| /* |
| * Wmapro compatible decoder |
| * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion |
| * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * @brief wmapro decoder implementation |
| * Wmapro is an MDCT based codec comparable to wma standard or AAC. |
| * The decoding therefore consists of the following steps: |
| * - bitstream decoding |
| * - reconstruction of per-channel data |
| * - rescaling and inverse quantization |
| * - IMDCT |
| * - windowing and overlapp-add |
| * |
| * The compressed wmapro bitstream is split into individual packets. |
| * Every such packet contains one or more wma frames. |
| * The compressed frames may have a variable length and frames may |
| * cross packet boundaries. |
| * Common to all wmapro frames is the number of samples that are stored in |
| * a frame. |
| * The number of samples and a few other decode flags are stored |
| * as extradata that has to be passed to the decoder. |
| * |
| * The wmapro frames themselves are again split into a variable number of |
| * subframes. Every subframe contains the data for 2^N time domain samples |
| * where N varies between 7 and 12. |
| * |
| * Example wmapro bitstream (in samples): |
| * |
| * || packet 0 || packet 1 || packet 2 packets |
| * --------------------------------------------------- |
| * || frame 0 || frame 1 || frame 2 || frames |
| * --------------------------------------------------- |
| * || | | || | | | || || subframes of channel 0 |
| * --------------------------------------------------- |
| * || | | || | | | || || subframes of channel 1 |
| * --------------------------------------------------- |
| * |
| * The frame layouts for the individual channels of a wma frame does not need |
| * to be the same. |
| * |
| * However, if the offsets and lengths of several subframes of a frame are the |
| * same, the subframes of the channels can be grouped. |
| * Every group may then use special coding techniques like M/S stereo coding |
| * to improve the compression ratio. These channel transformations do not |
| * need to be applied to a whole subframe. Instead, they can also work on |
| * individual scale factor bands (see below). |
| * The coefficients that carry the audio signal in the frequency domain |
| * are transmitted as huffman-coded vectors with 4, 2 and 1 elements. |
| * In addition to that, the encoder can switch to a runlevel coding scheme |
| * by transmitting subframe_length / 128 zero coefficients. |
| * |
| * Before the audio signal can be converted to the time domain, the |
| * coefficients have to be rescaled and inverse quantized. |
| * A subframe is therefore split into several scale factor bands that get |
| * scaled individually. |
| * Scale factors are submitted for every frame but they might be shared |
| * between the subframes of a channel. Scale factors are initially DPCM-coded. |
| * Once scale factors are shared, the differences are transmitted as runlevel |
| * codes. |
| * Every subframe length and offset combination in the frame layout shares a |
| * common quantization factor that can be adjusted for every channel by a |
| * modifier. |
| * After the inverse quantization, the coefficients get processed by an IMDCT. |
| * The resulting values are then windowed with a sine window and the first half |
| * of the values are added to the second half of the output from the previous |
| * subframe in order to reconstruct the output samples. |
| */ |
| |
| #include <inttypes.h> |
| |
| #include "libavutil/float_dsp.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/intfloat.h" |
| #include "libavutil/intreadwrite.h" |
| #include "avcodec.h" |
| #include "internal.h" |
| #include "get_bits.h" |
| #include "put_bits.h" |
| #include "wmaprodata.h" |
| #include "sinewin.h" |
| #include "wma.h" |
| #include "wma_common.h" |
| |
| /** current decoder limitations */ |
| #define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels |
| #define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
| #define MAX_BANDS 29 ///< max number of scale factor bands |
| #define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
| |
| #define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size |
| #define WMAPRO_BLOCK_MAX_BITS 13 ///< log2 of max block size |
| #define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS) ///< minimum block size |
| #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size |
| #define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes |
| |
| |
| #define VLCBITS 9 |
| #define SCALEVLCBITS 8 |
| #define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
| #define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
| #define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
| #define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
| #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
| |
| static VLC sf_vlc; ///< scale factor DPCM vlc |
| static VLC sf_rl_vlc; ///< scale factor run length vlc |
