1; |
| thres2= 2*thres1; |
| |
| if(!bias){ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int i= src[x + y*stride]; |
| |
| if((unsigned)(i+thres1) > thres2){ |
| if(i>=0){ |
| i<<= QEXPSHIFT; |
| i/= qmul; //FIXME optimize |
| dst[x + y*stride]= i; |
| }else{ |
| i= -i; |
| i<<= QEXPSHIFT; |
| i/= qmul; //FIXME optimize |
| dst[x + y*stride]= -i; |
| } |
| }else |
| dst[x + y*stride]= 0; |
| } |
| } |
| }else{ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int i= src[x + y*stride]; |
| |
| if((unsigned)(i+thres1) > thres2){ |
| if(i>=0){ |
| i<<= QEXPSHIFT; |
| i= (i + bias) / qmul; //FIXME optimize |
| dst[x + y*stride]= i; |
| }else{ |
| i= -i; |
| i<<= QEXPSHIFT; |
| i= (i + bias) / qmul; //FIXME optimize |
| dst[x + y*stride]= -i; |
| } |
| }else |
| dst[x + y*stride]= 0; |
| } |
| } |
| } |
| } |
| |
| static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride){ |
| const int w= b->width; |
| const int h= b->height; |
| const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16); |
| const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); |
| const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT; |
| int x,y; |
| |
| if(s->qlog == LOSSLESS_QLOG) return; |
| |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int i= src[x + y*stride]; |
| if(i<0){ |
| src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias |
| }else if(i>0){ |
| src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT)); |
| } |
| } |
| } |
| } |
| |
| static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ |
| const int w= b->width; |
| const int h= b->height; |
| int x,y; |
| |
| for(y=h-1; y>=0; y--){ |
| for(x=w-1; x>=0; x--){ |
| int i= x + y*stride; |
| |
| if(x){ |
| if(use_median){ |
| if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); |
| else src[i] -= src[i - 1]; |
| }else{ |
| if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); |
| else src[i] -= src[i - 1]; |
| } |
| }else{ |
| if(y) src[i] -= src[i - stride]; |
| } |
| } |
| } |
| } |
| |
| static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){ |
| const int w= b->width; |
| const int h= b->height; |
| int x,y; |
| |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int i= x + y*stride; |
| |
| if(x){ |
| if(use_median){ |
| if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]); |
| else src[i] += src[i - 1]; |
| }else{ |
| if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]); |
| else src[i] += src[i - 1]; |
| } |
| }else{ |
| if(y) src[i] += src[i - stride]; |
| } |
| } |
| } |
| } |
| |
| static void encode_qlogs(SnowContext *s){ |
| int plane_index, level, orientation; |
| |
| for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ |
| for(level=0; level<s->spatial_decomposition_count; level++){ |
| for(orientation=level ? 1:0; orientation<4; orientation++){ |
| if(orientation==2) continue; |
| put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1); |
| } |
| } |
| } |
| } |
| |
| static void encode_header(SnowContext *s){ |
| int plane_index, i; |
| uint8_t kstate[32]; |
| |
| memset(kstate, MID_STATE, sizeof(kstate)); |
| |
| put_rac(&s->c, kstate, s->keyframe); |
| if(s->keyframe || s->always_reset){ |
| ff_snow_reset_contexts(s); |
| s->last_spatial_decomposition_type= |
| s->last_qlog= |
| s->last_qbias= |
| s->last_mv_scale= |
| s->last_block_max_depth= 0; |
| for(plane_index=0; plane_index<2; plane_index++){ |
| Plane *p= &s->plane[plane_index]; |
| p->last_htaps=0; |
| p->last_diag_mc=0; |
| memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff)); |
| } |
| } |
| if(s->keyframe){ |
| put_symbol(&s->c, s->header_state, s->version, 0); |
| put_rac(&s->c, s->header_state, s->always_reset); |
