blob: 255ba1da70a8da1f616d95bdb116188bb2c7529f [file] [log] [blame]
/*
* VC-1 and WMV3 decoder
* Copyright (c) 2011 Mashiat Sarker Shakkhar
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 block decoding routines
*/
#include "avcodec.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "msmpeg4data.h"
#include "unary.h"
#include "vc1.h"
#include "vc1_pred.h"
#include "vc1acdata.h"
#include "vc1data.h"
#define MB_INTRA_VLC_BITS 9
#define DC_VLC_BITS 9
// offset tables for interlaced picture MVDATA decoding
static const uint8_t offset_table[2][9] = {
{ 0, 1, 2, 4, 8, 16, 32, 64, 128 },
{ 0, 1, 3, 7, 15, 31, 63, 127, 255 },
};
/***********************************************************************/
/**
* @name VC-1 Bitplane decoding
* @see 8.7, p56
* @{
*/
static inline void init_block_index(VC1Context *v)
{
MpegEncContext *s = &v->s;
ff_init_block_index(s);
if (v->field_mode && !(v->second_field ^ v->tff)) {
s->dest[0] += s->current_picture_ptr->f->linesize[0];
s->dest[1] += s->current_picture_ptr->f->linesize[1];
s->dest[2] += s->current_picture_ptr->f->linesize[2];
}
}
/** @} */ //Bitplane group
static void vc1_put_signed_blocks_clamped(VC1Context *v)
{
MpegEncContext *s = &v->s;
int topleft_mb_pos, top_mb_pos;
int stride_y, fieldtx = 0;
int v_dist;
/* The put pixels loop is always one MB row behind the decoding loop,
* because we can only put pixels when overlap filtering is done, and
* for filtering of the bottom edge of a MB, we need the next MB row
* present as well.
* Within the row, the put pixels loop is also one MB col behind the
* decoding loop. The reason for this is again, because for filtering
* of the right MB edge, we need the next MB present. */
if (!s->first_slice_line) {
if (s->mb_x) {
topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
if (v->fcm == ILACE_FRAME)
fieldtx = v->fieldtx_plane[topleft_mb_pos];
stride_y = s->linesize << fieldtx;
v_dist = (16 - fieldtx) >> (fieldtx == 0);
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
s->dest[0] - 16 * s->linesize - 16,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
s->dest[0] - 16 * s->linesize - 8,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
s->dest[0] - v_dist * s->linesize - 16,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
s->dest[0] - v_dist * s->linesize - 8,
stride_y);
if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
s->dest[1] - 8 * s->uvlinesize - 8,
s->uvlinesize);
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
s->dest[2] - 8 * s->uvlinesize - 8,
s->uvlinesize);
}
}
if (s->mb_x == s->mb_width - 1) {
top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
if (v->fcm == ILACE_FRAME)
fieldtx = v->fieldtx_plane[top_mb_pos];
stride_y = s->linesize << fieldtx;
v_dist = fieldtx ? 15 : 8;
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
s->dest[0] - 16 * s->linesize,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
s->dest[0] - 16 * s->linesize + 8,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
s->dest[0] - v_dist * s->linesize,
stride_y);
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
s->dest[0] - v_dist * s->linesize + 8,
stride_y);
if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
s->dest[1] - 8 * s->uvlinesize,
s->uvlinesize);
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
s->dest[2] - 8 * s->uvlinesize,
s->uvlinesize);
}
}
}
#define inc_blk_idx(idx) do { \
idx++; \
if (idx >= v->n_allocated_blks) \
idx = 0; \
} while (0)
inc_blk_idx(v->topleft_blk_idx);
inc_blk_idx(v->top_blk_idx);
inc_blk_idx(v->left_blk_idx);
inc_blk_idx(v->cur_blk_idx);
}
/***********************************************************************/
/**
* @name VC-1 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
*/
#define GET_MQUANT() \
if (v->dquantfrm) { \
int edges = 0; \
if (v->dqprofile == DQPROFILE_ALL_MBS) { \
if (v->dqbilevel) { \
mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
} else { \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) \
mquant = v->pq + mqdiff; \
else \
mquant = get_bits(gb, 5); \
} \
} \
if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
edges = 1 << v->dqsbedge; \
else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
edges = (3 << v->dqsbedge) % 15; \
else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
edges = 15; \
if ((edges&1) && !s->mb_x) \
mquant = v->altpq; \
if ((edges&2) && s->first_slice_line) \
mquant = v->altpq; \
if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
mquant = v->altpq; \
if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
mquant = v->altpq; \
if (!mquant || mquant > 31) { \
