| /* |
| * Simple free lossless/lossy audio codec |
| * Copyright (c) 2004 Alex Beregszaszi |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "golomb.h" |
| #include "internal.h" |
| #include "rangecoder.h" |
| |
| |
| /** |
| * @file |
| * Simple free lossless/lossy audio codec |
| * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk) |
| * Written and designed by Alex Beregszaszi |
| * |
| * TODO: |
| * - CABAC put/get_symbol |
| * - independent quantizer for channels |
| * - >2 channels support |
| * - more decorrelation types |
| * - more tap_quant tests |
| * - selectable intlist writers/readers (bonk-style, golomb, cabac) |
| */ |
| |
| #define MAX_CHANNELS 2 |
| |
| #define MID_SIDE 0 |
| #define LEFT_SIDE 1 |
| #define RIGHT_SIDE 2 |
| |
| typedef struct SonicContext { |
| int version; |
| int minor_version; |
| int lossless, decorrelation; |
| |
| int num_taps, downsampling; |
| double quantization; |
| |
| int channels, samplerate, block_align, frame_size; |
| |
| int *tap_quant; |
| int *int_samples; |
| int *coded_samples[MAX_CHANNELS]; |
| |
| // for encoding |
| int *tail; |
| int tail_size; |
| int *window; |
| int window_size; |
| |
| // for decoding |
| int *predictor_k; |
| int *predictor_state[MAX_CHANNELS]; |
| } SonicContext; |
| |
| #define LATTICE_SHIFT 10 |
| #define SAMPLE_SHIFT 4 |
| #define LATTICE_FACTOR (1 << LATTICE_SHIFT) |
| #define SAMPLE_FACTOR (1 << SAMPLE_SHIFT) |
| |
| #define BASE_QUANT 0.6 |
| #define RATE_VARIATION 3.0 |
| |
| static inline int shift(int a,int b) |
| { |
| return (a+(1<<(b-1))) >> b; |
| } |
| |
| static inline int shift_down(int a,int b) |
| { |
| return (a>>b)+(a<0); |
| } |
| |
| static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){ |
| int i; |
| |
| #define put_rac(C,S,B) \ |
| do{\ |
| if(rc_stat){\ |
| rc_stat[*(S)][B]++;\ |
| rc_stat2[(S)-state][B]++;\ |
| }\ |
| put_rac(C,S,B);\ |
| }while(0) |
| |
| if(v){ |
| const int a= FFABS(v); |
| const int e= av_log2(a); |
| put_rac(c, state+0, 0); |
| if(e<=9){ |
| for(i=0; i<e; i++){ |
| put_rac(c, state+1+i, 1); //1..10 |
| } |
| put_rac(c, state+1+i, 0); |
| |
| for(i=e-1; i>=0; i--){ |
| put_rac(c, state+22+i, (a>>i)&1); //22..31 |
| } |
| |
| if(is_signed) |
| put_rac(c, state+11 + e, v < 0); //11..21 |
| }else{ |
| for(i=0; i<e; i++){ |
| put_rac(c, state+1+FFMIN(i,9), 1); //1..10 |
| } |
| put_rac(c, state+1+9, 0); |
| |
| for(i=e-1; i>=0; i--){ |
| put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31 |
| } |
| |
| if(is_signed) |
| put_rac(c, state+11 + 10, v < 0); //11..21 |
| } |
| }else{ |
| put_rac(c, state+0, 1); |
| } |
| #undef put_rac |
| } |
| |
| static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){ |
| if(get_rac(c, state+0)) |
| return 0; |
| else{ |
| int i, e, a; |
| e= 0; |
| while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10 |
| e++; |
| } |
| |
| a= 1; |
| for(i=e-1; i>=0; i--){ |
| a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31 |
| } |
| |
| e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21 |
| return (a^e)-e; |
| } |
| } |
| |
| #if 1 |
| static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part) |
| { |
| int i; |
| |
| for (i = 0; i < entries; i++) |
| put_symbol(c, state, buf[i], 1, NULL, NULL); |
| |
| return 1; |
| } |
| |
| static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part) |
| { |
| int i; |
| |
| for (i = 0; i < entries; i++) |
| buf[i] = get_symbol(c, state, 1); |
| |
| return 1; |
| } |
| #elif 1 |
| static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part) |
| { |
| int i; |
| |
| for (i = 0; i < entries; i++) |
| set_se_golomb(pb, buf[i]); |
| |
| return 1; |
| } |
| |
| static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part) |
| { |
| int i; |
| |
| for (i = 0; i < entries; i++) |
| buf[i] = get_se_golomb(gb); |