| put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0); |
| put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0); |
| put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); |
| put_symbol(&s->c, s->header_state, s->colorspace_type, 0); |
| if (s->nb_planes > 2) { |
| put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0); |
| put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0); |
| } |
| put_rac(&s->c, s->header_state, s->spatial_scalability); |
| // put_rac(&s->c, s->header_state, s->rate_scalability); |
| put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0); |
| |
| encode_qlogs(s); |
| } |
| |
| if(!s->keyframe){ |
| int update_mc=0; |
| for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ |
| Plane *p= &s->plane[plane_index]; |
| update_mc |= p->last_htaps != p->htaps; |
| update_mc |= p->last_diag_mc != p->diag_mc; |
| update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); |
| } |
| put_rac(&s->c, s->header_state, update_mc); |
| if(update_mc){ |
| for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){ |
| Plane *p= &s->plane[plane_index]; |
| put_rac(&s->c, s->header_state, p->diag_mc); |
| put_symbol(&s->c, s->header_state, p->htaps/2-1, 0); |
| for(i= p->htaps/2; i; i--) |
| put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0); |
| } |
| } |
| if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ |
| put_rac(&s->c, s->header_state, 1); |
| put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0); |
| encode_qlogs(s); |
| }else |
| put_rac(&s->c, s->header_state, 0); |
| } |
| |
| put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1); |
| put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1); |
| put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1); |
| put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1); |
| put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1); |
| |
| } |
| |
| static void update_last_header_values(SnowContext *s){ |
| int plane_index; |
| |
| if(!s->keyframe){ |
| for(plane_index=0; plane_index<2; plane_index++){ |
| Plane *p= &s->plane[plane_index]; |
| p->last_diag_mc= p->diag_mc; |
| p->last_htaps = p->htaps; |
| memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff)); |
| } |
| } |
| |
| s->last_spatial_decomposition_type = s->spatial_decomposition_type; |
| s->last_qlog = s->qlog; |
| s->last_qbias = s->qbias; |
| s->last_mv_scale = s->mv_scale; |
| s->last_block_max_depth = s->block_max_depth; |
| s->last_spatial_decomposition_count = s->spatial_decomposition_count; |
| } |
| |
| static int qscale2qlog(int qscale){ |
| return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA)) |
| + 61*QROOT/8; ///< 64 > 60 |
| } |
| |
| static int ratecontrol_1pass(SnowContext *s, AVFrame *pict) |
| { |
| /* Estimate the frame's complexity as a sum of weighted dwt coefficients. |
| * FIXME we know exact mv bits at this point, |
| * but ratecontrol isn't set up to include them. */ |
| uint32_t coef_sum= 0; |
| int level, orientation, delta_qlog; |
| |
| for(level=0; level<s->spatial_decomposition_count; level++){ |
| for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
| SubBand *b= &s->plane[0].band[level][orientation]; |
| IDWTELEM *buf= b->ibuf; |
| const int w= b->width; |
| const int h= b->height; |
| const int stride= b->stride; |
| const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16); |
| const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT); |
| const int qdiv= (1<<16)/qmul; |
| int x, y; |
| //FIXME this is ugly |
| for(y=0; y<h; y++) |
| for(x=0; x<w; x++) |
| buf[x+y*stride]= b->buf[x+y*stride]; |
| if(orientation==0) |