av_log(v->s.avctx, AV_LOG_ERROR, \
"Overriding invalid mquant %d\n", mquant); \
mquant = 1; \
} \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
VC1_MV_DIFF_VLC_BITS, 2); \
if (index > 36) { \
mb_has_coeffs = 1; \
index -= 37; \
} else \
mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { \
_dmv_x = _dmv_y = 0; \
} else if (index == 35) { \
_dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
_dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
} else if (index == 36) { \
_dmv_x = 0; \
_dmv_y = 0; \
s->mb_intra = 1; \
} else { \
index1 = index % 6; \
_dmv_x = offset_table[1][index1]; \
val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
if (val > 0) { \
val = get_bits(gb, val); \
sign = 0 - (val & 1); \
_dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
} \
\
index1 = index / 6; \
_dmv_y = offset_table[1][index1]; \
val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
if (val > 0) { \
val = get_bits(gb, val); \
sign = 0 - (val & 1); \
_dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
} \
}
static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
int *dmv_y, int *pred_flag)
{
int index, index1;
int extend_x, extend_y;
GetBitContext *gb = &v->s.gb;
int bits, esc;
int val, sign;
if (v->numref) {
bits = VC1_2REF_MVDATA_VLC_BITS;
esc = 125;
} else {
bits = VC1_1REF_MVDATA_VLC_BITS;
esc = 71;
}
extend_x = v->dmvrange & 1;
extend_y = (v->dmvrange >> 1) & 1;
index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
if (index == esc) {
*dmv_x = get_bits(gb, v->k_x);
*dmv_y = get_bits(gb, v->k_y);
if (v->numref) {
if (pred_flag)
*pred_flag = *dmv_y & 1;
*dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
}
}
else {
av_assert0(index < esc);
index1 = (index + 1) % 9;
if (index1 != 0) {
val = get_bits(gb, index1 + extend_x);
sign = 0 - (val & 1);
*dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
} else
*dmv_x = 0;
index1 = (index + 1) / 9;
if (index1 > v->numref) {
val = get_bits(gb, (index1 >> v->numref) + extend_y);
sign = 0 - (val & 1);
*dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
} else
*dmv_y = 0;
if (v->numref && pred_flag)
*pred_flag = index1 & 1;
}
}
/** Reconstruct motion vector for B-frame and do motion compensation
*/
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
int direct, int mode)
{
if (direct) {
ff_vc1_mc_1mv(v, 0);
ff_vc1_interp_mc(v);
return;
}
if (mode == BMV_TYPE_INTERPOLATED) {
ff_vc1_mc_1mv(v, 0);
ff_vc1_interp_mc(v);
return;
}
ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
}
/** Get predicted DC value for I-frames only
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[32] = {
-1, 1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val = s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (pq < 9 || !overlap) {
/* Set outer values */
if (s->first_slice_line && (n != 2 && n != 3))
b = a = dcpred[scale];
if (s->mb_x == 0 && (n != 1 && n != 3))
b = c = dcpred[scale];
} else {
/* Set outer values */
if (s->first_slice_line && (n != 2 && n != 3))
b = a = 0;
if (s->mb_x == 0 && (n != 1 && n != 3))
b = c = 0;
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1; // left
} else {
pred = a;
*dir_ptr = 0; // top
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param a_avail flag indicating top block availability
* @param c_avail flag indicating left block availability
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int a_avail, int c_avail,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred;
int16_t *dc_val;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int q1, q2 = 0;
int dqscale_index;
/* scale predictors if needed */
q1 = s->current_picture.qscale_table[mb_pos];
dqscale_index = s->y_dc_scale_table[q1] - 1;
if (dqscale_index < 0)
return 0;
wrap = s->block_wrap[n];
dc_val = s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (c_avail && (n != 1 && n != 3)) {
q2 = s->current_picture.qscale_table[mb_pos - 1];
if (q2 && q2 != q1)
c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (a_avail && (n != 2 && n != 3)) {
q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if (q2 && q2 != q1)
a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (a_avail && c_avail && (n != 3)) {
int off = mb_pos;
if (n != 1)
off--;
if (n != 2)
off -= s->mb_stride;
q2 = s->current_picture.qscale_table[off];
if (q2 && q2 != q1)
b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
pred = c;
*dir_ptr = 1; // left
} else if (a_avail) {
pred = a;
*dir_ptr = 0; // top
} else {
pred = 0;
*dir_ptr = 1; // left
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** @} */ // Block group
/**
* @name VC1 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/**
