| /* |
| * Copyright (c) 2003-2004 The FFmpeg Project |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * On2 VP3 Video Decoder |
| * |
| * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) |
| * For more information about the VP3 coding process, visit: |
| * http://wiki.multimedia.cx/index.php?title=On2_VP3 |
| * |
| * Theora decoder by Alex Beregszaszi |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "libavutil/imgutils.h" |
| |
| #include "avcodec.h" |
| #include "get_bits.h" |
| #include "hpeldsp.h" |
| #include "internal.h" |
| #include "mathops.h" |
| #include "thread.h" |
| #include "videodsp.h" |
| #include "vp3data.h" |
| #include "vp3dsp.h" |
| #include "xiph.h" |
| |
| #define FRAGMENT_PIXELS 8 |
| |
| // FIXME split things out into their own arrays |
| typedef struct Vp3Fragment { |
| int16_t dc; |
| uint8_t coding_method; |
| uint8_t qpi; |
| } Vp3Fragment; |
| |
| #define SB_NOT_CODED 0 |
| #define SB_PARTIALLY_CODED 1 |
| #define SB_FULLY_CODED 2 |
| |
| // This is the maximum length of a single long bit run that can be encoded |
| // for superblock coding or block qps. Theora special-cases this to read a |
| // bit instead of flipping the current bit to allow for runs longer than 4129. |
| #define MAXIMUM_LONG_BIT_RUN 4129 |
| |
| #define MODE_INTER_NO_MV 0 |
| #define MODE_INTRA 1 |
| #define MODE_INTER_PLUS_MV 2 |
| #define MODE_INTER_LAST_MV 3 |
| #define MODE_INTER_PRIOR_LAST 4 |
| #define MODE_USING_GOLDEN 5 |
| #define MODE_GOLDEN_MV 6 |
| #define MODE_INTER_FOURMV 7 |
| #define CODING_MODE_COUNT 8 |
| |
| /* special internal mode */ |
| #define MODE_COPY 8 |
| |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); |
| |
| |
| /* There are 6 preset schemes, plus a free-form scheme */ |
| static const int ModeAlphabet[6][CODING_MODE_COUNT] = { |
| /* scheme 1: Last motion vector dominates */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 2 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 3 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
| MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 4 */ |
| { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
| MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 5: No motion vector dominates */ |
| { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, |
| MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, |
| MODE_INTRA, MODE_USING_GOLDEN, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| |
| /* scheme 6 */ |
| { MODE_INTER_NO_MV, MODE_USING_GOLDEN, |
| MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
| MODE_INTER_PLUS_MV, MODE_INTRA, |
| MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
| }; |
| |
| static const uint8_t hilbert_offset[16][2] = { |
| { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, |
| { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 }, |
| { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 }, |
| { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 } |
| }; |
| |
| #define MIN_DEQUANT_VAL 2 |
| |
| typedef struct Vp3DecodeContext { |
| AVCodecContext *avctx; |
| int theora, theora_tables, theora_header; |
| int version; |
| int width, height; |
| int chroma_x_shift, chroma_y_shift; |
| ThreadFrame golden_frame; |
| ThreadFrame last_frame; |
| ThreadFrame current_frame; |
| int keyframe; |
| uint8_t idct_permutation[64]; |
| uint8_t idct_scantable[64]; |
| HpelDSPContext hdsp; |
| VideoDSPContext vdsp; |
| VP3DSPContext vp3dsp; |
| DECLARE_ALIGNED(16, int16_t, block)[64]; |
| int flipped_image; |
| int last_slice_end; |
| int skip_loop_filter; |
| |
| int qps[3]; |
| int nqps; |
| int last_qps[3]; |
| |
| int superblock_count; |
| int y_superblock_width; |
| int y_superblock_height; |
| int y_superblock_count; |
| int c_superblock_width; |
| int c_superblock_height; |
| int c_superblock_count; |
| int u_superblock_start; |
| int v_superblock_start; |
| unsigned char *superblock_coding; |
| |
| int macroblock_count; |
| int macroblock_width; |
| int macroblock_height; |
| |
| int fragment_count; |
| int fragment_width[2]; |
| int fragment_height[2]; |
| |
| Vp3Fragment *all_fragments; |
| int fragment_start[3]; |
| int data_offset[3]; |
| uint8_t offset_x; |
| uint8_t offset_y; |
| int offset_x_warned; |
| |
| int8_t (*motion_val[2])[2]; |
| |
| /* tables */ |
| uint16_t coded_dc_scale_factor[64]; |
| uint32_t coded_ac_scale_factor[64]; |
| uint8_t base_matrix[384][64]; |
| uint8_t qr_count[2][3]; |
| uint8_t qr_size[2][3][64]; |
| uint16_t qr_base[2][3][64]; |
| |
| /** |
| * This is a list of all tokens in bitstream order. Reordering takes place |
| * by pulling from each level during IDCT. As a consequence, IDCT must be |
| * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 |
| * otherwise. The 32 different tokens with up to 12 bits of extradata are |
| * collapsed into 3 types, packed as follows: |
| * (from the low to high bits) |
| * |
| * 2 bits: type (0,1,2) |
| * 0: EOB run, 14 bits for run length (12 needed) |
| * 1: zero run, 7 bits for run length |
| * 7 bits for the next coefficient (3 needed) |
| * 2: coefficient, 14 bits (11 needed) |
| * |
| * Coefficients are signed, so are packed in the highest bits for automatic |
| * sign extension. |
| */ |
| int16_t *dct_tokens[3][64]; |
| int16_t *dct_tokens_base; |
| #define TOKEN_EOB(eob_run) ((eob_run) << 2) |
| #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1) |
| #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2) |
| |
| /** |
| * number of blocks that contain DCT coefficients at |
| * the given level or higher |
| */ |
| int num_coded_frags[3][64]; |
| int total_num_coded_frags; |
| |
| /* this is a list of indexes into the all_fragments array indicating |
| * which of the fragments are coded */ |
| int *coded_fragment_list[3]; |
| |
| VLC dc_vlc[16]; |
| VLC ac_vlc_1[16]; |
| VLC ac_vlc_2[16]; |
| VLC ac_vlc_3[16]; |
| VLC ac_vlc_4[16]; |
| |
| VLC superblock_run_length_vlc; |
| VLC fragment_run_length_vlc; |
| VLC mode_code_vlc; |
| VLC motion_vector_vlc; |
| |
| /* these arrays need to be on 16-byte boundaries since SSE2 operations |
| * index into them */ |
| DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] |
| |
| /* This table contains superblock_count * 16 entries. Each set of 16 |
| * numbers corresponds to the fragment indexes 0..15 of the superblock. |
| * An entry will be -1 to indicate that no entry corresponds to that |
| * index. */ |
| int *superblock_fragments; |
| |
| /* This is an array that indicates how a particular macroblock |
| * is coded. */ |
| unsigned char *macroblock_coding; |
| |
| uint8_t *edge_emu_buffer; |
| |
| /* Huffman decode */ |
| int hti; |
| unsigned int hbits; |
| int entries; |
| int huff_code_size; |
| uint32_t huffman_table[80][32][2]; |
| |
| uint8_t filter_limit_values[64]; |
| DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2]; |
| } Vp3DecodeContext; |
| |
| /************************************************************************ |
| * VP3 specific functions |
| ************************************************************************/ |
| |
| static av_cold void free_tables(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| av_freep(&s->superblock_coding); |
| av_freep(&s->all_fragments); |
| av_freep(&s->coded_fragment_list[0]); |
| av_freep(&s->dct_tokens_base); |
| av_freep(&s->superblock_fragments); |
| av_freep(&s->macroblock_coding); |
| av_freep(&s->motion_val[0]); |
| av_freep(&s->motion_val[1]); |
| } |
| |
| static void vp3_decode_flush(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| if (s->golden_frame.f) |
| ff_thread_release_buffer(avctx, &s->golden_frame); |
| if (s->last_frame.f) |
| ff_thread_release_buffer(avctx, &s->last_frame); |
| if (s->current_frame.f) |
| ff_thread_release_buffer(avctx, &s->current_frame); |
| } |
| |
| static av_cold int vp3_decode_end(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int i; |
| |
| free_tables(avctx); |
| av_freep(&s->edge_emu_buffer); |
| |
| s->theora_tables = 0; |
| |
| /* release all frames */ |
| vp3_decode_flush(avctx); |
| av_frame_free(&s->current_frame.f); |
| av_frame_free(&s->last_frame.f); |
| av_frame_free(&s->golden_frame.f); |
| |
| if (avctx->internal->is_copy) |
| return 0; |
| |
| for (i = 0; i < 16; i++) { |
| ff_free_vlc(&s->dc_vlc[i]); |
| ff_free_vlc(&s->ac_vlc_1[i]); |
| ff_free_vlc(&s->ac_vlc_2[i]); |
| ff_free_vlc(&s->ac_vlc_3[i]); |
| ff_free_vlc(&s->ac_vlc_4[i]); |
| } |
| |
| ff_free_vlc(&s->superblock_run_length_vlc); |
| ff_free_vlc(&s->fragment_run_length_vlc); |
| ff_free_vlc(&s->mode_code_vlc); |
| ff_free_vlc(&s->motion_vector_vlc); |
| |
| return 0; |
| } |
| |
| /** |
| * This function sets up all of the various blocks mappings: |
| * superblocks <-> fragments, macroblocks <-> fragments, |
| * superblocks <-> macroblocks |
| * |
| * @return 0 is successful; returns 1 if *anything* went wrong. |
| */ |
| static int init_block_mapping(Vp3DecodeContext *s) |
| { |
| int sb_x, sb_y, plane; |
| int x, y, i, j = 0; |
| |
| for (plane = 0; plane < 3; plane++) { |
| int sb_width = plane ? s->c_superblock_width |
| : s->y_superblock_width; |
| int sb_height = plane ? s->c_superblock_height |
| : s->y_superblock_height; |
| int frag_width = s->fragment_width[!!plane]; |
| int frag_height = s->fragment_height[!!plane]; |
| |
| for (sb_y = 0; sb_y < sb_height; sb_y++) |
| for (sb_x = 0; sb_x < sb_width; sb_x++) |