| decorrelate(s, b, buf, stride, 1, 0); |
| for(y=0; y<h; y++) |
| for(x=0; x<w; x++) |
| coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16; |
| } |
| } |
| |
| /* ugly, ratecontrol just takes a sqrt again */ |
| av_assert0(coef_sum < INT_MAX); |
| coef_sum = (uint64_t)coef_sum * coef_sum >> 16; |
| |
| if(pict->pict_type == AV_PICTURE_TYPE_I){ |
| s->m.current_picture.mb_var_sum= coef_sum; |
| s->m.current_picture.mc_mb_var_sum= 0; |
| }else{ |
| s->m.current_picture.mc_mb_var_sum= coef_sum; |
| s->m.current_picture.mb_var_sum= 0; |
| } |
| |
| pict->quality= ff_rate_estimate_qscale(&s->m, 1); |
| if (pict->quality < 0) |
| return INT_MIN; |
| s->lambda= pict->quality * 3/2; |
| delta_qlog= qscale2qlog(pict->quality) - s->qlog; |
| s->qlog+= delta_qlog; |
| return delta_qlog; |
| } |
| |
| static void calculate_visual_weight(SnowContext *s, Plane *p){ |
| int width = p->width; |
| int height= p->height; |
| int level, orientation, x, y; |
| |
| for(level=0; level<s->spatial_decomposition_count; level++){ |
| for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
| SubBand *b= &p->band[level][orientation]; |
| IDWTELEM *ibuf= b->ibuf; |
| int64_t error=0; |
| |
| memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height); |
| ibuf[b->width/2 + b->height/2*b->stride]= 256*16; |
| ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count); |
| for(y=0; y<height; y++){ |
| for(x=0; x<width; x++){ |
| int64_t d= s->spatial_idwt_buffer[x + y*width]*16; |
| error += d*d; |
| } |
| } |
| |
| b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5); |
| } |
| } |
| } |
| |
| static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, |
| const AVFrame *pict, int *got_packet) |
| { |
| SnowContext *s = avctx->priv_data; |
| RangeCoder * const c= &s->c; |
| AVFrame *pic; |
| const int width= s->avctx->width; |
| const int height= s->avctx->height; |
| int level, orientation, plane_index, i, y, ret; |
| uint8_t rc_header_bak[sizeof(s->header_state)]; |
| uint8_t rc_block_bak[sizeof(s->block_state)]; |
| |
| if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0) |
| return ret; |
| |
| ff_init_range_encoder(c, pkt->data, pkt->size); |
| ff_build_rac_states(c, (1LL<<32)/20, 256-8); |
| |
| for(i=0; i < s->nb_planes; i++){ |
| int hshift= i ? s->chroma_h_shift : 0; |
| int vshift= i ? s->chroma_v_shift : 0; |
| for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++) |
| memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]], |
| &pict->data[i][y * pict->linesize[i]], |
| AV_CEIL_RSHIFT(width, hshift)); |
| s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i], |
| AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift), |
| EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift, |
| EDGE_TOP | EDGE_BOTTOM); |
| |
| } |
| emms_c(); |
| pic = s->input_picture; |
| pic->pict_type = pict->pict_type; |
| pic->quality = pict->quality; |
| |
| s->m.picture_number= avctx->frame_number; |
| if(avctx->flags&AV_CODEC_FLAG_PASS2){ |
| s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type; |
| s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I; |
| if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) { |
| pic->quality = ff_rate_estimate_qscale(&s->m, 0); |
| if (pic->quality < 0) |
| return -1; |
| } |
| }else{ |
| s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0; |
| s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; |
| } |
| |
| if(s->pass1_rc && avctx->frame_number == 0) |
| pic->quality = 2*FF_QP2LAMBDA; |
| if (pic->quality) { |
| s->qlog = qscale2qlog(pic->quality); |
| s->lambda = pic->quality * 3/2; |
| } |
| if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) { |