* Decode one AC coefficient
* @param v The VC1 context
* @param last Last coefficient
* @param skip How much zero coefficients to skip
* @param value Decoded AC coefficient value
* @param codingset set of VLC to decode data
* @see 8.1.3.4
*/
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
int *value, int codingset)
{
GetBitContext *gb = &v->s.gb;
int index, run, level, lst, sign;
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
if (index != ff_vc1_ac_sizes[codingset] - 1) {
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
sign = get_bits1(gb);
} else {
int escape = decode210(gb);
if (escape != 2) {
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if (escape == 0) {
if (lst)
level += vc1_last_delta_level_table[codingset][run];
else
level += vc1_delta_level_table[codingset][run];
} else {
if (lst)
run += vc1_last_delta_run_table[codingset][level] + 1;
else
run += vc1_delta_run_table[codingset][level] + 1;
}
sign = get_bits1(gb);
} else {
lst = get_bits1(gb);
if (v->s.esc3_level_length == 0) {
if (v->pq < 8 || v->dquantfrm) { // table 59
v->s.esc3_level_length = get_bits(gb, 3);
if (!v->s.esc3_level_length)
v->s.esc3_level_length = get_bits(gb, 2) + 8;
} else { // table 60
v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
}
v->s.esc3_run_length = 3 + get_bits(gb, 2);
}
run = get_bits(gb, v->s.esc3_run_length);
sign = get_bits1(gb);
level = get_bits(gb, v->s.esc3_level_length);
}
}
*last = lst;
*skip = run;
*value = (level ^ -sign) + sign;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
int coded, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff, scale;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff) {
const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4)
scale = s->y_dc_scale;
else
scale = s->c_dc_scale;
block[0] = dcdiff * scale;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
if (dc_pred_dir) // left
ac_val -= 16;
else // top
ac_val -= 16 * s->block_wrap[n];
scale = v->pq * 2 + v->halfpq;
//AC Decoding
i = !!coded;
if (coded) {
int last = 0, skip, value;
const uint8_t *zz_table;
int k;
if (v->s.ac_pred) {
if (!dc_pred_dir)
zz_table = v->zz_8x8[2];
else
zz_table = v->zz_8x8[3];
} else
zz_table = v->zz_8x8[1];
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if (i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if (s->ac_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
}
for (k = 1; k < 8; k++)
block[k << sh] += ac_val[k];
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
} else {
int k;
memset(ac_val2, 0, 16 * 2);
/* apply AC prediction if needed */
if (s->ac_pred) {
int sh;
if (dc_pred_dir) { //left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
ac_val2 += 8;
}
memcpy(ac_val2, ac_val, 8 * 2);
for (k = 1; k < 8; k++) {
block[k << sh] = ac_val[k] * scale;
if (!v->pquantizer && block[k << sh])
block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
}
}
}
if (s->ac_pred) i = 63;
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock number
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
* @param mquant quantizer value for this macroblock
*/
static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
int coded, int codingset, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val = NULL;
int16_t *ac_val, *ac_val2;
int dcdiff;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff) {
const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4)
scale = s->y_dc_scale;
else
scale = s->c_dc_scale;
block[0] = dcdiff * scale;
/* check if AC is needed at all */
if (!a_avail && !c_avail)
use_pred = 0;
scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
if (dc_pred_dir) // left
ac_val -= 16;
else // top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if (n == 3)
q2 = q1;
else if (dc_pred_dir) {
if (n == 1)
q2 = q1;
else if (c_avail && mb_pos)
q2 = s->current_picture.qscale_table[mb_pos - 1];
} else {
if (n == 2)
q2 = q1;
else if (a_avail && mb_pos >= s->mb_stride)
q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
}
//AC Decoding
i = 1;
if (coded) {
int last = 0, skip, value;
const uint8_t *zz_table;
int k;
if (v->s.ac_pred) {
if (!use_pred && v->fcm == ILACE_FRAME) {
zz_table = v->zzi_8x8;
} else {
if (!dc_pred_dir) // top
zz_table = v->zz_8x8[2];
else // left
zz_table = v->zz_8x8[3];
}
} else {
if (v->fcm != ILACE_FRAME)
zz_table = v->zz_8x8[1];
else
zz_table = v->zzi_8x8;
}
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if (i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if (use_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
}
/* scale predictors if needed*/