| |
| return 1; |
| } |
| |
| #else |
| |
| #define ADAPT_LEVEL 8 |
| |
| static int bits_to_store(uint64_t x) |
| { |
| int res = 0; |
| |
| while(x) |
| { |
| res++; |
| x >>= 1; |
| } |
| return res; |
| } |
| |
| static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max) |
| { |
| int i, bits; |
| |
| if (!max) |
| return; |
| |
| bits = bits_to_store(max); |
| |
| for (i = 0; i < bits-1; i++) |
| put_bits(pb, 1, value & (1 << i)); |
| |
| if ( (value | (1 << (bits-1))) <= max) |
| put_bits(pb, 1, value & (1 << (bits-1))); |
| } |
| |
| static unsigned int read_uint_max(GetBitContext *gb, int max) |
| { |
| int i, bits, value = 0; |
| |
| if (!max) |
| return 0; |
| |
| bits = bits_to_store(max); |
| |
| for (i = 0; i < bits-1; i++) |
| if (get_bits1(gb)) |
| value += 1 << i; |
| |
| if ( (value | (1<<(bits-1))) <= max) |
| if (get_bits1(gb)) |
| value += 1 << (bits-1); |
| |
| return value; |
| } |
| |
| static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part) |
| { |
| int i, j, x = 0, low_bits = 0, max = 0; |
| int step = 256, pos = 0, dominant = 0, any = 0; |
| int *copy, *bits; |
| |
| copy = av_calloc(entries, sizeof(*copy)); |
| if (!copy) |
| return AVERROR(ENOMEM); |
| |
| if (base_2_part) |
| { |
| int energy = 0; |
| |
| for (i = 0; i < entries; i++) |
| energy += abs(buf[i]); |
| |
| low_bits = bits_to_store(energy / (entries * 2)); |
| if (low_bits > 15) |
| low_bits = 15; |
| |
| put_bits(pb, 4, low_bits); |
| } |
| |
| for (i = 0; i < entries; i++) |
| { |
| put_bits(pb, low_bits, abs(buf[i])); |
| copy[i] = abs(buf[i]) >> low_bits; |
| if (copy[i] > max) |
| max = abs(copy[i]); |
| } |
| |
| bits = av_calloc(entries*max, sizeof(*bits)); |
| if (!bits) |
| { |
| av_free(copy); |
| return AVERROR(ENOMEM); |
| } |
| |
| for (i = 0; i <= max; i++) |
| { |
| for (j = 0; j < entries; j++) |
| if (copy[j] >= i) |
| bits[x++] = copy[j] > i; |
| } |
| |
| // store bitstream |
| while (pos < x) |
| { |
| int steplet = step >> 8; |
| |
| if (pos + steplet > x) |
| steplet = x - pos; |
| |
| for (i = 0; i < steplet; i++) |
| if (bits[i+pos] != dominant) |
| any = 1; |
| |
| put_bits(pb, 1, any); |
| |
| if (!any) |
| { |
| pos += steplet; |
| step += step / ADAPT_LEVEL; |
| } |
| else |
| { |
| int interloper = 0; |
| |
| while (((pos + interloper) < x) && (bits[pos + interloper] == dominant)) |
| interloper++; |
| |
| // note change |
| write_uint_max(pb, interloper, (step >> 8) - 1); |
| |
| pos += interloper + 1; |
| step -= step / ADAPT_LEVEL; |
| } |
| |
| if (step < 256) |
| { |
| step = 65536 / step; |
| dominant = !dominant; |
| } |
| } |
| |
| // store signs |
| for (i = 0; i < entries; i++) |
| if (buf[i]) |
| put_bits(pb, 1, buf[i] < 0); |
| |
| av_free(bits); |
| av_free(copy); |
| |
| return 0; |
| } |
| |
| static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part) |
| { |
| int i, low_bits = 0, x = 0; |
| int n_zeros = 0, step = 256, dominant = 0; |
| int pos = 0, level = 0; |
| int *bits = av_calloc(entries, sizeof(*bits)); |
| |
| if (!bits) |
| return AVERROR(ENOMEM); |
| |
| if (base_2_part) |
| { |
| low_bits = get_bits(gb, 4); |
| |
| if (low_bits) |
| for (i = 0; i < entries; i++) |
| buf[i] = get_bits(gb, low_bits); |
| } |
| |
| // av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits); |
| |
| while (n_zeros < entries) |
| { |
| int steplet = step >> 8; |
| |
| if (!get_bits1(gb)) |
| { |
| for (i = 0; i < steplet; i++) |
| bits[x++] = dominant; |
| |
| if (!dominant) |
| n_zeros += steplet; |
| |
| step += step / ADAPT_LEVEL; |
| } |
| else |
| { |
| int actual_run = read_uint_max(gb, steplet-1); |
| |
| // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run); |
| |
| for (i = 0; i < actual_run; i++) |
| bits[x++] = dominant; |
| |
| bits[x++] = !dominant; |
| |
| if (!dominant) |