| s->qlog= LOSSLESS_QLOG; |
| s->lambda = 0; |
| }//else keep previous frame's qlog until after motion estimation |
| |
| if (s->current_picture->data[0] |
| #if FF_API_EMU_EDGE |
| && !(s->avctx->flags&CODEC_FLAG_EMU_EDGE) |
| #endif |
| ) { |
| int w = s->avctx->width; |
| int h = s->avctx->height; |
| |
| s->mpvencdsp.draw_edges(s->current_picture->data[0], |
| s->current_picture->linesize[0], w , h , |
| EDGE_WIDTH , EDGE_WIDTH , EDGE_TOP | EDGE_BOTTOM); |
| if (s->current_picture->data[2]) { |
| s->mpvencdsp.draw_edges(s->current_picture->data[1], |
| s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift, |
| EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM); |
| s->mpvencdsp.draw_edges(s->current_picture->data[2], |
| s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift, |
| EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM); |
| } |
| } |
| |
| ff_snow_frame_start(s); |
| av_frame_unref(avctx->coded_frame); |
| ret = av_frame_ref(avctx->coded_frame, s->current_picture); |
| if (ret < 0) |
| return ret; |
| |
| s->m.current_picture_ptr= &s->m.current_picture; |
| s->m.current_picture.f = s->current_picture; |
| s->m.current_picture.f->pts = pict->pts; |
| if(pic->pict_type == AV_PICTURE_TYPE_P){ |
| int block_width = (width +15)>>4; |
| int block_height= (height+15)>>4; |
| int stride= s->current_picture->linesize[0]; |
| |
| av_assert0(s->current_picture->data[0]); |
| av_assert0(s->last_picture[0]->data[0]); |
| |
| s->m.avctx= s->avctx; |
| s->m. last_picture.f = s->last_picture[0]; |
| s->m. new_picture.f = s->input_picture; |
| s->m. last_picture_ptr= &s->m. last_picture; |
| s->m.linesize = stride; |
| s->m.uvlinesize= s->current_picture->linesize[1]; |
| s->m.width = width; |
| s->m.height= height; |
| s->m.mb_width = block_width; |
| s->m.mb_height= block_height; |
| s->m.mb_stride= s->m.mb_width+1; |
| s->m.b8_stride= 2*s->m.mb_width+1; |
| s->m.f_code=1; |
| s->m.pict_type = pic->pict_type; |
| #if FF_API_MOTION_EST |
| s->m.me_method= s->avctx->me_method; |
| #endif |
| s->m.motion_est= s->motion_est; |
| s->m.me.scene_change_score=0; |
| s->m.me.dia_size = avctx->dia_size; |
| s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0; |
| s->m.out_format= FMT_H263; |
| s->m.unrestricted_mv= 1; |
| |
| s->m.lambda = s->lambda; |
| s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7); |
| s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT; |
| |
| s->m.mecc= s->mecc; //move |
| s->m.qdsp= s->qdsp; //move |
| s->m.hdsp = s->hdsp; |
| ff_init_me(&s->m); |
| s->hdsp = s->m.hdsp; |
| s->mecc= s->m.mecc; |
| } |
| |
| if(s->pass1_rc){ |
| memcpy(rc_header_bak, s->header_state, sizeof(s->header_state)); |
| memcpy(rc_block_bak, s->block_state, sizeof(s->block_state)); |
| } |
| |
| redo_frame: |
| |
| s->spatial_decomposition_count= 5; |
| |
| while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count)) |
| || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count))) |
| s->spatial_decomposition_count--; |
| |
| if (s->spatial_decomposition_count <= 0) { |
| av_log(avctx, AV_LOG_ERROR, "Resolution too low\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| s->m.pict_type = pic->pict_type; |
| s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0; |
| |
| ff_snow_common_init_after_header(avctx); |
| |
| if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){ |
| for(plane_index=0; plane_index < s->nb_planes; plane_index++){ |
| calculate_visual_weight(s, &s->plane[plane_index]); |
| } |
| } |
| |
| encode_header(s); |
| s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start); |
| encode_blocks(s, 1); |