if (q2 && q1 != q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
for (k = 1; k < 8; k++)
block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else {
for (k = 1; k < 8; k++)
block[k << sh] += ac_val[k];
}
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
/* apply AC prediction if needed */
if (use_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
ac_val2 += 8;
}
memcpy(ac_val2, ac_val, 8 * 2);
if (q2 && q1 != q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
for (k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
for (k = 1; k < 8; k++) {
block[k << sh] = ac_val2[k] * scale;
if (!v->pquantizer && block[k << sh])
block[k << sh] += (block[k << sh] < 0) ? -mquant : mquant;
}
}
}
if (use_pred) i = 63;
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param mquant block quantizer
* @param codingset set of VLC to decode data
*/
static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
int coded, int mquant, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val = NULL;
int16_t *ac_val, *ac_val2;
int dcdiff;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
s->bdsp.clear_block(block);
/* XXX: Guard against dumb values of mquant */
mquant = av_clip_uintp2(mquant, 5);
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff) {
const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if (!a_avail) dc_pred_dir = 1;
if (!c_avail) dc_pred_dir = 0;
if (!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + v->halfpq;
if (dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if (dc_pred_dir && c_avail && mb_pos)
q2 = s->current_picture.qscale_table[mb_pos - 1];
if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if (dc_pred_dir && n == 1)
q2 = q1;
if (!dc_pred_dir && n == 2)
q2 = q1;
if (n == 3) q2 = q1;
if (coded) {
int last = 0, skip, value;
int k;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if (i > 63)
break;
if (v->fcm == PROGRESSIVE)
block[v->zz_8x8[0][i++]] = value;
else {
if (use_pred && (v->fcm == ILACE_FRAME)) {
if (!dc_pred_dir) // top
block[v->zz_8x8[2][i++]] = value;
else // left
block[v->zz_8x8[3][i++]] = value;
} else {
block[v->zzi_8x8[i++]] = value;
}
}
}
/* apply AC prediction if needed */
if (use_pred) {
/* scale predictors if needed*/
if (q2 && q1 != q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++)
block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for (k = 1; k < 8; k++)
block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++)
block[k << v->left_blk_sh] += ac_val[k];
} else { // top
for (k = 1; k < 8; k++)
block[k << v->top_blk_sh] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if (use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if (dc_pred_dir) { // left
if (use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if (q2 && q1 != q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
for (k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else { // top
if (use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if (q2 && q1 != q2) {
q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
for (k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if (use_pred) {
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++) {
block[k << v->left_blk_sh] = ac_val2[k] * scale;
if (!v->pquantizer && block[k << v->left_blk_sh])
block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
}
} else { // top
for (k = 1; k < 8; k++) {
block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
if (!v->pquantizer && block[k << v->top_blk_sh])
block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode P block
*/
static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
int mquant, int ttmb, int first_block,
uint8_t *dst, int linesize, int skip_block,
int *ttmb_out)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int subblkpat = 0;
int scale, off, idx, last, skip, value;
int ttblk = ttmb & 7;
int pat = 0;
s->bdsp.clear_block(block);
if (ttmb == -1) {
ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
}
if (ttblk == TT_4X4) {
subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
}
if ((ttblk != TT_8X8 && ttblk != TT_4X4)
&& ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
|| (!v->res_rtm_flag && !first_block))) {
subblkpat = decode012(gb);
if (subblkpat)
subblkpat ^= 3; // swap decoded pattern bits
if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
ttblk = TT_8X4;
if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
ttblk = TT_4X8;
}
scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
// convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
subblkpat = 2 - (ttblk == TT_8X4_TOP);
ttblk = TT_8X4;
}