| n_zeros += actual_run; |
| else |
| n_zeros++; |
| |
| step -= step / ADAPT_LEVEL; |
| } |
| |
| if (step < 256) |
| { |
| step = 65536 / step; |
| dominant = !dominant; |
| } |
| } |
| |
| // reconstruct unsigned values |
| n_zeros = 0; |
| for (i = 0; n_zeros < entries; i++) |
| { |
| while(1) |
| { |
| if (pos >= entries) |
| { |
| pos = 0; |
| level += 1 << low_bits; |
| } |
| |
| if (buf[pos] >= level) |
| break; |
| |
| pos++; |
| } |
| |
| if (bits[i]) |
| buf[pos] += 1 << low_bits; |
| else |
| n_zeros++; |
| |
| pos++; |
| } |
| av_free(bits); |
| |
| // read signs |
| for (i = 0; i < entries; i++) |
| if (buf[i] && get_bits1(gb)) |
| buf[i] = -buf[i]; |
| |
| // av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos); |
| |
| return 0; |
| } |
| #endif |
| |
| static void predictor_init_state(int *k, int *state, int order) |
| { |
| int i; |
| |
| for (i = order-2; i >= 0; i--) |
| { |
| int j, p, x = state[i]; |
| |
| for (j = 0, p = i+1; p < order; j++,p++) |
| { |
| int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT); |
| state[p] += shift_down(k[j]*x, LATTICE_SHIFT); |
| x = tmp; |
| } |
| } |
| } |
| |
| static int predictor_calc_error(int *k, int *state, int order, int error) |
| { |
| int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT); |
| |
| #if 1 |
| int *k_ptr = &(k[order-2]), |
| *state_ptr = &(state[order-2]); |
| for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--) |
| { |
| int k_value = *k_ptr, state_value = *state_ptr; |
| x -= shift_down(k_value * state_value, LATTICE_SHIFT); |
| state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT); |
| } |
| #else |
| for (i = order-2; i >= 0; i--) |
| { |
| x -= shift_down(k[i] * state[i], LATTICE_SHIFT); |
| state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT); |
| } |
| #endif |
| |
| // don't drift too far, to avoid overflows |
| if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16); |
| if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16); |
| |
| state[0] = x; |
| |
| return x; |
| } |
| |
| #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER |
| // Heavily modified Levinson-Durbin algorithm which |
| // copes better with quantization, and calculates the |
| // actual whitened result as it goes. |
| |
| static int modified_levinson_durbin(int *window, int window_entries, |
| int *out, int out_entries, int channels, int *tap_quant) |
| { |
| int i; |
| int *state = av_calloc(window_entries, sizeof(*state)); |
| |
| if (!state) |
| return AVERROR(ENOMEM); |
| |
| memcpy(state, window, 4* window_entries); |
| |
| for (i = 0; i < out_entries; i++) |
| { |
| int step = (i+1)*channels, k, j; |
| double xx = 0.0, xy = 0.0; |
| #if 1 |
| int *x_ptr = &(window[step]); |
| int *state_ptr = &(state[0]); |
| j = window_entries - step; |
| for (;j>0;j--,x_ptr++,state_ptr++) |
| { |
| double x_value = *x_ptr; |
| double state_value = *state_ptr; |
| xx += state_value*state_value; |
| xy += x_value*state_value; |
| } |
| #else |
| for (j = 0; j <= (window_entries - step); j++); |
| { |
| double stepval = window[step+j]; |
| double stateval = window[j]; |
| // xx += (double)window[j]*(double)window[j]; |
| // xy += (double)window[step+j]*(double)window[j]; |
| xx += stateval*stateval; |
| xy += stepval*stateval; |
| } |
| #endif |
| if (xx == 0.0) |
| k = 0; |
| else |
| k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5)); |
| |
| if (k > (LATTICE_FACTOR/tap_quant[i])) |
| k = LATTICE_FACTOR/tap_quant[i]; |
| if (-k > (LATTICE_FACTOR/tap_quant[i])) |
| k = -(LATTICE_FACTOR/tap_quant[i]); |
| |
| out[i] = k; |
| k *= tap_quant[i]; |
| |
| #if 1 |
| x_ptr = &(window[step]); |
| state_ptr = &(state[0]); |
| j = window_entries - step; |
| for (;j>0;j--,x_ptr++,state_ptr++) |
| { |
| int x_value = *x_ptr; |
| int state_value = *state_ptr; |