| s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits; |
| |
| for(plane_index=0; plane_index < s->nb_planes; plane_index++){ |
| Plane *p= &s->plane[plane_index]; |
| int w= p->width; |
| int h= p->height; |
| int x, y; |
| // int bits= put_bits_count(&s->c.pb); |
| |
| if (!s->memc_only) { |
| //FIXME optimize |
| if(pict->data[plane_index]) //FIXME gray hack |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS; |
| } |
| } |
| predict_plane(s, s->spatial_idwt_buffer, plane_index, 0); |
| |
| #if FF_API_PRIVATE_OPT |
| FF_DISABLE_DEPRECATION_WARNINGS |
| if(s->avctx->scenechange_threshold) |
| s->scenechange_threshold = s->avctx->scenechange_threshold; |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| if( plane_index==0 |
| && pic->pict_type == AV_PICTURE_TYPE_P |
| && !(avctx->flags&AV_CODEC_FLAG_PASS2) |
| && s->m.me.scene_change_score > s->scenechange_threshold){ |
| ff_init_range_encoder(c, pkt->data, pkt->size); |
| ff_build_rac_states(c, (1LL<<32)/20, 256-8); |
| pic->pict_type= AV_PICTURE_TYPE_I; |
| s->keyframe=1; |
| s->current_picture->key_frame=1; |
| goto redo_frame; |
| } |
| |
| if(s->qlog == LOSSLESS_QLOG){ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS; |
| } |
| } |
| }else{ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| s->spatial_dwt_buffer[y*w + x]=s->spatial_idwt_buffer[y*w + x]<<ENCODER_EXTRA_BITS; |
| } |
| } |
| } |
| |
| ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); |
| |
| if(s->pass1_rc && plane_index==0){ |
| int delta_qlog = ratecontrol_1pass(s, pic); |
| if (delta_qlog <= INT_MIN) |
| return -1; |
| if(delta_qlog){ |
| //reordering qlog in the bitstream would eliminate this reset |
| ff_init_range_encoder(c, pkt->data, pkt->size); |
| memcpy(s->header_state, rc_header_bak, sizeof(s->header_state)); |
| memcpy(s->block_state, rc_block_bak, sizeof(s->block_state)); |
| encode_header(s); |
| encode_blocks(s, 0); |
| } |
| } |
| |
| for(level=0; level<s->spatial_decomposition_count; level++){ |
| for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
| SubBand *b= &p->band[level][orientation]; |
| |
| quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias); |
| if(orientation==0) |
| decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0); |
| if (!s->no_bitstream) |
| encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation); |
| av_assert0(b->parent==NULL || b->parent->stride == b->stride*2); |
| if(orientation==0) |
| correlate(s, b, b->ibuf, b->stride, 1, 0); |
| } |
| } |
| |
| for(level=0; level<s->spatial_decomposition_count; level++){ |
| for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
| SubBand *b= &p->band[level][orientation]; |
| |
| dequantize(s, b, b->ibuf, b->stride); |
| } |
| } |
| |
| ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count); |
| if(s->qlog == LOSSLESS_QLOG){ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS; |
| } |
| } |
| } |
| predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); |
| }else{ |
| //ME/MC only |
| if(pic->pict_type == AV_PICTURE_TYPE_I){ |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]= |
| pict->data[plane_index][y*pict->linesize[plane_index] + x]; |
| } |
| } |
| }else{ |
| memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h); |
| predict_plane(s, s->spatial_idwt_buffer, plane_index, 1); |
| } |
| } |
| if(s->avctx->flags&AV_CODEC_FLAG_PSNR){ |
| int64_t error= 0; |
| |
| if(pict->data[plane_index]) //FIXME gray hack |
| for(y=0; y<h; y++){ |
| for(x=0; x<w; x++){ |
| int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x]; |
| error += d*d; |
| } |
| } |
| s->avctx->error[plane_index] += error; |
| s->encoding_error[plane_index] = error; |