if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
subblkpat = 2 - (ttblk == TT_4X8_LEFT);
ttblk = TT_4X8;
}
switch (ttblk) {
case TT_8X8:
pat = 0xF;
i = 0;
last = 0;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if (i > 63)
break;
if (!v->fcm)
idx = v->zz_8x8[0][i++];
else
idx = v->zzi_8x8[i++];
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if (!skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
else {
v->vc1dsp.vc1_inv_trans_8x8(block);
s->idsp.add_pixels_clamped(block, dst, linesize);
}
}
break;
case TT_4X4:
pat = ~subblkpat & 0xF;
for (j = 0; j < 4; j++) {
last = subblkpat & (1 << (3 - j));
i = 0;
off = (j & 1) * 4 + (j & 2) * 16;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if (i > 15)
break;
if (!v->fcm)
idx = ff_vc1_simple_progressive_4x4_zz[i++];
else
idx = ff_vc1_adv_interlaced_4x4_zz[i++];
block[idx + off] = value * scale;
if (!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
}
}
break;
case TT_8X4:
pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
for (j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 32;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if (i > 31)
break;
if (!v->fcm)
idx = v->zz_8x4[i++] + off;
else
idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
}
}
break;
case TT_4X8:
pat = ~(subblkpat * 5) & 0xF;
for (j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 4;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if (i > 31)
break;
if (!v->fcm)
idx = v->zz_4x8[i++] + off;
else
idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
}
}
break;
}
if (ttmb_out)
*ttmb_out |= ttblk << (n * 4);
return pat;
}
/** @} */ // Macroblock group
static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
/** Decode one P-frame MB
*/
static int vc1_decode_p_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
mquant = v->pq; /* lossy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!fourmv) { /* 1MV mode */
if (!skipped) {
GET_MVDATA(dmv_x, dmv_y);
if (s->mb_intra) {
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
}
s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->ac_pred = get_bits1(gb);
cbp = 0;
} else if (mb_has_coeffs) {
if (s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
} else {
mquant = v->pq;
cbp = 0;
}
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
VC1_TTMB_VLC_BITS, 2);
if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] <<= 1;
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
i & 4 ? s->uvlinesize
: s->linesize);
if (v->pq >= 9 && v->overlap) {
if (v->c_avail)
v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
if (v->a_avail)
v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
}
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if (val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
} else { // skipped
s->mb_intra = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.qscale_table[mb_pos] = 0;
ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
ff_vc1_mc_1mv(v, 0);
}
} else { // 4MV mode
if (!skipped /* unskipped MB */) {
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if (i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if (val) {
GET_MVDATA(dmv_x, dmv_y);
}
ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
if (!s->mb_intra)
ff_vc1_mc_4mv_luma(v, i, 0, 0);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if (i & 4) {
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if (i == 4)
ff_vc1_mc_4mv_chroma(v, 0);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if (!coded_inter)
coded_inter = !is_intra[i] & is_coded[i];
}
// if there are no coded blocks then don't do anything more
dst_idx = 0;
if (!intra_count && !coded_inter)
goto end;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for (i = 0; i < 6; i++)
if (is_intra[i]) {
if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if (intrapred)
s->ac_pred = get_bits1(gb);
else
s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] <<= 1;
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize
: s->linesize);
if (v->pq >= 9 && v->overlap) {
if (v->c_avail)
v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
if (v->a_avail)
v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
}
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if (is_coded[i]) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
&block_tt);
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
} else { // skipped MB
s->mb_intra = 0;
s->current_picture.qscale_table[mb_pos] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
for (i = 0; i < 4; i++) {
ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma(v, 0);