| *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT); |
| *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT); |
| } |
| #else |
| for (j=0; j <= (window_entries - step); j++) |
| { |
| int stepval = window[step+j]; |
| int stateval=state[j]; |
| window[step+j] += shift_down(k * stateval, LATTICE_SHIFT); |
| state[j] += shift_down(k * stepval, LATTICE_SHIFT); |
| } |
| #endif |
| } |
| |
| av_free(state); |
| return 0; |
| } |
| |
| static inline int code_samplerate(int samplerate) |
| { |
| switch (samplerate) |
| { |
| case 44100: return 0; |
| case 22050: return 1; |
| case 11025: return 2; |
| case 96000: return 3; |
| case 48000: return 4; |
| case 32000: return 5; |
| case 24000: return 6; |
| case 16000: return 7; |
| case 8000: return 8; |
| } |
| return AVERROR(EINVAL); |
| } |
| |
| static av_cold int sonic_encode_init(AVCodecContext *avctx) |
| { |
| SonicContext *s = avctx->priv_data; |
| PutBitContext pb; |
| int i; |
| |
| s->version = 2; |
| |
| if (avctx->channels > MAX_CHANNELS) |
| { |
| av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n"); |
| return AVERROR(EINVAL); /* only stereo or mono for now */ |
| } |
| |
| if (avctx->channels == 2) |
| s->decorrelation = MID_SIDE; |
| else |
| s->decorrelation = 3; |
| |
| if (avctx->codec->id == AV_CODEC_ID_SONIC_LS) |
| { |
| s->lossless = 1; |
| s->num_taps = 32; |
| s->downsampling = 1; |
| s->quantization = 0.0; |
| } |
| else |
| { |
| s->num_taps = 128; |
| s->downsampling = 2; |
| s->quantization = 1.0; |
| } |
| |
| // max tap 2048 |
| if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| // generate taps |
| s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant)); |
| if (!s->tap_quant) |
| return AVERROR(ENOMEM); |
| |
| for (i = 0; i < s->num_taps; i++) |
| s->tap_quant[i] = ff_sqrt(i+1); |
| |
| s->channels = avctx->channels; |
| s->samplerate = avctx->sample_rate; |
| |
| s->block_align = 2048LL*s->samplerate/(44100*s->downsampling); |
| s->frame_size = s->channels*s->block_align*s->downsampling; |
| |
| s->tail_size = s->num_taps*s->channels; |
| s->tail = av_calloc(s->tail_size, sizeof(*s->tail)); |
| if (!s->tail) |
| return AVERROR(ENOMEM); |
| |
| s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) ); |
| if (!s->predictor_k) |
| return AVERROR(ENOMEM); |
| |
| for (i = 0; i < s->channels; i++) |
| { |
| s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples)); |
| if (!s->coded_samples[i]) |
| return AVERROR(ENOMEM); |
| } |
| |
| s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples)); |
| |
| s->window_size = ((2*s->tail_size)+s->frame_size); |
| s->window = av_calloc(s->window_size, sizeof(*s->window)); |
| if (!s->window || !s->int_samples) |
| return AVERROR(ENOMEM); |
| |
| avctx->extradata = av_mallocz(16); |
| if (!avctx->extradata) |
| return AVERROR(ENOMEM); |
| init_put_bits(&pb, avctx->extradata, 16*8); |
| |
| put_bits(&pb, 2, s->version); // version |
| if (s->version >= 1) |
| { |
| if (s->version >= 2) { |
| put_bits(&pb, 8, s->version); |
| put_bits(&pb, 8, s->minor_version); |
| } |
| put_bits(&pb, 2, s->channels); |
| put_bits(&pb, 4, code_samplerate(s->samplerate)); |
| } |
| put_bits(&pb, 1, s->lossless); |
| if (!s->lossless) |
| put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision |
| put_bits(&pb, 2, s->decorrelation); |
| put_bits(&pb, 2, s->downsampling); |
| put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024 |
| put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table |
| |
| flush_put_bits(&pb); |
| avctx->extradata_size = put_bits_count(&pb)/8; |
| |
| av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n", |
| s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling); |
| |
| avctx->frame_size = s->block_align*s->downsampling; |
| |
| return 0; |
| } |
| |