| } |
| |
| } |
| |
| update_last_header_values(s); |
| |
| ff_snow_release_buffer(avctx); |
| |
| s->current_picture->coded_picture_number = avctx->frame_number; |
| s->current_picture->pict_type = pic->pict_type; |
| s->current_picture->quality = pic->quality; |
| s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start); |
| s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits; |
| s->m.current_picture.f->display_picture_number = |
| s->m.current_picture.f->coded_picture_number = avctx->frame_number; |
| s->m.current_picture.f->quality = pic->quality; |
| s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start); |
| if(s->pass1_rc) |
| if (ff_rate_estimate_qscale(&s->m, 0) < 0) |
| return -1; |
| if(avctx->flags&AV_CODEC_FLAG_PASS1) |
| ff_write_pass1_stats(&s->m); |
| s->m.last_pict_type = s->m.pict_type; |
| avctx->frame_bits = s->m.frame_bits; |
| avctx->mv_bits = s->m.mv_bits; |
| avctx->misc_bits = s->m.misc_bits; |
| avctx->p_tex_bits = s->m.p_tex_bits; |
| |
| emms_c(); |
| |
| ff_side_data_set_encoder_stats(pkt, s->current_picture->quality, |
| s->encoding_error, |
| (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0, |
| s->current_picture->pict_type); |
| |
| #if FF_API_ERROR_FRAME |
| FF_DISABLE_DEPRECATION_WARNINGS |
| memcpy(s->current_picture->error, s->encoding_error, sizeof(s->encoding_error)); |
| FF_ENABLE_DEPRECATION_WARNINGS |
| #endif |
| |
| pkt->size = ff_rac_terminate(c); |
| if (s->current_picture->key_frame) |
| pkt->flags |= AV_PKT_FLAG_KEY; |
| *got_packet = 1; |
| |
| return 0; |
| } |
| |
| static av_cold int encode_end(AVCodecContext *avctx) |
| { |
| SnowContext *s = avctx->priv_data; |
| |
| ff_snow_common_end(s); |
| ff_rate_control_uninit(&s->m); |
| av_frame_free(&s->input_picture); |
| av_freep(&avctx->stats_out); |
| |
| return 0; |
| } |
| |
| #define OFFSET(x) offsetof(SnowContext, x) |
| #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM |
| static const AVOption options[] = { |
| FF_MPV_COMMON_OPTS |
| { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, FF_MPV_OPT_FLAGS, "motion_est" }, |
| { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
| { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, |
| { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE }, |
| { "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE }, |
| { "sc_threshold", "Scene change threshold", OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE }, |
| { "pred", "Spatial decomposition type", OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" }, |
| { "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" }, |
| { "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" }, |
| { NULL }, |
| }; |
| |
| static const AVClass snowenc_class = { |
| .class_name = "snow encoder", |
| .item_name = av_default_item_name, |
| .option = options, |
| .version = LIBAVUTIL_VERSION_INT, |
| }; |
| |
| AVCodec ff_snow_encoder = { |
| .name = "snow", |
| .long_name = NULL_IF_CONFIG_SMALL("Snow"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_SNOW, |
| .priv_data_size = sizeof(SnowContext), |
| .init = encode_init, |
| .encode2 = encode_frame, |
| .close = encode_end, |
| .pix_fmts = (const enum AVPixelFormat[]){ |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV444P, |
| AV_PIX_FMT_GRAY8, |
| AV_PIX_FMT_NONE |
| }, |
| .priv_class = &snowenc_class, |
| .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | |
| FF_CODEC_CAP_INIT_CLEANUP, |
| }; |
| |
| |
| #ifdef TEST |
| #undef malloc |
| #undef free |
| #undef printf |
| |
| #include "libavutil/lfg.h" |
| #include "libavutil/mathematics.h" |
| |
| int main(void){ |
| #define width 256 |