| for (i = 0; i < 16; i++) { |
| x = 4 * sb_x + hilbert_offset[i][0]; |
| y = 4 * sb_y + hilbert_offset[i][1]; |
| |
| if (x < frag_width && y < frag_height) |
| s->superblock_fragments[j++] = s->fragment_start[plane] + |
| y * frag_width + x; |
| else |
| s->superblock_fragments[j++] = -1; |
| } |
| } |
| |
| return 0; /* successful path out */ |
| } |
| |
| /* |
| * This function sets up the dequantization tables used for a particular |
| * frame. |
| */ |
| static void init_dequantizer(Vp3DecodeContext *s, int qpi) |
| { |
| int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; |
| int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]]; |
| int i, plane, inter, qri, bmi, bmj, qistart; |
| |
| for (inter = 0; inter < 2; inter++) { |
| for (plane = 0; plane < 3; plane++) { |
| int sum = 0; |
| for (qri = 0; qri < s->qr_count[inter][plane]; qri++) { |
| sum += s->qr_size[inter][plane][qri]; |
| if (s->qps[qpi] <= sum) |
| break; |
| } |
| qistart = sum - s->qr_size[inter][plane][qri]; |
| bmi = s->qr_base[inter][plane][qri]; |
| bmj = s->qr_base[inter][plane][qri + 1]; |
| for (i = 0; i < 64; i++) { |
| int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] - |
| 2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] + |
| s->qr_size[inter][plane][qri]) / |
| (2 * s->qr_size[inter][plane][qri]); |
| |
| int qmin = 8 << (inter + !i); |
| int qscale = i ? ac_scale_factor : dc_scale_factor; |
| |
| s->qmat[qpi][inter][plane][s->idct_permutation[i]] = |
| av_clip((qscale * coeff) / 100 * 4, qmin, 4096); |
| } |
| /* all DC coefficients use the same quant so as not to interfere |
| * with DC prediction */ |
| s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; |
| } |
| } |
| } |
| |
| /* |
| * This function initializes the loop filter boundary limits if the frame's |
| * quality index is different from the previous frame's. |
| * |
| * The filter_limit_values may not be larger than 127. |
| */ |
| static void init_loop_filter(Vp3DecodeContext *s) |
| { |
| int *bounding_values = s->bounding_values_array + 127; |
| int filter_limit; |
| int x; |
| int value; |
| |
| filter_limit = s->filter_limit_values[s->qps[0]]; |
| av_assert0(filter_limit < 128U); |
| |
| /* set up the bounding values */ |
| memset(s->bounding_values_array, 0, 256 * sizeof(int)); |
| for (x = 0; x < filter_limit; x++) { |
| bounding_values[-x] = -x; |
| bounding_values[x] = x; |
| } |
| for (x = value = filter_limit; x < 128 && value; x++, value--) { |
| bounding_values[ x] = value; |
| bounding_values[-x] = -value; |
| } |
| if (value) |
| bounding_values[128] = value; |
| bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202; |
| } |
| |
| /* |
| * This function unpacks all of the superblock/macroblock/fragment coding |
| * information from the bitstream. |
| */ |
| static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int superblock_starts[3] = { |
| 0, s->u_superblock_start, s->v_superblock_start |
| }; |
| int bit = 0; |
| int current_superblock = 0; |
| int current_run = 0; |
| int num_partial_superblocks = 0; |
| |
| int i, j; |
| int current_fragment; |
| int plane; |
| |
| if (s->keyframe) { |
| memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); |
| } else { |
| /* unpack the list of partially-coded superblocks */ |
| bit = get_bits1(gb) ^ 1; |
| current_run = 0; |
| |
| while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { |
| if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, |
| 6, 2) + 1; |
| if (current_run == 34) |
| current_run += get_bits(gb, 12); |
| |
| if (current_run > s->superblock_count - current_superblock) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid partially coded superblock run length\n"); |
| return -1; |
| } |
| |
| memset(s->superblock_coding + current_superblock, bit, current_run); |
| |
| current_superblock += current_run; |
| if (bit) |
| num_partial_superblocks += current_run; |
| } |
| |
| /* unpack the list of fully coded superblocks if any of the blocks were |
| * not marked as partially coded in the previous step */ |
| if (num_partial_superblocks < s->superblock_count) { |
| int superblocks_decoded = 0; |
| |
| current_superblock = 0; |
| bit = get_bits1(gb) ^ 1; |
| current_run = 0; |
| |
| while (superblocks_decoded < s->superblock_count - num_partial_superblocks && |
| get_bits_left(gb) > 0) { |
| if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, |
| 6, 2) + 1; |
| if (current_run == 34) |
| current_run += get_bits(gb, 12); |
| |
| for (j = 0; j < current_run; current_superblock++) { |
| if (current_superblock >= s->superblock_count) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid fully coded superblock run length\n"); |
| return -1; |
| } |
| |
| /* skip any superblocks already marked as partially coded */ |
| if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { |
| s->superblock_coding[current_superblock] = 2 * bit; |
| j++; |
| } |
| } |
| superblocks_decoded += current_run; |
| } |
| } |
| |
| /* if there were partial blocks, initialize bitstream for |
| * unpacking fragment codings */ |
| if (num_partial_superblocks) { |
| current_run = 0; |
| bit = get_bits1(gb); |
| /* toggle the bit because as soon as the first run length is |
| * fetched the bit will be toggled again */ |
| bit ^= 1; |
| } |
| } |
| |
| /* figure out which fragments are coded; iterate through each |
| * superblock (all planes) */ |
| s->total_num_coded_frags = 0; |
| memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); |
| |
| for (plane = 0; plane < 3; plane++) { |
| int sb_start = superblock_starts[plane]; |
| int sb_end = sb_start + (plane ? s->c_superblock_count |
| : s->y_superblock_count); |
| int num_coded_frags = 0; |
| |
| for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { |
| /* iterate through all 16 fragments in a superblock */ |
| for (j = 0; j < 16; j++) { |
| /* if the fragment is in bounds, check its coding status */ |
| current_fragment = s->superblock_fragments[i * 16 + j]; |
| if (current_fragment != -1) { |
| int coded = s->superblock_coding[i]; |
| |
| if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { |
| /* fragment may or may not be coded; this is the case |
| * that cares about the fragment coding runs */ |
| if (current_run-- == 0) { |
| bit ^= 1; |
| current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); |
| } |
| coded = bit; |
| } |
| |
| if (coded) { |
| /* default mode; actual mode will be decoded in |
| * the next phase */ |
| s->all_fragments[current_fragment].coding_method = |
| MODE_INTER_NO_MV; |
| s->coded_fragment_list[plane][num_coded_frags++] = |
| current_fragment; |
| } else { |
| /* not coded; copy this fragment from the prior frame */ |
| s->all_fragments[current_fragment].coding_method = |
| MODE_COPY; |
| } |
| } |
| } |
| } |
| s->total_num_coded_frags += num_coded_frags; |
| for (i = 0; i < 64; i++) |
| s->num_coded_frags[plane][i] = num_coded_frags; |
| if (plane < 2) |
| s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] + |
| num_coded_frags; |
| } |
| return 0; |
| } |
| |
| /* |
| * This function unpacks all the coding mode data for individual macroblocks |
| * from the bitstream. |
| */ |
| static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int i, j, k, sb_x, sb_y; |
| int scheme; |
| int current_macroblock; |
| int current_fragment; |
| int coding_mode; |
| int custom_mode_alphabet[CODING_MODE_COUNT]; |
| const int *alphabet; |
| Vp3Fragment *frag; |
| |
| if (s->keyframe) { |
| for (i = 0; i < s->fragment_count; i++) |
| s->all_fragments[i].coding_method = MODE_INTRA; |
| } else { |
| /* fetch the mode coding scheme for this frame */ |
| scheme = get_bits(gb, 3); |
| |
| /* is it a custom coding scheme? */ |
| if (scheme == 0) { |
| for (i = 0; i < 8; i++) |
| custom_mode_alphabet[i] = MODE_INTER_NO_MV; |
| for (i = 0; i < 8; i++) |
| custom_mode_alphabet[get_bits(gb, 3)] = i; |
| alphabet = custom_mode_alphabet; |
| } else |
| alphabet = ModeAlphabet[scheme - 1]; |
| |
| /* iterate through all of the macroblocks that contain 1 or more |
| * coded fragments */ |
| for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { |
| for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { |
| if (get_bits_left(gb) <= 0) |
| return -1; |
| |
| for (j = 0; j < 4; j++) { |
| int mb_x = 2 * sb_x + (j >> 1); |
| int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); |
| current_macroblock = mb_y * s->macroblock_width + mb_x; |
| |
| if (mb_x >= s->macroblock_width || |
| mb_y >= s->macroblock_height) |
| continue; |
| |
| #define BLOCK_X (2 * mb_x + (k & 1)) |
| #define BLOCK_Y (2 * mb_y + (k >> 1)) |
| /* coding modes are only stored if the macroblock has |
| * at least one luma block coded, otherwise it must be |
| * INTER_NO_MV */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = BLOCK_Y * |
| s->fragment_width[0] + BLOCK_X; |
| if (s->all_fragments[current_fragment].coding_method != MODE_COPY) |
| break; |
| } |
| if (k == 4) { |
| s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; |
| continue; |
| } |
| |
| /* mode 7 means get 3 bits for each coding mode */ |
| if (scheme == 7) |
| coding_mode = get_bits(gb, 3); |
| else |
| coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; |
| |
| s->macroblock_coding[current_macroblock] = coding_mode; |
| for (k = 0; k < 4; k++) { |
| frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (frag->coding_method != MODE_COPY) |