| static av_cold int sonic_encode_close(AVCodecContext *avctx) |
| { |
| SonicContext *s = avctx->priv_data; |
| int i; |
| |
| for (i = 0; i < s->channels; i++) |
| av_freep(&s->coded_samples[i]); |
| |
| av_freep(&s->predictor_k); |
| av_freep(&s->tail); |
| av_freep(&s->tap_quant); |
| av_freep(&s->window); |
| av_freep(&s->int_samples); |
| |
| return 0; |
| } |
| |
| static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
| const AVFrame *frame, int *got_packet_ptr) |
| { |
| SonicContext *s = avctx->priv_data; |
| RangeCoder c; |
| int i, j, ch, quant = 0, x = 0; |
| int ret; |
| const short *samples = (const int16_t*)frame->data[0]; |
| uint8_t state[32]; |
| |
| if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size * 5 + 1000, 0)) < 0) |
| return ret; |
| |
| ff_init_range_encoder(&c, avpkt->data, avpkt->size); |
| ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8); |
| memset(state, 128, sizeof(state)); |
| |
| // short -> internal |
| for (i = 0; i < s->frame_size; i++) |
| s->int_samples[i] = samples[i]; |
| |
| if (!s->lossless) |
| for (i = 0; i < s->frame_size; i++) |
| s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT; |
| |
| switch(s->decorrelation) |
| { |
| case MID_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| { |
| s->int_samples[i] += s->int_samples[i+1]; |
| s->int_samples[i+1] -= shift(s->int_samples[i], 1); |
| } |
| break; |
| case LEFT_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| s->int_samples[i+1] -= s->int_samples[i]; |
| break; |
| case RIGHT_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| s->int_samples[i] -= s->int_samples[i+1]; |
| break; |
| } |
| |
| memset(s->window, 0, 4* s->window_size); |
| |
| for (i = 0; i < s->tail_size; i++) |
| s->window[x++] = s->tail[i]; |
| |
| for (i = 0; i < s->frame_size; i++) |
| s->window[x++] = s->int_samples[i]; |
| |
| for (i = 0; i < s->tail_size; i++) |
| s->window[x++] = 0; |
| |
| for (i = 0; i < s->tail_size; i++) |
| s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i]; |
| |
| // generate taps |
| ret = modified_levinson_durbin(s->window, s->window_size, |
| s->predictor_k, s->num_taps, s->channels, s->tap_quant); |
| if (ret < 0) |
| return ret; |
| |
| if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0) |
| return ret; |
| |
| for (ch = 0; ch < s->channels; ch++) |
| { |
| x = s->tail_size+ch; |
| for (i = 0; i < s->block_align; i++) |
| { |
| int sum = 0; |
| for (j = 0; j < s->downsampling; j++, x += s->channels) |
| sum += s->window[x]; |
| s->coded_samples[ch][i] = sum; |
| } |
| } |
| |
| // simple rate control code |
| if (!s->lossless) |
| { |
| double energy1 = 0.0, energy2 = 0.0; |
| for (ch = 0; ch < s->channels; ch++) |
| { |
| for (i = 0; i < s->block_align; i++) |
| { |
| double sample = s->coded_samples[ch][i]; |
| energy2 += sample*sample; |
| energy1 += fabs(sample); |
| } |
| } |
| |
| energy2 = sqrt(energy2/(s->channels*s->block_align)); |
| energy1 = M_SQRT2*energy1/(s->channels*s->block_align); |
| |
| // increase bitrate when samples are like a gaussian distribution |
| // reduce bitrate when samples are like a two-tailed exponential distribution |
| |
| if (energy2 > energy1) |
| energy2 += (energy2-energy1)*RATE_VARIATION; |
| |
| quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR); |
| // av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2); |
| |
| quant = av_clip(quant, 1, 65534); |
| |
| put_symbol(&c, state, quant, 0, NULL, NULL); |
| |
| quant *= SAMPLE_FACTOR; |
| } |
| |
| // write out coded samples |
| for (ch = 0; ch < s->channels; ch++) |
| { |
| if (!s->lossless) |
| for (i = 0; i < s->block_align; i++) |
| s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant); |
| |
| if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0) |
| return ret; |
| } |
| |