| #define height 256 |
| int buffer[2][width*height]; |
| SnowContext s; |
| int i; |
| AVLFG prng; |
| s.spatial_decomposition_count=6; |
| s.spatial_decomposition_type=1; |
| |
| s.temp_dwt_buffer = av_mallocz_array(width, sizeof(DWTELEM)); |
| s.temp_idwt_buffer = av_mallocz_array(width, sizeof(IDWTELEM)); |
| |
| if (!s.temp_dwt_buffer || !s.temp_idwt_buffer) { |
| fprintf(stderr, "Failed to allocate memory\n"); |
| return 1; |
| } |
| |
| av_lfg_init(&prng, 1); |
| |
| printf("testing 5/3 DWT\n"); |
| for(i=0; i<width*height; i++) |
| buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; |
| |
| ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| |
| for(i=0; i<width*height; i++) |
| if(buffer[0][i]!= buffer[1][i]) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); |
| |
| printf("testing 9/7 DWT\n"); |
| s.spatial_decomposition_type=0; |
| for(i=0; i<width*height; i++) |
| buffer[0][i] = buffer[1][i] = av_lfg_get(&prng) % 54321 - 12345; |
| |
| ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| |
| for(i=0; i<width*height; i++) |
| if(FFABS(buffer[0][i] - buffer[1][i])>20) printf("fsck: %6d %12d %7d\n",i, buffer[0][i], buffer[1][i]); |
| |
| { |
| int level, orientation, x, y; |
| int64_t errors[8][4]; |
| int64_t g=0; |
| |
| memset(errors, 0, sizeof(errors)); |
| s.spatial_decomposition_count=3; |
| s.spatial_decomposition_type=0; |
| for(level=0; level<s.spatial_decomposition_count; level++){ |
| for(orientation=level ? 1 : 0; orientation<4; orientation++){ |
| int w= width >> (s.spatial_decomposition_count-level); |
| int h= height >> (s.spatial_decomposition_count-level); |
| int stride= width << (s.spatial_decomposition_count-level); |
| DWTELEM *buf= buffer[0]; |
| int64_t error=0; |
| |
| if(orientation&1) buf+=w; |
| if(orientation>1) buf+=stride>>1; |
| |
| memset(buffer[0], 0, sizeof(int)*width*height); |
| buf[w/2 + h/2*stride]= 256*256; |
| ff_spatial_idwt((IDWTELEM*)buffer[0], s.temp_idwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| for(y=0; y<height; y++){ |
| for(x=0; x<width; x++){ |
| int64_t d= buffer[0][x + y*width]; |
| error += d*d; |
| if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9 && level==2) printf("%8"PRId64" ", d); |
| } |
| if(FFABS(height/2-y)<9 && level==2) printf("\n"); |
| } |
| error= (int)(sqrt(error)+0.5); |
| errors[level][orientation]= error; |
| if(g) g=av_gcd(g, error); |
| else g= error; |
| } |
| } |
| printf("static int const visual_weight[][4]={\n"); |
| for(level=0; level<s.spatial_decomposition_count; level++){ |
| printf(" {"); |
| for(orientation=0; orientation<4; orientation++){ |
| printf("%8"PRId64",", errors[level][orientation]/g); |
| } |
| printf("},\n"); |
| } |
| printf("};\n"); |
| { |
| int level=2; |
| int w= width >> (s.spatial_decomposition_count-level); |
| //int h= height >> (s.spatial_decomposition_count-level); |
| int stride= width << (s.spatial_decomposition_count-level); |
| DWTELEM *buf= buffer[0]; |
| int64_t error=0; |
| |
| buf+=w; |
| buf+=stride>>1; |
| |
| memset(buffer[0], 0, sizeof(int)*width*height); |
| for(y=0; y<height; y++){ |
| for(x=0; x<width; x++){ |
| int tab[4]={0,2,3,1}; |
| buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)]; |
| } |
| } |
| ff_spatial_dwt(buffer[0], s.temp_dwt_buffer, width, height, width, s.spatial_decomposition_type, s.spatial_decomposition_count); |
| for(y=0; y<height; y++){ |
| for(x=0; x<width; x++){ |
| int64_t d= buffer[0][x + y*width]; |
| error += d*d; |
| if(FFABS(width/2-x)<9 && FFABS(height/2-y)<9) printf("%8"PRId64" ", d); |
| } |
| if(FFABS(height/2-y)<9) printf("\n"); |
| } |
| } |
| |
| } |
| return 0; |
| } |
| #endif /* TEST */ |