| frag->coding_method = coding_mode; |
| } |
| |
| #define SET_CHROMA_MODES \ |
| if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ |
| frag[s->fragment_start[1]].coding_method = coding_mode; \ |
| if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ |
| frag[s->fragment_start[2]].coding_method = coding_mode; |
| |
| if (s->chroma_y_shift) { |
| frag = s->all_fragments + mb_y * |
| s->fragment_width[1] + mb_x; |
| SET_CHROMA_MODES |
| } else if (s->chroma_x_shift) { |
| frag = s->all_fragments + |
| 2 * mb_y * s->fragment_width[1] + mb_x; |
| for (k = 0; k < 2; k++) { |
| SET_CHROMA_MODES |
| frag += s->fragment_width[1]; |
| } |
| } else { |
| for (k = 0; k < 4; k++) { |
| frag = s->all_fragments + |
| BLOCK_Y * s->fragment_width[1] + BLOCK_X; |
| SET_CHROMA_MODES |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function unpacks all the motion vectors for the individual |
| * macroblocks from the bitstream. |
| */ |
| static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int j, k, sb_x, sb_y; |
| int coding_mode; |
| int motion_x[4]; |
| int motion_y[4]; |
| int last_motion_x = 0; |
| int last_motion_y = 0; |
| int prior_last_motion_x = 0; |
| int prior_last_motion_y = 0; |
| int current_macroblock; |
| int current_fragment; |
| int frag; |
| |
| if (s->keyframe) |
| return 0; |
| |
| /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ |
| coding_mode = get_bits1(gb); |
| |
| /* iterate through all of the macroblocks that contain 1 or more |
| * coded fragments */ |
| for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { |
| for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { |
| if (get_bits_left(gb) <= 0) |
| return -1; |
| |
| for (j = 0; j < 4; j++) { |
| int mb_x = 2 * sb_x + (j >> 1); |
| int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); |
| current_macroblock = mb_y * s->macroblock_width + mb_x; |
| |
| if (mb_x >= s->macroblock_width || |
| mb_y >= s->macroblock_height || |
| s->macroblock_coding[current_macroblock] == MODE_COPY) |
| continue; |
| |
| switch (s->macroblock_coding[current_macroblock]) { |
| case MODE_INTER_PLUS_MV: |
| case MODE_GOLDEN_MV: |
| /* all 6 fragments use the same motion vector */ |
| if (coding_mode == 0) { |
| motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
| motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
| } else { |
| motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| } |
| |
| /* vector maintenance, only on MODE_INTER_PLUS_MV */ |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| last_motion_x = motion_x[0]; |
| last_motion_y = motion_y[0]; |
| } |
| break; |
| |
| case MODE_INTER_FOURMV: |
| /* vector maintenance */ |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| |
| /* fetch 4 vectors from the bitstream, one for each |
| * Y fragment, then average for the C fragment vectors */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { |
| if (coding_mode == 0) { |
| motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
| motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
| } else { |
| motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; |
| } |
| last_motion_x = motion_x[k]; |
| last_motion_y = motion_y[k]; |
| } else { |
| motion_x[k] = 0; |
| motion_y[k] = 0; |
| } |
| } |
| break; |
| |
| case MODE_INTER_LAST_MV: |
| /* all 6 fragments use the last motion vector */ |
| motion_x[0] = last_motion_x; |
| motion_y[0] = last_motion_y; |
| |
| /* no vector maintenance (last vector remains the |
| * last vector) */ |
| break; |
| |
| case MODE_INTER_PRIOR_LAST: |
| /* all 6 fragments use the motion vector prior to the |
| * last motion vector */ |
| motion_x[0] = prior_last_motion_x; |
| motion_y[0] = prior_last_motion_y; |
| |
| /* vector maintenance */ |
| prior_last_motion_x = last_motion_x; |
| prior_last_motion_y = last_motion_y; |
| last_motion_x = motion_x[0]; |
| last_motion_y = motion_y[0]; |
| break; |
| |
| default: |
| /* covers intra, inter without MV, golden without MV */ |
| motion_x[0] = 0; |
| motion_y[0] = 0; |
| |
| /* no vector maintenance */ |
| break; |
| } |
| |
| /* assign the motion vectors to the correct fragments */ |
| for (k = 0; k < 4; k++) { |
| current_fragment = |
| BLOCK_Y * s->fragment_width[0] + BLOCK_X; |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| s->motion_val[0][current_fragment][0] = motion_x[k]; |
| s->motion_val[0][current_fragment][1] = motion_y[k]; |
| } else { |
| s->motion_val[0][current_fragment][0] = motion_x[0]; |
| s->motion_val[0][current_fragment][1] = motion_y[0]; |
| } |
| } |
| |
| if (s->chroma_y_shift) { |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + |
| motion_x[2] + motion_x[3], 2); |
| motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + |
| motion_y[2] + motion_y[3], 2); |
| } |
| motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); |
| motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1); |
| frag = mb_y * s->fragment_width[1] + mb_x; |
| s->motion_val[1][frag][0] = motion_x[0]; |
| s->motion_val[1][frag][1] = motion_y[0]; |
| } else if (s->chroma_x_shift) { |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); |
| motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); |
| motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); |
| motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); |
| } else { |
| motion_x[1] = motion_x[0]; |
| motion_y[1] = motion_y[0]; |
| } |
| motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); |
| motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1); |
| |
| frag = 2 * mb_y * s->fragment_width[1] + mb_x; |
| for (k = 0; k < 2; k++) { |
| s->motion_val[1][frag][0] = motion_x[k]; |
| s->motion_val[1][frag][1] = motion_y[k]; |
| frag += s->fragment_width[1]; |
| } |
| } else { |
| for (k = 0; k < 4; k++) { |
| frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X; |
| if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { |
| s->motion_val[1][frag][0] = motion_x[k]; |
| s->motion_val[1][frag][1] = motion_y[k]; |
| } else { |
| s->motion_val[1][frag][0] = motion_x[0]; |
| s->motion_val[1][frag][1] = motion_y[0]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; |
| int num_blocks = s->total_num_coded_frags; |
| |
| for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) { |
| i = blocks_decoded = num_blocks_at_qpi = 0; |
| |
| bit = get_bits1(gb) ^ 1; |
| run_length = 0; |
| |
| do { |
| if (run_length == MAXIMUM_LONG_BIT_RUN) |
| bit = get_bits1(gb); |
| else |
| bit ^= 1; |
| |
| run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; |
| if (run_length == 34) |
| run_length += get_bits(gb, 12); |
| blocks_decoded += run_length; |
| |
| if (!bit) |
| num_blocks_at_qpi += run_length; |
| |
| for (j = 0; j < run_length; i++) { |
| if (i >= s->total_num_coded_frags) |
| return -1; |
| |
| if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { |
| s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; |
| j++; |
| } |
| } |
| } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); |
| |
| num_blocks -= num_blocks_at_qpi; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function is called by unpack_dct_coeffs() to extract the VLCs from |
| * the bitstream. The VLCs encode tokens which are used to unpack DCT |
| * data. This function unpacks all the VLCs for either the Y plane or both |
| * C planes, and is called for DC coefficients or different AC coefficient |
| * levels (since different coefficient types require different VLC tables. |
| * |
| * This function returns a residual eob run. E.g, if a particular token gave |
| * instructions to EOB the next 5 fragments and there were only 2 fragments |
| * left in the current fragment range, 3 would be returned so that it could |
| * be passed into the next call to this same function. |
| */ |
| static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, |
| VLC *table, int coeff_index, |
| int plane, |
| int eob_run) |
| { |
| int i, j = 0; |
| int token; |
| int zero_run = 0; |
| int16_t coeff = 0; |
| int bits_to_get; |
| int blocks_ended; |
| int coeff_i = 0; |
| int num_coeffs = s->num_coded_frags[plane][coeff_index]; |
| int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; |
| |
| /* local references to structure members to avoid repeated deferences */ |
| int *coded_fragment_list = s->coded_fragment_list[plane]; |
| Vp3Fragment *all_fragments = s->all_fragments; |
| VLC_TYPE(*vlc_table)[2] = table->table; |
| |
| if (num_coeffs < 0) |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Invalid number of coefficents at level %d\n", coeff_index); |
| |
| if (eob_run > num_coeffs) { |
| coeff_i = |
| blocks_ended = num_coeffs; |
| eob_run -= num_coeffs; |
| } else { |
| coeff_i = |
| blocks_ended = eob_run; |
| eob_run = 0; |
| } |
| |
| // insert fake EOB token to cover the split between planes or zzi |
| if (blocks_ended) |
| dct_tokens[j++] = blocks_ended << 2; |
| |
| while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { |
| /* decode a VLC into a token */ |
| token = get_vlc2(gb, vlc_table, 11, 3); |
| /* use the token to get a zero run, a coefficient, and an eob run */ |
| if ((unsigned) token <= 6U) { |
| eob_run = eob_run_base[token]; |
| if (eob_run_get_bits[token]) |
| eob_run += get_bits(gb, eob_run_get_bits[token]); |
| |
| // record only the number of blocks ended in this plane, |
| // any spill will be recorded in the next plane. |
| if (eob_run > num_coeffs - coeff_i) { |
| dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); |
| blocks_ended += num_coeffs - coeff_i; |
| eob_run -= num_coeffs - coeff_i; |
| coeff_i = num_coeffs; |
| } else { |
| dct_tokens[j++] = TOKEN_EOB(eob_run); |
| blocks_ended += eob_run; |
| coeff_i += eob_run; |
| eob_run = 0; |
| } |
| } else if (token >= 0) { |
| bits_to_get = coeff_get_bits[token]; |
| if (bits_to_get) |
| bits_to_get = get_bits(gb, bits_to_get); |
| coeff = coeff_tables[token][bits_to_get]; |
| |
| zero_run = zero_run_base[token]; |
| if (zero_run_get_bits[token]) |
| zero_run += get_bits(gb, zero_run_get_bits[token]); |
| |
| if (zero_run) { |
| dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); |
| } else { |
| // Save DC into the fragment structure. DC prediction is |
| // done in raster order, so the actual DC can't be in with |
| // other tokens. We still need the token in dct_tokens[] |
| // however, or else the structure collapses on itself. |
| if (!coeff_index) |
| all_fragments[coded_fragment_list[coeff_i]].dc = coeff; |
| |
| dct_tokens[j++] = TOKEN_COEFF(coeff); |
| } |
| |
| if (coeff_index + zero_run > 64) { |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "Invalid zero run of %d with %d coeffs left\n", |
| zero_run, 64 - coeff_index); |
| zero_run = 64 - coeff_index; |
| } |
| |
| // zero runs code multiple coefficients, |
| // so don't try to decode coeffs for those higher levels |
| for (i = coeff_index + 1; i <= coeff_index + zero_run; i++) |
| s->num_coded_frags[plane][i]--; |
| coeff_i++; |
| } else { |
| av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); |
| return -1; |
| } |
| } |
| |
| if (blocks_ended > s->num_coded_frags[plane][coeff_index]) |
| av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); |
| |
| // decrement the number of blocks that have higher coefficients for each |
| // EOB run at this level |
| if (blocks_ended) |
| for (i = coeff_index + 1; i < 64; i++) |
| s->num_coded_frags[plane][i] -= blocks_ended; |
| |
| // setup the next buffer |
| if (plane < 2) |
| s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j; |
| else if (coeff_index < 63) |
| s->dct_tokens[0][coeff_index + 1] = dct_tokens + j; |
| |
| return eob_run; |
| } |
| |
| static void reverse_dc_prediction(Vp3DecodeContext *s, |
| int first_fragment, |
| int fragment_width, |
| int fragment_height); |
| /* |
| * This function unpacks all of the DCT coefficient data from the |
| * bitstream. |
| */ |
| static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) |
| { |
| int i; |
| int dc_y_table; |
| int dc_c_table; |
| int ac_y_table; |
| int ac_c_table; |
| int residual_eob_run = 0; |
| VLC *y_tables[64]; |
| VLC *c_tables[64]; |
| |
| s->dct_tokens[0][0] = s->dct_tokens_base; |
| |
| /* fetch the DC table indexes */ |
| dc_y_table = get_bits(gb, 4); |
| dc_c_table = get_bits(gb, 4); |
| |
| /* unpack the Y plane DC coefficients */ |
| residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, |
| 0, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| |
| /* reverse prediction of the Y-plane DC coefficients */ |
| reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); |
| |
| /* unpack the C plane DC coefficients */ |
| residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, |
| 1, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, |
| 2, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| |
| /* reverse prediction of the C-plane DC coefficients */ |
| if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { |
| reverse_dc_prediction(s, s->fragment_start[1], |
| s->fragment_width[1], s->fragment_height[1]); |
| reverse_dc_prediction(s, s->fragment_start[2], |
| s->fragment_width[1], s->fragment_height[1]); |
| } |
| |
| /* fetch the AC table indexes */ |
| ac_y_table = get_bits(gb, 4); |
| ac_c_table = get_bits(gb, 4); |
| |
| /* build tables of AC VLC tables */ |
| for (i = 1; i <= 5; i++) { |
| y_tables[i] = &s->ac_vlc_1[ac_y_table]; |
| c_tables[i] = &s->ac_vlc_1[ac_c_table]; |
| } |
| for (i = 6; i <= 14; i++) { |
| y_tables[i] = &s->ac_vlc_2[ac_y_table]; |
| c_tables[i] = &s->ac_vlc_2[ac_c_table]; |
| } |
| for (i = 15; i <= 27; i++) { |
| y_tables[i] = &s->ac_vlc_3[ac_y_table]; |
| c_tables[i] = &s->ac_vlc_3[ac_c_table]; |
| } |
| for (i = 28; i <= 63; i++) { |
| y_tables[i] = &s->ac_vlc_4[ac_y_table]; |
| c_tables[i] = &s->ac_vlc_4[ac_c_table]; |
| } |
| |
| /* decode all AC coefficents */ |
| for (i = 1; i <= 63; i++) { |
| residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, |
| 0, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| |
| residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, |
| 1, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, |
| 2, residual_eob_run); |
| if (residual_eob_run < 0) |
| return residual_eob_run; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function reverses the DC prediction for each coded fragment in |
| * the frame. Much of this function is adapted directly from the original |
| * VP3 source code. |
| */ |
| #define COMPATIBLE_FRAME(x) \ |
| (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) |
| #define DC_COEFF(u) s->all_fragments[u].dc |
| |
| static void reverse_dc_prediction(Vp3DecodeContext *s, |
| int first_fragment, |
| int fragment_width, |
| int fragment_height) |
| { |
| #define PUL 8 |
| #define PU 4 |
| #define PUR 2 |
| #define PL 1 |
| |
| int x, y; |
| int i = first_fragment; |
| |
| int predicted_dc; |
| |
| /* DC values for the left, up-left, up, and up-right fragments */ |
| int vl, vul, vu, vur; |
| |
| /* indexes for the left, up-left, up, and up-right fragments */ |
| int l, ul, u, ur; |
| |
| /* |
| * The 6 fields mean: |
| * 0: up-left multiplier |
| * 1: up multiplier |
| * 2: up-right multiplier |
| * 3: left multiplier |
| */ |
| static const int predictor_transform[16][4] = { |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 128 }, // PL |
| { 0, 0, 128, 0 }, // PUR |
| { 0, 0, 53, 75 }, // PUR|PL |
| { 0, 128, 0, 0 }, // PU |
| { 0, 64, 0, 64 }, // PU |PL |
| { 0, 128, 0, 0 }, // PU |PUR |
| { 0, 0, 53, 75 }, // PU |PUR|PL |
| { 128, 0, 0, 0 }, // PUL |
| { 0, 0, 0, 128 }, // PUL|PL |
| { 64, 0, 64, 0 }, // PUL|PUR |
| { 0, 0, 53, 75 }, // PUL|PUR|PL |
| { 0, 128, 0, 0 }, // PUL|PU |
| { -104, 116, 0, 116 }, // PUL|PU |PL |
| { 24, 80, 24, 0 }, // PUL|PU |PUR |
| { -104, 116, 0, 116 } // PUL|PU |PUR|PL |
| }; |
| |
| /* This table shows which types of blocks can use other blocks for |
| * prediction. For example, INTRA is the only mode in this table to |
| * have a frame number of 0. That means INTRA blocks can only predict |
| * from other INTRA blocks. There are 2 golden frame coding types; |
| * blocks encoding in these modes can only predict from other blocks |
| * that were encoded with these 1 of these 2 modes. */ |
| static const unsigned char compatible_frame[9] = { |
| 1, /* MODE_INTER_NO_MV */ |
| 0, /* MODE_INTRA */ |
| 1, /* MODE_INTER_PLUS_MV */ |
| 1, /* MODE_INTER_LAST_MV */ |
| 1, /* MODE_INTER_PRIOR_MV */ |
| 2, /* MODE_USING_GOLDEN */ |
| 2, /* MODE_GOLDEN_MV */ |
| 1, /* MODE_INTER_FOUR_MV */ |
| 3 /* MODE_COPY */ |
| }; |
| int current_frame_type; |
| |
| /* there is a last DC predictor for each of the 3 frame types */ |
| short last_dc[3]; |
| |
| int transform = 0; |
| |
| vul = |
| vu = |
| vur = |
| vl = 0; |
| last_dc[0] = |
| last_dc[1] = |
| last_dc[2] = 0; |
| |
| /* for each fragment row... */ |
| for (y = 0; y < fragment_height; y++) { |
| /* for each fragment in a row... */ |
| for (x = 0; x < fragment_width; x++, i++) { |
| |
| /* reverse prediction if this block was coded */ |
| if (s->all_fragments[i].coding_method != MODE_COPY) { |
| current_frame_type = |
| compatible_frame[s->all_fragments[i].coding_method]; |
| |
| transform = 0; |
| if (x) { |
| l = i - 1; |
| vl = DC_COEFF(l); |
| if (COMPATIBLE_FRAME(l)) |
| transform |= PL; |
| } |
| if (y) { |
| u = i - fragment_width; |
| vu = DC_COEFF(u); |
| if (COMPATIBLE_FRAME(u)) |
| transform |= PU; |
| if (x) { |
| ul = i - fragment_width - 1; |
| vul = DC_COEFF(ul); |
| if (COMPATIBLE_FRAME(ul)) |
| transform |= PUL; |
| } |
| if (x + 1 < fragment_width) { |
| ur = i - fragment_width + 1; |
| vur = DC_COEFF(ur); |
| if (COMPATIBLE_FRAME(ur)) |
| transform |= PUR; |
| } |
| } |
| |
| if (transform == 0) { |
| /* if there were no fragments to predict from, use last |
| * DC saved */ |
| predicted_dc = last_dc[current_frame_type]; |
| } else { |
| /* apply the appropriate predictor transform */ |
| predicted_dc = |
| (predictor_transform[transform][0] * vul) + |
| (predictor_transform[transform][1] * vu) + |
| (predictor_transform[transform][2] * vur) + |
| (predictor_transform[transform][3] * vl); |
| |
| predicted_dc /= 128; |
| |
| /* check for outranging on the [ul u l] and |
| * [ul u ur l] predictors */ |
| if ((transform == 15) || (transform == 13)) { |
| if (FFABS(predicted_dc - vu) > 128) |
| predicted_dc = vu; |
| else if (FFABS(predicted_dc - vl) > 128) |
| predicted_dc = vl; |
| else if (FFABS(predicted_dc - vul) > 128) |
| predicted_dc = vul; |
| } |
| } |
| |
| /* at long last, apply the predictor */ |
| DC_COEFF(i) += predicted_dc; |
| /* save the DC */ |
| last_dc[current_frame_type] = DC_COEFF(i); |
| } |
| } |
| } |
| } |
| |
| static void apply_loop_filter(Vp3DecodeContext *s, int plane, |
| int ystart, int yend) |
| { |
| int x, y; |
| int *bounding_values = s->bounding_values_array + 127; |