| // av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8); |
| |
| avpkt->size = ff_rac_terminate(&c); |
| *got_packet_ptr = 1; |
| return 0; |
| |
| } |
| #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */ |
| |
| #if CONFIG_SONIC_DECODER |
| static const int samplerate_table[] = |
| { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 }; |
| |
| static av_cold int sonic_decode_init(AVCodecContext *avctx) |
| { |
| SonicContext *s = avctx->priv_data; |
| GetBitContext gb; |
| int i; |
| int ret; |
| |
| s->channels = avctx->channels; |
| s->samplerate = avctx->sample_rate; |
| |
| if (!avctx->extradata) |
| { |
| av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size); |
| if (ret < 0) |
| return ret; |
| |
| s->version = get_bits(&gb, 2); |
| if (s->version >= 2) { |
| s->version = get_bits(&gb, 8); |
| s->minor_version = get_bits(&gb, 8); |
| } |
| if (s->version != 2) |
| { |
| av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->version >= 1) |
| { |
| int sample_rate_index; |
| s->channels = get_bits(&gb, 2); |
| sample_rate_index = get_bits(&gb, 4); |
| if (sample_rate_index >= FF_ARRAY_ELEMS(samplerate_table)) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid sample_rate_index %d\n", sample_rate_index); |
| return AVERROR_INVALIDDATA; |
| } |
| s->samplerate = samplerate_table[sample_rate_index]; |
| av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n", |
| s->channels, s->samplerate); |
| } |
| |
| if (s->channels > MAX_CHANNELS || s->channels < 1) |
| { |
| av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| avctx->channels = s->channels; |
| |
| s->lossless = get_bits1(&gb); |
| if (!s->lossless) |
| skip_bits(&gb, 3); // XXX FIXME |
| s->decorrelation = get_bits(&gb, 2); |
| if (s->decorrelation != 3 && s->channels != 2) { |
| av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->downsampling = get_bits(&gb, 2); |
| if (!s->downsampling) { |
| av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| s->num_taps = (get_bits(&gb, 5)+1)<<5; |
| if (get_bits1(&gb)) // XXX FIXME |
| av_log(avctx, AV_LOG_INFO, "Custom quant table\n"); |
| |
| s->block_align = 2048LL*s->samplerate/(44100*s->downsampling); |
| s->frame_size = s->channels*s->block_align*s->downsampling; |
| // avctx->frame_size = s->block_align; |
| |
| if (s->num_taps * s->channels > s->frame_size) { |
| av_log(avctx, AV_LOG_ERROR, |
| "number of taps times channels (%d * %d) larger than frame size %d\n", |
| s->num_taps, s->channels, s->frame_size); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n", |
| s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling); |
| |
| // generate taps |
| s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant)); |
| if (!s->tap_quant) |
| return AVERROR(ENOMEM); |
| |
| for (i = 0; i < s->num_taps; i++) |
| s->tap_quant[i] = ff_sqrt(i+1); |
| |
| s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k)); |
| |
| for (i = 0; i < s->channels; i++) |
| { |
| s->predictor_state[i] = av_calloc(s->num_taps, sizeof(**s->predictor_state)); |
| if (!s->predictor_state[i]) |
| return AVERROR(ENOMEM); |
| } |
| |
| for (i = 0; i < s->channels; i++) |
| { |
| s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples)); |
| if (!s->coded_samples[i]) |
| return AVERROR(ENOMEM); |
| } |
| s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples)); |
| if (!s->int_samples) |
| return AVERROR(ENOMEM); |
| |
| avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
| return 0; |
| } |
| |
| static av_cold int sonic_decode_close(AVCodecContext *avctx) |
| { |
| SonicContext *s = avctx->priv_data; |
| int i; |
| |
| av_freep(&s->int_samples); |
| av_freep(&s->tap_quant); |
| av_freep(&s->predictor_k); |
| |
| for (i = 0; i < s->channels; i++) |
| { |
| av_freep(&s->predictor_state[i]); |
| av_freep(&s->coded_samples[i]); |
| } |
| |