s->current_picture.qscale_table[mb_pos] = 0;
}
}
end:
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
v->is_intra[s->mb_x] = block_intra;
return 0;
}
/* Decode one macroblock in an interlaced frame p picture */
static int vc1_decode_p_mb_intfr(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int val; /* temp value */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv = 0, twomv = 0;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode = 0, mvbp;
int stride_y, fieldtx;
mquant = v->pq; /* Lossy initialization */
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!skipped) {
if (v->fourmvswitch)
idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
else
idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
/* store the motion vector type in a flag (useful later) */
case MV_PMODE_INTFR_4MV:
fourmv = 1;
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
break;
case MV_PMODE_INTFR_4MV_FIELD:
fourmv = 1;
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
break;
case MV_PMODE_INTFR_2MV_FIELD:
twomv = 1;
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
break;
case MV_PMODE_INTFR_1MV:
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
break;
}
if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
for (i = 0; i < 4; i++) {
s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
}
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = get_bits1(gb);
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (i < 4) {
stride_y = s->linesize << fieldtx;
off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
} else {
stride_y = s->uvlinesize;
off = 0;
}
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
stride_y);
//TODO: loop filter
}
} else { // inter MB
mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
} else {
if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
|| (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
}
}
s->mb_intra = v->is_intra[s->mb_x] = 0;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
/* for all motion vector read MVDATA and motion compensate each block */
dst_idx = 0;
if (fourmv) {
mvbp = v->fourmvbp;
for (i = 0; i < 4; i++) {
dmv_x = dmv_y = 0;
if (mvbp & (8 >> i))
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
} else if (twomv) {
mvbp = v->twomvbp;
dmv_x = dmv_y = 0;
if (mvbp & 2) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
ff_vc1_mc_4mv_luma(v, 0, 0, 0);
ff_vc1_mc_4mv_luma(v, 1, 0, 0);
dmv_x = dmv_y = 0;
if (mvbp & 1) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
ff_vc1_mc_4mv_luma(v, 2, 0, 0);
ff_vc1_mc_4mv_luma(v, 3, 0, 0);
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
} else {
mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
dmv_x = dmv_y = 0;
if (mvbp) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
ff_vc1_mc_1mv(v, 0);
}
if (cbp)
GET_MQUANT(); // p. 227
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (!fieldtx)
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
else
off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
if (val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
} else { // skipped
s->mb_intra = v->is_intra[s->mb_x] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.qscale_table[mb_pos] = 0;
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
ff_vc1_mc_1mv(v, 0);
}
if (s->mb_x == s->mb_width - 1)
memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
return 0;
}
static int vc1_decode_p_mb_intfi(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int val; /* temp values */
int first_block = 1;
int dst_idx, off;
int pred_flag = 0;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode = 0;
mquant = v->pq; /* Lossy initialization */
idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
if (idx_mbmode <= 1) { // intra MB
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = idx_mbmode & 1;
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize
: s->linesize);
// TODO: loop filter
}
} else {
s->mb_intra = v->is_intra[s->mb_x] = 0;
s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
if (idx_mbmode <= 5) { // 1-MV
dmv_x = dmv_y = pred_flag = 0;
if (idx_mbmode & 1) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
}
ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
ff_vc1_mc_1mv(v, 0);
mb_has_coeffs = !(idx_mbmode & 2);
} else { // 4-MV
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
for (i = 0; i < 4; i++) {
dmv_x = dmv_y = pred_flag = 0;
if (v->fourmvbp & (8 >> i))
get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma(v, 0);
mb_has_coeffs = idx_mbmode & 1;
}
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
if (cbp) {
GET_MQUANT();
}