| |
| int width = s->fragment_width[!!plane]; |
| int height = s->fragment_height[!!plane]; |
| int fragment = s->fragment_start[plane] + ystart * width; |
| ptrdiff_t stride = s->current_frame.f->linesize[plane]; |
| uint8_t *plane_data = s->current_frame.f->data[plane]; |
| if (!s->flipped_image) |
| stride = -stride; |
| plane_data += s->data_offset[plane] + 8 * ystart * stride; |
| |
| for (y = ystart; y < yend; y++) { |
| for (x = 0; x < width; x++) { |
| /* This code basically just deblocks on the edges of coded blocks. |
| * However, it has to be much more complicated because of the |
| * braindamaged deblock ordering used in VP3/Theora. Order matters |
| * because some pixels get filtered twice. */ |
| if (s->all_fragments[fragment].coding_method != MODE_COPY) { |
| /* do not perform left edge filter for left columns frags */ |
| if (x > 0) { |
| s->vp3dsp.h_loop_filter( |
| plane_data + 8 * x, |
| stride, bounding_values); |
| } |
| |
| /* do not perform top edge filter for top row fragments */ |
| if (y > 0) { |
| s->vp3dsp.v_loop_filter( |
| plane_data + 8 * x, |
| stride, bounding_values); |
| } |
| |
| /* do not perform right edge filter for right column |
| * fragments or if right fragment neighbor is also coded |
| * in this frame (it will be filtered in next iteration) */ |
| if ((x < width - 1) && |
| (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { |
| s->vp3dsp.h_loop_filter( |
| plane_data + 8 * x + 8, |
| stride, bounding_values); |
| } |
| |
| /* do not perform bottom edge filter for bottom row |
| * fragments or if bottom fragment neighbor is also coded |
| * in this frame (it will be filtered in the next row) */ |
| if ((y < height - 1) && |
| (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { |
| s->vp3dsp.v_loop_filter( |
| plane_data + 8 * x + 8 * stride, |
| stride, bounding_values); |
| } |
| } |
| |
| fragment++; |
| } |
| plane_data += 8 * stride; |
| } |
| } |
| |
| /** |
| * Pull DCT tokens from the 64 levels to decode and dequant the coefficients |
| * for the next block in coding order |
| */ |
| static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, |
| int plane, int inter, int16_t block[64]) |
| { |
| int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; |
| uint8_t *perm = s->idct_scantable; |
| int i = 0; |
| |
| do { |
| int token = *s->dct_tokens[plane][i]; |
| switch (token & 3) { |
| case 0: // EOB |
| if (--token < 4) // 0-3 are token types so the EOB run must now be 0 |
| s->dct_tokens[plane][i]++; |
| else |
| *s->dct_tokens[plane][i] = token & ~3; |
| goto end; |
| case 1: // zero run |
| s->dct_tokens[plane][i]++; |
| i += (token >> 2) & 0x7f; |
| if (i > 63) { |
| av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); |
| return i; |
| } |
| block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; |
| i++; |
| break; |
| case 2: // coeff |
| block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; |
| s->dct_tokens[plane][i++]++; |
| break; |
| default: // shouldn't happen |
| return i; |
| } |
| } while (i < 64); |
| // return value is expected to be a valid level |
| i--; |
| end: |
| // the actual DC+prediction is in the fragment structure |
| block[0] = frag->dc * s->qmat[0][inter][plane][0]; |
| return i; |
| } |
| |
| /** |
| * called when all pixels up to row y are complete |
| */ |
| static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) |
| { |
| int h, cy, i; |
| int offset[AV_NUM_DATA_POINTERS]; |
| |
| if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) { |
| int y_flipped = s->flipped_image ? s->height - y : y; |
| |
| /* At the end of the frame, report INT_MAX instead of the height of |
| * the frame. This makes the other threads' ff_thread_await_progress() |
| * calls cheaper, because they don't have to clip their values. */ |
| ff_thread_report_progress(&s->current_frame, |
| y_flipped == s->height ? INT_MAX |
| : y_flipped - 1, |
| 0); |
| } |
| |
| if (!s->avctx->draw_horiz_band) |
| return; |
| |
| h = y - s->last_slice_end; |
| s->last_slice_end = y; |
| y -= h; |
| |
| if (!s->flipped_image) |
| y = s->height - y - h; |
| |
| cy = y >> s->chroma_y_shift; |
| offset[0] = s->current_frame.f->linesize[0] * y; |
| offset[1] = s->current_frame.f->linesize[1] * cy; |
| offset[2] = s->current_frame.f->linesize[2] * cy; |
| for (i = 3; i < AV_NUM_DATA_POINTERS; i++) |
| offset[i] = 0; |
| |
| emms_c(); |
| s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); |
| } |
| |
| /** |
| * Wait for the reference frame of the current fragment. |
| * The progress value is in luma pixel rows. |
| */ |
| static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, |
| int motion_y, int y) |
| { |
| ThreadFrame *ref_frame; |
| int ref_row; |
| int border = motion_y & 1; |
| |
| if (fragment->coding_method == MODE_USING_GOLDEN || |
| fragment->coding_method == MODE_GOLDEN_MV) |
| ref_frame = &s->golden_frame; |
| else |
| ref_frame = &s->last_frame; |
| |
| ref_row = y + (motion_y >> 1); |
| ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); |
| |
| ff_thread_await_progress(ref_frame, ref_row, 0); |
| } |
| |
| /* |
| * Perform the final rendering for a particular slice of data. |
| * The slice number ranges from 0..(c_superblock_height - 1). |
| */ |
| static void render_slice(Vp3DecodeContext *s, int slice) |
| { |
| int x, y, i, j, fragment; |
| int16_t *block = s->block; |
| int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; |
| int motion_halfpel_index; |
| uint8_t *motion_source; |
| int plane, first_pixel; |
| |
| if (slice >= s->c_superblock_height) |
| return; |
| |
| for (plane = 0; plane < 3; plane++) { |
| uint8_t *output_plane = s->current_frame.f->data[plane] + |
| s->data_offset[plane]; |
| uint8_t *last_plane = s->last_frame.f->data[plane] + |
| s->data_offset[plane]; |
| uint8_t *golden_plane = s->golden_frame.f->data[plane] + |
| s->data_offset[plane]; |
| ptrdiff_t stride = s->current_frame.f->linesize[plane]; |
| int plane_width = s->width >> (plane && s->chroma_x_shift); |
| int plane_height = s->height >> (plane && s->chroma_y_shift); |
| int8_t(*motion_val)[2] = s->motion_val[!!plane]; |
| |
| int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); |
| int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); |
| int slice_width = plane ? s->c_superblock_width |
| : s->y_superblock_width; |
| |
| int fragment_width = s->fragment_width[!!plane]; |
| int fragment_height = s->fragment_height[!!plane]; |
| int fragment_start = s->fragment_start[plane]; |
| |
| int do_await = !plane && HAVE_THREADS && |
| (s->avctx->active_thread_type & FF_THREAD_FRAME); |
| |
| if (!s->flipped_image) |
| stride = -stride; |
| if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) |
| continue; |
| |
| /* for each superblock row in the slice (both of them)... */ |
| for (; sb_y < slice_height; sb_y++) { |
| /* for each superblock in a row... */ |
| for (sb_x = 0; sb_x < slice_width; sb_x++) { |
| /* for each block in a superblock... */ |
| for (j = 0; j < 16; j++) { |
| x = 4 * sb_x + hilbert_offset[j][0]; |
| y = 4 * sb_y + hilbert_offset[j][1]; |
| fragment = y * fragment_width + x; |
| |
| i = fragment_start + fragment; |
| |
| // bounds check |
| if (x >= fragment_width || y >= fragment_height) |
| continue; |
| |
| first_pixel = 8 * y * stride + 8 * x; |
| |
| if (do_await && |
| s->all_fragments[i].coding_method != MODE_INTRA) |
| await_reference_row(s, &s->all_fragments[i], |
| motion_val[fragment][1], |
| (16 * y) >> s->chroma_y_shift); |
| |
| /* transform if this block was coded */ |
| if (s->all_fragments[i].coding_method != MODE_COPY) { |
| if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || |
| (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) |
| motion_source = golden_plane; |
| else |
| motion_source = last_plane; |
| |
| motion_source += first_pixel; |
| motion_halfpel_index = 0; |
| |
| /* sort out the motion vector if this fragment is coded |
| * using a motion vector method */ |
| if ((s->all_fragments[i].coding_method > MODE_INTRA) && |
| (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { |
| int src_x, src_y; |
| motion_x = motion_val[fragment][0]; |
| motion_y = motion_val[fragment][1]; |
| |
| src_x = (motion_x >> 1) + 8 * x; |
| src_y = (motion_y >> 1) + 8 * y; |
| |
| motion_halfpel_index = motion_x & 0x01; |
| motion_source += (motion_x >> 1); |
| |
| motion_halfpel_index |= (motion_y & 0x01) << 1; |
| motion_source += ((motion_y >> 1) * stride); |
| |
| if (src_x < 0 || src_y < 0 || |
| src_x + 9 >= plane_width || |
| src_y + 9 >= plane_height) { |
| uint8_t *temp = s->edge_emu_buffer; |
| if (stride < 0) |
| temp -= 8 * stride; |
| |
| s->vdsp.emulated_edge_mc(temp, motion_source, |
| stride, stride, |
| 9, 9, src_x, src_y, |
| plane_width, |
| plane_height); |
| motion_source = temp; |
| } |
| } |
| |
| /* first, take care of copying a block from either the |
| * previous or the golden frame */ |
| if (s->all_fragments[i].coding_method != MODE_INTRA) { |
| /* Note, it is possible to implement all MC cases |
| * with put_no_rnd_pixels_l2 which would look more |
| * like the VP3 source but this would be slower as |
| * put_no_rnd_pixels_tab is better optimzed */ |
| if (motion_halfpel_index != 3) { |
| s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( |
| output_plane + first_pixel, |
| motion_source, stride, 8); |
| } else { |