| return 0; |
| } |
| |
| static int sonic_decode_frame(AVCodecContext *avctx, |
| void *data, int *got_frame_ptr, |
| AVPacket *avpkt) |
| { |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| SonicContext *s = avctx->priv_data; |
| RangeCoder c; |
| uint8_t state[32]; |
| int i, quant, ch, j, ret; |
| int16_t *samples; |
| AVFrame *frame = data; |
| |
| if (buf_size == 0) return 0; |
| |
| frame->nb_samples = s->frame_size / avctx->channels; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
| return ret; |
| samples = (int16_t *)frame->data[0]; |
| |
| // av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size); |
| |
| memset(state, 128, sizeof(state)); |
| ff_init_range_decoder(&c, buf, buf_size); |
| ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8); |
| |
| intlist_read(&c, state, s->predictor_k, s->num_taps, 0); |
| |
| // dequantize |
| for (i = 0; i < s->num_taps; i++) |
| s->predictor_k[i] *= s->tap_quant[i]; |
| |
| if (s->lossless) |
| quant = 1; |
| else |
| quant = get_symbol(&c, state, 0) * SAMPLE_FACTOR; |
| |
| // av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant); |
| |
| for (ch = 0; ch < s->channels; ch++) |
| { |
| int x = ch; |
| |
| predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps); |
| |
| intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1); |
| |
| for (i = 0; i < s->block_align; i++) |
| { |
| for (j = 0; j < s->downsampling - 1; j++) |
| { |
| s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0); |
| x += s->channels; |
| } |
| |
| s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant); |
| x += s->channels; |
| } |
| |
| for (i = 0; i < s->num_taps; i++) |
| s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels]; |
| } |
| |
| switch(s->decorrelation) |
| { |
| case MID_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| { |
| s->int_samples[i+1] += shift(s->int_samples[i], 1); |
| s->int_samples[i] -= s->int_samples[i+1]; |
| } |
| break; |
| case LEFT_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| s->int_samples[i+1] += s->int_samples[i]; |
| break; |
| case RIGHT_SIDE: |
| for (i = 0; i < s->frame_size; i += s->channels) |
| s->int_samples[i] += s->int_samples[i+1]; |
| break; |
| } |
| |
| if (!s->lossless) |
| for (i = 0; i < s->frame_size; i++) |
| s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT); |
| |
| // internal -> short |
| for (i = 0; i < s->frame_size; i++) |
| samples[i] = av_clip_int16(s->int_samples[i]); |
| |
| *got_frame_ptr = 1; |
| |
| return buf_size; |
| } |
| |
| AVCodec ff_sonic_decoder = { |
| .name = "sonic", |
| .long_name = NULL_IF_CONFIG_SMALL("Sonic"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_SONIC, |
| .priv_data_size = sizeof(SonicContext), |
| .init = sonic_decode_init, |
| .close = sonic_decode_close, |
| .decode = sonic_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL, |
| }; |
| #endif /* CONFIG_SONIC_DECODER */ |
| |
| #if CONFIG_SONIC_ENCODER |
| AVCodec ff_sonic_encoder = { |
| .name = "sonic", |
| .long_name = NULL_IF_CONFIG_SMALL("Sonic"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_SONIC, |
| .priv_data_size = sizeof(SonicContext), |
| .init = sonic_encode_init, |
| .encode2 = sonic_encode_frame, |
| .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }, |
| .capabilities = AV_CODEC_CAP_EXPERIMENTAL, |
| .close = sonic_encode_close, |
| }; |
| #endif |
| |
| #if CONFIG_SONIC_LS_ENCODER |
| AVCodec ff_sonic_ls_encoder = { |
| .name = "sonicls", |
| .long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_SONIC_LS, |
| .priv_data_size = sizeof(SonicContext), |
| .init = sonic_encode_init, |
| .encode2 = sonic_encode_frame, |
| .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE }, |
| .capabilities = AV_CODEC_CAP_EXPERIMENTAL, |
| .close = sonic_encode_close, |
| }; |
| #endif |