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp) {
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
}
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
if (val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
&block_tt);
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
if (s->mb_x == s->mb_width - 1)
memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
return 0;
}
/** Decode one B-frame MB (in Main profile)
*/
static void vc1_decode_b_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 0; /* last_flag */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, direct;
int dmv_x[2], dmv_y[2];
int bmvtype = BMV_TYPE_BACKWARD;
mquant = v->pq; /* lossy initialization */
s->mb_intra = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.qscale_table[mb_pos] = 0;
if (!direct) {
if (!skipped) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
dmv_x[1] = dmv_x[0];
dmv_y[1] = dmv_y[0];
}
if (skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch (bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
dmv_x[0] = dmv_y[0] = 0;
}
}
}
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (skipped) {
if (direct)
bmvtype = BMV_TYPE_INTERPOLATED;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if (direct) {
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->mb_intra = 0;
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if (!mb_has_coeffs && !s->mb_intra) {
/* no coded blocks - effectively skipped */
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if (s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
s->ac_pred = get_bits1(gb);
cbp = 0;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if (bmvtype == BMV_TYPE_INTERPOLATED) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
if (!mb_has_coeffs) {
/* interpolated skipped block */
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
}
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
if (!s->mb_intra) {
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
}
if (s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
}
}
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] <<= 1;
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
i & 4 ? s->uvlinesize
: s->linesize);
} else if (val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
/** Decode one B-frame MB (in interlaced field B picture)
*/
static void vc1_decode_b_mb_intfi(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 0; /* last_flag */
int val; /* temp value */
int first_block = 1;
int dst_idx, off;
int fwd;
int dmv_x[2], dmv_y[2], pred_flag[2];
int bmvtype = BMV_TYPE_BACKWARD;
int idx_mbmode;
mquant = v->pq; /* Lossy initialization */
s->mb_intra = 0;
idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
if (idx_mbmode <= 1) { // intra MB
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = idx_mbmode & 1;
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] <<= 1;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize
: s->linesize);
// TODO: yet to perform loop filter
}
} else {
s->mb_intra = v->is_intra[s->mb_x] = 0;
s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
if (v->fmb_is_raw)
fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
else
fwd = v->forward_mb_plane[mb_pos];
if (idx_mbmode <= 5) { // 1-MV
int interpmvp = 0;
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
pred_flag[0] = pred_flag[1] = 0;
if (fwd)
bmvtype = BMV_TYPE_FORWARD;
else {
bmvtype = decode012(gb);
switch (bmvtype) {
case 0:
bmvtype = BMV_TYPE_BACKWARD;
break;
case 1:
bmvtype = BMV_TYPE_DIRECT;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
interpmvp = get_bits1(gb);
}
}
v->bmvtype = bmvtype;
if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
}
if (interpmvp) {
get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
}
if (bmvtype == BMV_TYPE_DIRECT) {
dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
if (!s->next_picture_ptr->field_picture) {
av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
return;
}
}
ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
mb_has_coeffs = !(idx_mbmode & 2);
} else { // 4-MV
if (fwd)
bmvtype = BMV_TYPE_FORWARD;
v->bmvtype = bmvtype;
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
for (i = 0; i < 4; i++) {
dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
if (v->fourmvbp & (8 >> i)) {
get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
&dmv_y[bmvtype == BMV_TYPE_BACKWARD],
&pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
}
ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
}
ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
mb_has_coeffs = idx_mbmode & 1;
}
if