| /* d is 0 if motion_x and _y have the same sign, |
| * else -1 */ |
| int d = (motion_x ^ motion_y) >> 31; |
| s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel, |
| motion_source - d, |
| motion_source + stride + 1 + d, |
| stride, 8); |
| } |
| } |
| |
| /* invert DCT and place (or add) in final output */ |
| |
| if (s->all_fragments[i].coding_method == MODE_INTRA) { |
| vp3_dequant(s, s->all_fragments + i, |
| plane, 0, block); |
| s->vp3dsp.idct_put(output_plane + first_pixel, |
| stride, |
| block); |
| } else { |
| if (vp3_dequant(s, s->all_fragments + i, |
| plane, 1, block)) { |
| s->vp3dsp.idct_add(output_plane + first_pixel, |
| stride, |
| block); |
| } else { |
| s->vp3dsp.idct_dc_add(output_plane + first_pixel, |
| stride, block); |
| } |
| } |
| } else { |
| /* copy directly from the previous frame */ |
| s->hdsp.put_pixels_tab[1][0]( |
| output_plane + first_pixel, |
| last_plane + first_pixel, |
| stride, 8); |
| } |
| } |
| } |
| |
| // Filter up to the last row in the superblock row |
| if (!s->skip_loop_filter) |
| apply_loop_filter(s, plane, 4 * sb_y - !!sb_y, |
| FFMIN(4 * sb_y + 3, fragment_height - 1)); |
| } |
| } |
| |
| /* this looks like a good place for slice dispatch... */ |
| /* algorithm: |
| * if (slice == s->macroblock_height - 1) |
| * dispatch (both last slice & 2nd-to-last slice); |
| * else if (slice > 0) |
| * dispatch (slice - 1); |
| */ |
| |
| vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16, |
| s->height - 16)); |
| } |
| |
| /// Allocate tables for per-frame data in Vp3DecodeContext |
| static av_cold int allocate_tables(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int y_fragment_count, c_fragment_count; |
| |
| free_tables(avctx); |
| |
| y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; |
| c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; |
| |
| s->superblock_coding = av_mallocz(s->superblock_count); |
| s->all_fragments = av_mallocz_array(s->fragment_count, sizeof(Vp3Fragment)); |
| |
| s->coded_fragment_list[0] = av_mallocz_array(s->fragment_count, sizeof(int)); |
| |
| s->dct_tokens_base = av_mallocz_array(s->fragment_count, |
| 64 * sizeof(*s->dct_tokens_base)); |
| s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0])); |
| s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1])); |
| |
| /* work out the block mapping tables */ |
| s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int)); |
| s->macroblock_coding = av_mallocz(s->macroblock_count + 1); |
| |
| if (!s->superblock_coding || !s->all_fragments || |
| !s->dct_tokens_base || !s->coded_fragment_list[0] || |
| !s->superblock_fragments || !s->macroblock_coding || |
| !s->motion_val[0] || !s->motion_val[1]) { |
| vp3_decode_end(avctx); |
| return -1; |
| } |
| |
| init_block_mapping(s); |
| |
| return 0; |
| } |
| |
| static av_cold int init_frames(Vp3DecodeContext *s) |
| { |
| s->current_frame.f = av_frame_alloc(); |
| s->last_frame.f = av_frame_alloc(); |
| s->golden_frame.f = av_frame_alloc(); |
| |
| if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) { |
| av_frame_free(&s->current_frame.f); |
| av_frame_free(&s->last_frame.f); |
| av_frame_free(&s->golden_frame.f); |
| return AVERROR(ENOMEM); |
| } |
| |
| return 0; |
| } |
| |
| static av_cold int vp3_decode_init(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int i, inter, plane, ret; |
| int c_width; |
| int c_height; |
| int y_fragment_count, c_fragment_count; |
| |
| ret = init_frames(s); |
| if (ret < 0) |
| return ret; |
| |
| avctx->internal->allocate_progress = 1; |
| |
| if (avctx->codec_tag == MKTAG('V', 'P', '3', '0')) |
| s->version = 0; |
| else |
| s->version = 1; |
| |
| s->avctx = avctx; |
| s->width = FFALIGN(avctx->coded_width, 16); |
| s->height = FFALIGN(avctx->coded_height, 16); |
| if (avctx->codec_id != AV_CODEC_ID_THEORA) |
| avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
| avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; |
| ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT); |
| ff_videodsp_init(&s->vdsp, 8); |
| ff_vp3dsp_init(&s->vp3dsp, avctx->flags); |
| |
| for (i = 0; i < 64; i++) { |
| #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3)) |
| s->idct_permutation[i] = TRANSPOSE(i); |
| s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]); |
| #undef TRANSPOSE |
| } |
| |
| /* initialize to an impossible value which will force a recalculation |
| * in the first frame decode */ |
| for (i = 0; i < 3; i++) |
| s->qps[i] = -1; |
| |
| avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); |
| |
| s->y_superblock_width = (s->width + 31) / 32; |
| s->y_superblock_height = (s->height + 31) / 32; |
| s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; |
| |
| /* work out the dimensions for the C planes */ |
| c_width = s->width >> s->chroma_x_shift; |
| c_height = s->height >> s->chroma_y_shift; |
| s->c_superblock_width = (c_width + 31) / 32; |
| s->c_superblock_height = (c_height + 31) / 32; |
| s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; |
| |
| s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); |
| s->u_superblock_start = s->y_superblock_count; |
| s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; |
| |
| s->macroblock_width = (s->width + 15) / 16; |
| s->macroblock_height = (s->height + 15) / 16; |
| s->macroblock_count = s->macroblock_width * s->macroblock_height; |
| |
| s->fragment_width[0] = s->width / FRAGMENT_PIXELS; |
| s->fragment_height[0] = s->height / FRAGMENT_PIXELS; |
| s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; |
| s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; |
| |
| /* fragment count covers all 8x8 blocks for all 3 planes */ |
| y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; |
| c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; |
| s->fragment_count = y_fragment_count + 2 * c_fragment_count; |
| s->fragment_start[1] = y_fragment_count; |
| s->fragment_start[2] = y_fragment_count + c_fragment_count; |
| |
| if (!s->theora_tables) { |
| for (i = 0; i < 64; i++) { |
| s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; |
| s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; |
| s->base_matrix[0][i] = vp31_intra_y_dequant[i]; |
| s->base_matrix[1][i] = vp31_intra_c_dequant[i]; |
| s->base_matrix[2][i] = vp31_inter_dequant[i]; |
| s->filter_limit_values[i] = vp31_filter_limit_values[i]; |
| } |
| |
| for (inter = 0; inter < 2; inter++) { |
| for (plane = 0; plane < 3; plane++) { |
| s->qr_count[inter][plane] = 1; |
| s->qr_size[inter][plane][0] = 63; |
| s->qr_base[inter][plane][0] = |
| s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter; |
| } |
| } |
| |
| /* init VLC tables */ |
| for (i = 0; i < 16; i++) { |
| /* DC histograms */ |
| init_vlc(&s->dc_vlc[i], 11, 32, |
| &dc_bias[i][0][1], 4, 2, |
| &dc_bias[i][0][0], 4, 2, 0); |
| |
| /* group 1 AC histograms */ |
| init_vlc(&s->ac_vlc_1[i], 11, 32, |
| &ac_bias_0[i][0][1], 4, 2, |
| &ac_bias_0[i][0][0], 4, 2, 0); |
| |
| /* group 2 AC histograms */ |
| init_vlc(&s->ac_vlc_2[i], 11, 32, |
| &ac_bias_1[i][0][1], 4, 2, |
| &ac_bias_1[i][0][0], 4, 2, 0); |
| |
| /* group 3 AC histograms */ |
| init_vlc(&s->ac_vlc_3[i], 11, 32, |
| &ac_bias_2[i][0][1], 4, 2, |
| &ac_bias_2[i][0][0], 4, 2, 0); |
| |
| /* group 4 AC histograms */ |
| init_vlc(&s->ac_vlc_4[i], 11, 32, |
| &ac_bias_3[i][0][1], 4, 2, |
| &ac_bias_3[i][0][0], 4, 2, 0); |
| } |
| } else { |
| for (i = 0; i < 16; i++) { |
| /* DC histograms */ |
| if (init_vlc(&s->dc_vlc[i], 11, 32, |
| &s->huffman_table[i][0][1], 8, 4, |
| &s->huffman_table[i][0][0], 8, 4, 0) < 0) |
| goto vlc_fail; |
| |
| /* group 1 AC histograms */ |
| if (init_vlc(&s->ac_vlc_1[i], 11, 32, |
| &s->huffman_table[i + 16][0][1], 8, 4, |
| &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0) |
| goto vlc_fail; |
| |
| /* group 2 AC histograms */ |
| if (init_vlc(&s->ac_vlc_2[i], 11, 32, |
| &s->huffman_table[i + 16 * 2][0][1], 8, 4, |
| &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0) |
| goto vlc_fail; |
| |
| /* group 3 AC histograms */ |
| if (init_vlc(&s->ac_vlc_3[i], 11, 32, |
| &s->huffman_table[i + 16 * 3][0][1], 8, 4, |
| &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0) |
| goto vlc_fail; |
| |
| /* group 4 AC histograms */ |
| if (init_vlc(&s->ac_vlc_4[i], 11, 32, |
| &s->huffman_table[i + 16 * 4][0][1], 8, 4, |
| &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0) |
| goto vlc_fail; |
| } |
| } |
| |
| init_vlc(&s->superblock_run_length_vlc, 6, 34, |
| &superblock_run_length_vlc_table[0][1], 4, 2, |
| &superblock_run_length_vlc_table[0][0], 4, 2, 0); |
| |
| init_vlc(&s->fragment_run_length_vlc, 5, 30, |
| &fragment_run_length_vlc_table[0][1], 4, 2, |
| &fragment_run_length_vlc_table[0][0], 4, 2, 0); |
| |
| init_vlc(&s->mode_code_vlc, 3, 8, |
| &mode_code_vlc_table[0][1], 2, 1, |
| &mode_code_vlc_table[0][0], 2, 1, 0); |
| |
| init_vlc(&s->motion_vector_vlc, 6, 63, |
| &motion_vector_vlc_table[0][1], 2, 1, |
| &motion_vector_vlc_table[0][0], 2, 1, 0); |
| |
| return allocate_tables(avctx); |
| |
| vlc_fail: |
| av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n"); |
| return -1; |
| } |
| |
| /// Release and shuffle frames after decode finishes |
| static int update_frames(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int ret = 0; |
| |
| /* shuffle frames (last = current) */ |
| ff_thread_release_buffer(avctx, &s->last_frame); |
| ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame); |
| if (ret < 0) |
| goto fail; |
| |
| if (s->keyframe) { |
| ff_thread_release_buffer(avctx, &s->golden_frame); |
| ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame); |
| } |
| |
| fail: |
| ff_thread_release_buffer(avctx, &s->current_frame); |
| return ret; |
| } |
| |
| static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src) |
| { |
| ff_thread_release_buffer(s->avctx, dst); |
| if (src->f->data[0]) |
| return ff_thread_ref_frame(dst, src); |
| return 0; |
| } |
| |
| static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src) |
| { |
| int ret; |
| if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 || |
| (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 || |
| (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0) |
| return ret; |
| return 0; |
| } |
| |
| #if HAVE_THREADS |
| static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) |
| { |
| Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; |
| int qps_changed = 0, i, err; |
| |
| #define copy_fields(to, from, start_field, end_field) \ |
| memcpy(&to->start_field, &from->start_field, \ |
| (char *) &to->end_field - (char *) &to->start_field) |
| |
| if (!s1->current_frame.f->data[0] || |
| s->width != s1->width || s->height != s1->height) { |
| if (s != s1) |
| ref_frames(s, s1); |
| return -1; |
| } |
| |
| if (s != s1) { |
| if (!s->current_frame.f) |
| return AVERROR(ENOMEM); |
| // init tables if the first frame hasn't been decoded |
| if (!s->current_frame.f->data[0]) { |
| int y_fragment_count, c_fragment_count; |
| s->avctx = dst; |
| err = allocate_tables(dst); |
| if (err) |
| return err; |
| y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; |
| c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; |
| memcpy(s->motion_val[0], s1->motion_val[0], |
| y_fragment_count * sizeof(*s->motion_val[0])); |
| memcpy(s->motion_val[1], s1->motion_val[1], |
| c_fragment_count * sizeof(*s->motion_val[1])); |
| } |
| |
| // copy previous frame data |
| if ((err = ref_frames(s, s1)) < 0) |
| return err; |
| |
| s->keyframe = s1->keyframe; |
| |
| // copy qscale data if necessary |
| for (i = 0; i < 3; i++) { |
| if (s->qps[i] != s1->qps[1]) { |
| qps_changed = 1; |
| memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); |
| } |
| } |
| |
| if (s->qps[0] != s1->qps[0]) |
| memcpy(&s->bounding_values_array, &s1->bounding_values_array, |
| sizeof(s->bounding_values_array)); |
| |
| if (qps_changed) |
| copy_fields(s, s1, qps, superblock_count); |
| #undef copy_fields |
| } |
| |
| return update_frames(dst); |
| } |
| #endif |
| |
| static int vp3_decode_frame(AVCodecContext *avctx, |
| void *data, int *got_frame, |
| AVPacket *avpkt) |
| { |
| const uint8_t *buf = avpkt->data; |
| int buf_size = avpkt->size; |
| Vp3DecodeContext *s = avctx->priv_data; |
| GetBitContext gb; |
| int i, ret; |
| |
| if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0) |
| return ret; |
| |
| #if CONFIG_THEORA_DECODER |
| if (s->theora && get_bits1(&gb)) { |
| int type = get_bits(&gb, 7); |
| skip_bits_long(&gb, 6*8); /* "theora" */ |
| |
| if (s->avctx->active_thread_type&FF_THREAD_FRAME) { |
| av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); |
| return AVERROR_PATCHWELCOME; |
| } |
| if (type == 0) { |
| vp3_decode_end(avctx); |
| ret = theora_decode_header(avctx, &gb); |
| |
| if (ret >= 0) |
| ret = vp3_decode_init(avctx); |
| if (ret < 0) { |
| vp3_decode_end(avctx); |
| } |
| return ret; |
| } else if (type == 2) { |
| vp3_decode_end(avctx); |
| ret = theora_decode_tables(avctx, &gb); |
| if (ret >= 0) |
| ret = vp3_decode_init(avctx); |
| if (ret < 0) { |
| vp3_decode_end(avctx); |
| } |
| return ret; |
| } |
| |
| av_log(avctx, AV_LOG_ERROR, |
| "Header packet passed to frame decoder, skipping\n"); |
| return -1; |
| } |
| #endif |
| |
| s->keyframe = !get_bits1(&gb); |
| if (!s->all_fragments) { |
| av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); |
| return -1; |
| } |
| if (!s->theora) |
| skip_bits(&gb, 1); |
| for (i = 0; i < 3; i++) |
| s->last_qps[i] = s->qps[i]; |
| |
| s->nqps = 0; |
| do { |
| s->qps[s->nqps++] = get_bits(&gb, 6); |
| } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb)); |
| for (i = s->nqps; i < 3; i++) |
| s->qps[i] = -1; |
| |
| if (s->avctx->debug & FF_DEBUG_PICT_INFO) |
| av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", |
| s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]); |
| |
| s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || |
| avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL |
| : AVDISCARD_NONKEY); |
| |
| if (s->qps[0] != s->last_qps[0]) |
| init_loop_filter(s); |
| |
| for (i = 0; i < s->nqps; i++) |
| // reinit all dequantizers if the first one changed, because |
| // the DC of the first quantizer must be used for all matrices |
| if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) |
| init_dequantizer(s, i); |
| |
| if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) |
| return buf_size; |
| |
| s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I |
| : AV_PICTURE_TYPE_P; |
| s->current_frame.f->key_frame = s->keyframe; |
| if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0) |
| goto error; |
| |
| if (!s->edge_emu_buffer) |
| s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0])); |
| |
| if (s->keyframe) { |
| if (!s->theora) { |
| skip_bits(&gb, 4); /* width code */ |
| skip_bits(&gb, 4); /* height code */ |
| if (s->version) { |
| s->version = get_bits(&gb, 5); |
| if (avctx->frame_number == 0) |
| av_log(s->avctx, AV_LOG_DEBUG, |
| "VP version: %d\n", s->version); |
| } |
| } |
| if (s->version || s->theora) { |
| if (get_bits1(&gb)) |
| av_log(s->avctx, AV_LOG_ERROR, |
| "Warning, unsupported keyframe coding type?!\n"); |
| skip_bits(&gb, 2); /* reserved? */ |
| } |
| } else { |
| if (!s->golden_frame.f->data[0]) { |
| av_log(s->avctx, AV_LOG_WARNING, |
| "vp3: first frame not a keyframe\n"); |
| |
| s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I; |
| if (ff_thread_get_buffer(avctx, &s->golden_frame, |
| AV_GET_BUFFER_FLAG_REF) < 0) |
| goto error; |
| ff_thread_release_buffer(avctx, &s->last_frame); |
| if ((ret = ff_thread_ref_frame(&s->last_frame, |
| &s->golden_frame)) < 0) |
| goto error; |
| ff_thread_report_progress(&s->last_frame, INT_MAX, 0); |
| } |
| } |
| |
| memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); |
| ff_thread_finish_setup(avctx); |
| |
| if (unpack_superblocks(s, &gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); |
| goto error; |
| } |
| if (unpack_modes(s, &gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); |
| goto error; |
| } |
| if (unpack_vectors(s, &gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); |
| goto error; |
| } |
| if (unpack_block_qpis(s, &gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); |
| goto error; |
| } |
| if (unpack_dct_coeffs(s, &gb)) { |
| av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); |
| goto error; |
| } |
| |
| for (i = 0; i < 3; i++) { |
| int height = s->height >> (i && s->chroma_y_shift); |
| if (s->flipped_image) |
| s->data_offset[i] = 0; |
| else |
| s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i]; |
| } |
| |
| s->last_slice_end = 0; |
| for (i = 0; i < s->c_superblock_height; i++) |
| render_slice(s, i); |
| |
| // filter the last row |
| for (i = 0; i < 3; i++) { |
| int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1; |
| apply_loop_filter(s, i, row, row + 1); |
| } |
| vp3_draw_horiz_band(s, s->height); |
| |
| /* output frame, offset as needed */ |
| if ((ret = av_frame_ref(data, s->current_frame.f)) < 0) |
| return ret; |
| for (i = 0; i < 3; i++) { |
| AVFrame *dst = data; |
| int off = (s->offset_x >> (i && s->chroma_y_shift)) + |
| (s->offset_y >> (i && s->chroma_y_shift)) * dst->linesize[i]; |
| dst->data[i] += off; |
| } |
| *got_frame = 1; |
| |
| if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) { |
| ret = update_frames(avctx); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return buf_size; |
| |
| error: |
| ff_thread_report_progress(&s->current_frame, INT_MAX, 0); |
| |
| if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) |
| av_frame_unref(s->current_frame.f); |
| |
| return -1; |
| } |
| |
| static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| if (get_bits1(gb)) { |
| int token; |
| if (s->entries >= 32) { /* overflow */ |
| av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); |
| return -1; |
| } |
| token = get_bits(gb, 5); |
| ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n", |
| s->hti, s->hbits, token, s->entries, s->huff_code_size); |
| s->huffman_table[s->hti][token][0] = s->hbits; |
| s->huffman_table[s->hti][token][1] = s->huff_code_size; |
| s->entries++; |
| } else { |
| if (s->huff_code_size >= 32) { /* overflow */ |
| av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); |
| return -1; |
| } |
| s->huff_code_size++; |
| s->hbits <<= 1; |
| if (read_huffman_tree(avctx, gb)) |
| return -1; |
| s->hbits |= 1; |
| if (read_huffman_tree(avctx, gb)) |
| return -1; |
| s->hbits >>= 1; |
| s->huff_code_size--; |
| } |
| return 0; |
| } |
| |
| #if HAVE_THREADS |
| static int vp3_init_thread_copy(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| |
| s->superblock_coding = NULL; |
| s->all_fragments = NULL; |
| s->coded_fragment_list[0] = NULL; |
| s->dct_tokens_base = NULL; |
| s->superblock_fragments = NULL; |
| s->macroblock_coding = NULL; |
| s->motion_val[0] = NULL; |
| s->motion_val[1] = NULL; |
| s->edge_emu_buffer = NULL; |
| |
| return init_frames(s); |
| } |
| #endif |
| |
| #if CONFIG_THEORA_DECODER |
| static const enum AVPixelFormat theora_pix_fmts[4] = { |
| AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P |
| }; |
| |
| static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int visible_width, visible_height, colorspace; |
| uint8_t offset_x = 0, offset_y = 0; |
| int ret; |
| AVRational fps, aspect; |
| |
| s->theora_header = 0; |
| s->theora = get_bits_long(gb, 24); |
| av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); |
| |
| /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 |
| * but previous versions have the image flipped relative to vp3 */ |
| if (s->theora < 0x030200) { |
| s->flipped_image = 1; |
| av_log(avctx, AV_LOG_DEBUG, |
| "Old (<alpha3) Theora bitstream, flipped image\n"); |
| } |
| |
| visible_width = |
| s->width = get_bits(gb, 16) << 4; |
| visible_height = |
| s->height = get_bits(gb, 16) << 4; |
| |
| if (s->theora >= 0x030200) { |
| visible_width = get_bits_long(gb, 24); |
| visible_height = get_bits_long(gb, 24); |
| |
| offset_x = get_bits(gb, 8); /* offset x */ |
| offset_y = get_bits(gb, 8); /* offset y, from bottom */ |
| } |
| |
| /* sanity check */ |
| if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 || |
| visible_width + offset_x > s->width || |
| visible_height + offset_y > s->height) { |
| av_log(avctx, AV_LOG_ERROR, |
| "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n", |
| visible_width, visible_height, offset_x, offset_y, |
| s->width, s->height); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| fps.num = get_bits_long(gb, 32); |
| fps.den = get_bits_long(gb, 32); |
| if (fps.num && fps.den) { |
| if (fps.num < 0 || fps.den < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| av_reduce(&avctx->framerate.den, &avctx->framerate.num, |
| fps.den, fps.num, 1 << 30); |
| } |
| |
| aspect.num = get_bits_long(gb, 24); |
| aspect.den = get_bits_long(gb, 24); |
| if (aspect.num && aspect.den) { |
| av_reduce(&avctx->sample_aspect_ratio.num, |
| &avctx->sample_aspect_ratio.den, |
| aspect.num, aspect.den, 1 << 30); |
| ff_set_sar(avctx, avctx->sample_aspect_ratio); |
| } |
| |
| if (s->theora < 0x030200) |
| skip_bits(gb, 5); /* keyframe frequency force */ |
| colorspace = get_bits(gb, 8); |
| skip_bits(gb, 24); /* bitrate */ |
| |
| skip_bits(gb, 6); /* quality hint */ |
| |
| if (s->theora >= 0x030200) { |
| skip_bits(gb, 5); /* keyframe frequency force */ |
| avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; |
| if (avctx->pix_fmt == AV_PIX_FMT_NONE) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| skip_bits(gb, 3); /* reserved */ |
| } else |
| avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
| |
| ret = ff_set_dimensions(avctx, s->width, s->height); |
| if (ret < 0) |
| return ret; |
| if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) { |
| avctx->width = visible_width; |
| avctx->height = visible_height; |
| // translate offsets from theora axis ([0,0] lower left) |
| // to normal axis ([0,0] upper left) |
| s->offset_x = offset_x; |
| s->offset_y = s->height - visible_height - offset_y; |
| |
| if ((s->offset_x & 0x1F) && !(avctx->flags & AV_CODEC_FLAG_UNALIGNED)) { |
| s->offset_x &= ~0x1F; |
| if (!s->offset_x_warned) { |
| s->offset_x_warned = 1; |
| av_log(avctx, AV_LOG_WARNING, "Reducing offset_x from %d to %d" |
| "chroma samples to preserve alignment.\n", |
| offset_x, s->offset_x); |
| } |
| } |
| } |
| |
| if (colorspace == 1) |
| avctx->color_primaries = AVCOL_PRI_BT470M; |
| else if (colorspace == 2) |
| avctx->color_primaries = AVCOL_PRI_BT470BG; |
| |
| if (colorspace == 1 || colorspace == 2) { |
| avctx->colorspace = AVCOL_SPC_BT470BG; |
| avctx->color_trc = AVCOL_TRC_BT709; |
| } |
| |
| s->theora_header = 1; |
| return 0; |
| } |
| |
| static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| int i, n, matrices, inter, plane; |
| |
| if (!s->theora_header) |
| return AVERROR_INVALIDDATA; |
| |
| if (s->theora >= 0x030200) { |
| n = get_bits(gb, 3); |
| /* loop filter limit values table */ |
| if (n) |
| for (i = 0; i < 64; i++) |
| s->filter_limit_values[i] = get_bits(gb, n); |
| } |
| |
| if (s->theora >= 0x030200) |
| n = get_bits(gb, 4) + 1; |
| else |
| n = 16; |
| /* quality threshold table */ |
| for (i = 0; i < 64; i++) |
| s->coded_ac_scale_factor[i] = get_bits(gb, n); |
| |
| if (s->theora >= 0x030200) |
| n = get_bits(gb, 4) + 1; |
| else |
| n = 16; |
| /* dc scale factor table */ |
| for (i = 0; i < 64; i++) |
| s->coded_dc_scale_factor[i] = get_bits(gb, n); |
| |
| if (s->theora >= 0x030200) |
| matrices = get_bits(gb, 9) + 1; |
| else |
| matrices = 3; |
| |
| if (matrices > 384) { |
| av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); |
| return -1; |
| } |
| |
| for (n = 0; n < matrices; n++) |
| for (i = 0; i < 64; i++) |
| s->base_matrix[n][i] = get_bits(gb, 8); |
| |
| for (inter = 0; inter <= 1; inter++) { |
| for (plane = 0; plane <= 2; plane++) { |
| int newqr = 1; |
| if (inter || plane > 0) |
| newqr = get_bits1(gb); |
| if (!newqr) { |
| int qtj, plj; |
| if (inter && get_bits1(gb)) { |
| qtj = 0; |
| plj = plane; |
| } else { |
| qtj = (3 * inter + plane - 1) / 3; |
| plj = (plane + 2) % 3; |
| } |
| s->qr_count[inter][plane] = s->qr_count[qtj][plj]; |
| memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], |
| sizeof(s->qr_size[0][0])); |
| memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], |
| sizeof(s->qr_base[0][0])); |
| } else { |
| int qri = 0; |
| int qi = 0; |
| |
| for (;;) { |
| i = get_bits(gb, av_log2(matrices - 1) + 1); |
| if (i >= matrices) { |
| av_log(avctx, AV_LOG_ERROR, |
| "invalid base matrix index\n"); |
| return -1; |
| } |
| s->qr_base[inter][plane][qri] = i; |
| if (qi >= 63) |
| break; |
| i = get_bits(gb, av_log2(63 - qi) + 1) + 1; |
| s->qr_size[inter][plane][qri++] = i; |
| qi += i; |
| } |
| |
| if (qi > 63) { |
| av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); |
| return -1; |
| } |
| s->qr_count[inter][plane] = qri; |
| } |
| } |
| } |
| |
| /* Huffman tables */ |
| for (s->hti = 0; s->hti < 80; s->hti++) { |
| s->entries = 0; |
| s->huff_code_size = 1; |
| if (!get_bits1(gb)) { |
| s->hbits = 0; |
| if (read_huffman_tree(avctx, gb)) |
| return -1; |
| s->hbits = 1; |
| if (read_huffman_tree(avctx, gb)) |
| return -1; |
| } |
| } |
| |
| s->theora_tables = 1; |
| |
| return 0; |
| } |
| |
| static av_cold int theora_decode_init(AVCodecContext *avctx) |
| { |
| Vp3DecodeContext *s = avctx->priv_data; |
| GetBitContext gb; |
| int ptype; |
| const uint8_t *header_start[3]; |
| int header_len[3]; |
| int i; |
| int ret; |
| |
| avctx->pix_fmt = AV_PIX_FMT_YUV420P; |
| |
| s->theora = 1; |
| |
| if (!avctx->extradata_size) { |
| av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); |
| return -1; |
| } |
| |
| if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, |
| 42, header_start, header_len) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); |
| return -1; |
| } |
| |
| for (i = 0; i < 3; i++) { |
| if (header_len[i] <= 0) |
| continue; |
| ret = init_get_bits8(&gb, header_start[i], header_len[i]); |
| if (ret < 0) |
| return ret; |
| |
| ptype = get_bits(&gb, 8); |
| |
| if (!(ptype & 0x80)) { |
| av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); |
| // return -1; |
| } |
| |
| // FIXME: Check for this as well. |
| skip_bits_long(&gb, 6 * 8); /* "theora" */ |
| |
| switch (ptype) { |
| case 0x80: |
| if (theora_decode_header(avctx, &gb) < 0) |
| return -1; |
| break; |
| case 0x81: |
| // FIXME: is this needed? it breaks sometimes |
| // theora_decode_comments(avctx, gb); |
| break; |
| case 0x82: |
| if (theora_decode_tables(avctx, &gb)) |
| return -1; |
| break; |
| default: |
| av_log(avctx, AV_LOG_ERROR, |
| "Unknown Theora config packet: %d\n", ptype & ~0x80); |
| break; |
| } |
| if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb)) |
| av_log(avctx, AV_LOG_WARNING, |
| "%d bits left in packet %X\n", |
| 8 * header_len[i] - get_bits_count(&gb), ptype); |
| if (s->theora < 0x030200) |
| break; |
| } |
| |
| return vp3_decode_init(avctx); |
| } |
| |
| AVCodec ff_theora_decoder = { |
| .name = "theora", |
| .long_name = NULL_IF_CONFIG_SMALL("Theora"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_THEORA, |
| .priv_data_size = sizeof(Vp3DecodeContext), |
| .init = theora_decode_init, |
| .close = vp3_decode_end, |
| .decode = vp3_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | |
| AV_CODEC_CAP_FRAME_THREADS, |
| .flush = vp3_decode_flush, |
| .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), |
| .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context) |
| }; |
| #endif |
| |
| AVCodec ff_vp3_decoder = { |
| .name = "vp3", |
| .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .id = AV_CODEC_ID_VP3, |
| .priv_data_size = sizeof(Vp3DecodeContext), |
| .init = vp3_decode_init, |
| .close = vp3_decode_end, |
| .decode = vp3_decode_frame, |
| .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | |
| AV_CODEC_CAP_FRAME_THREADS, |
| .flush = vp3_decode_flush, |
| .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), |
| .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), |
| }; |