| static VLC vec4_vlc; ///< 4 coefficients per symbol |
| static VLC vec2_vlc; ///< 2 coefficients per symbol |
| static VLC vec1_vlc; ///< 1 coefficient per symbol |
| static VLC coef_vlc[2]; ///< coefficient run length vlc codes |
| static float sin64[33]; ///< sine table for decorrelation |
| |
| /** |
| * @brief frame specific decoder context for a single channel |
| */ |
| typedef struct WMAProChannelCtx { |
| int16_t prev_block_len; ///< length of the previous block |
| uint8_t transmit_coefs; |
| uint8_t num_subframes; |
| uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples |
| uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame |
| uint8_t cur_subframe; ///< current subframe number |
| uint16_t decoded_samples; ///< number of already processed samples |
| uint8_t grouped; ///< channel is part of a group |
| int quant_step; ///< quantization step for the current subframe |
| int8_t reuse_sf; ///< share scale factors between subframes |
| int8_t scale_factor_step; ///< scaling step for the current subframe |
| int max_scale_factor; ///< maximum scale factor for the current subframe |
| int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
| int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) |
| int* scale_factors; ///< pointer to the scale factor values used for decoding |
| uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block |
| float* coeffs; ///< pointer to the subframe decode buffer |
| uint16_t num_vec_coeffs; ///< number of vector coded coefficients |
| DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer |
| } WMAProChannelCtx; |
| |
| /** |
| * @brief channel group for channel transformations |
| */ |
| typedef struct WMAProChannelGrp { |
| uint8_t num_channels; ///< number of channels in the group |
| int8_t transform; ///< transform on / off |
| int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band |
| float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS]; |
| float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients |
| } WMAProChannelGrp; |
| |
| /** |
| * @brief main decoder context |
| */ |
| typedef struct WMAProDecodeCtx { |
| /* generic decoder variables */ |
| AVCodecContext* avctx; ///< codec context for av_log |
| AVFloatDSPContext *fdsp; |
| uint8_t frame_data[MAX_FRAMESIZE + |
| AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data |
| PutBitContext pb; ///< context for filling the frame_data buffer |
| FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size |
| DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer |
| const float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes |
| |
| /* frame size dependent frame information (set during initialization) */ |
| uint32_t decode_flags; ///< used compression features |
| uint8_t len_prefix; ///< frame is prefixed with its length |
| uint8_t dynamic_range_compression; ///< frame contains DRC data |
| uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) |
| uint16_t samples_per_frame; ///< number of samples to output |
| uint16_t log2_frame_size; |
| int8_t lfe_channel; ///< lfe channel index |
| uint8_t max_num_subframes; |
| uint8_t subframe_len_bits; ///< number of bits used for the subframe length |
| uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 |
| uint16_t min_samples_per_subframe; |
| int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size |
| int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) |
| int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix |
| int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values |
| |
| /* packet decode state */ |
| GetBitContext pgb; ///< bitstream reader context for the packet |
| int next_packet_start; ///< start offset of the next wma packet in the demuxer packet |
| uint8_t packet_offset; ///< frame offset in the packet |
| uint8_t packet_sequence_number; ///< current packet number |
| int num_saved_bits; ///< saved number of bits |
| int frame_offset; ///< frame offset in the bit reservoir |
| int subframe_offset; ///< subframe offset in the bit reservoir |
| uint8_t packet_loss; ///< set in case of bitstream error |
| uint8_t packet_done; ///< set when a packet is fully decoded |
| uint8_t skip_packets; |
| |
| /* frame decode state */ |
| uint32_t frame_num; ///< current frame number (not used for decoding) |
| int num_frames; |
| GetBitContext gb; ///< bitstream reader context |
| int buf_bit_size; ///< buffer size in bits |
| uint8_t drc_gain; ///< gain for the DRC tool |
| int8_t skip_frame; ///< skip output step |
| int8_t parsed_all_subframes; ///< all subframes decoded? |
| |
| /* subframe/block decode state */ |
| int16_t subframe_len; ///< current subframe length |
| int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe |
| int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; |
| int8_t num_bands; ///< number of scale factor bands |
| int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream |
| int16_t* cur_sfb_offsets; ///< sfb offsets for the current block |
| uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables |
| int8_t esc_len; ///< length of escaped coefficients |
| |
| uint8_t num_chgroups; ///< number of channel groups |
| WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information |
| |
| WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data |
| } WMAProDecodeCtx; |
| |
| |
| /** |
| *@brief helper function to print the most important members of the context |
| *@param s context |
| */ |
| static av_cold void dump_context(WMAProDecodeCtx *s) |
| { |
| #define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
| #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b); |
| |
| PRINT("ed sample bit depth", s->bits_per_sample); |
| PRINT_HEX("ed decode flags", s->decode_flags); |
| PRINT("samples per frame", s->samples_per_frame); |
| PRINT("log2 frame size", s->log2_frame_size); |
| PRINT("max num subframes", s->max_num_subframes); |
| PRINT("len prefix", s->len_prefix); |
| PRINT("num channels", s->avctx->channels); |
| } |
| |
| /** |
| *@brief Uninitialize the decoder and free all resources. |
| *@param avctx codec context |
| *@return 0 on success, < 0 otherwise |
| */ |
| static av_cold int decode_end(AVCodecContext *avctx) |
| { |
| WMAProDecodeCtx *s = avctx->priv_data; |
| int i; |
| |
| av_freep(&s->fdsp); |
| |
| for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
| ff_mdct_end(&s->mdct_ctx[i]); |
| |
| return 0; |
| } |
| |
| static av_cold int get_rate(AVCodecContext *avctx) |
| { |
| if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { // XXX: is this really only for XMA? |
| if (avctx->sample_rate > 44100) |
| return 48000; |
| else if (avctx->sample_rate > 32000) |
| return 44100; |
| else if (avctx->sample_rate > 24000) |
| return 32000; |
| return 24000; |
| } |
| |
| return avctx->sample_rate; |
| } |
| |
| /** |
| *@brief Initialize the decoder. |
| *@param avctx codec context |
| *@return 0 on success, -1 otherwise |
| */ |
| static av_cold int decode_init(AVCodecContext *avctx) |
| { |
| WMAProDecodeCtx *s = avctx->priv_data; |
| uint8_t *edata_ptr = avctx->extradata; |
| unsigned int channel_mask; |
| int i, bits; |
| int log2_max_num_subframes; |
| int num_possible_block_sizes; |
| |
| if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2) |
| avctx->block_align = 2048; |
| |
| if (!avctx->block_align) { |
| av_log(avctx, AV_LOG_ERROR, "block_align is not set\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| s->avctx = avctx; |
| s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); |
| if (!s->fdsp) |
| return AVERROR(ENOMEM); |
| |
| init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
| |
| avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
| |
| if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size >= 34) { |
| s->decode_flags = 0x10d6; |
| channel_mask = AV_RL32(edata_ptr+2); |
| s->bits_per_sample = 16; |
| /** dump the extradata */ |
| for (i = 0; i < avctx->extradata_size; i++) |
| ff_dlog(avctx, "[%x] ", avctx->extradata[i]); |
| ff_dlog(avctx, "\n"); |
| |
| } else if (avctx->codec_id == AV_CODEC_ID_XMA1 && avctx->extradata_size >= 28) { |
| s->decode_flags = 0x10d6; |
| s->bits_per_sample = 16; |
| channel_mask = 0; |
| /** dump the extradata */ |
| for (i = 0; i < avctx->extradata_size; i++) |
| ff_dlog(avctx, "[%x] ", avctx->extradata[i]); |
| ff_dlog(avctx, "\n"); |
| |
| } else if (avctx->extradata_size >= 18) { |
| s->decode_flags = AV_RL16(edata_ptr+14); |
| channel_mask = AV_RL32(edata_ptr+2); |
| s->bits_per_sample = AV_RL16(edata_ptr); |
| |
| if (s->bits_per_sample > 32 || s->bits_per_sample < 1) { |
| avpriv_request_sample(avctx, "bits per sample is %d", s->bits_per_sample); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /** dump the extradata */ |
| for (i = 0; i < avctx->extradata_size; i++) |
| ff_dlog(avctx, "[%x] ", avctx->extradata[i]); |
| ff_dlog(avctx, "\n"); |
| |
| } else { |
| avpriv_request_sample(avctx, "Unknown extradata size"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| if (avctx->codec_id != AV_CODEC_ID_WMAPRO && avctx->channels > 2) { |
| avpriv_report_missing_feature(avctx, ">2 channels support"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /** generic init */ |
| s->log2_frame_size = av_log2(avctx->block_align) + 4; |
| if (s->log2_frame_size > 25) { |
| avpriv_request_sample(avctx, "Large block align"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /** frame info */ |
| if (avctx->codec_id != AV_CODEC_ID_WMAPRO) |
| s->skip_frame = 0; |
| else |
| s->skip_frame = 1; /* skip first frame */ |
| |
| s->packet_loss = 1; |
| s->len_prefix = (s->decode_flags & 0x40); |
| |
| /** get frame len */ |
| if (avctx->codec_id == AV_CODEC_ID_WMAPRO) { |
| bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags); |
| if (bits > WMAPRO_BLOCK_MAX_BITS) { |
| avpriv_request_sample(avctx, "14-bit block sizes"); |
| return AVERROR_PATCHWELCOME; |
| } |
| s->samples_per_frame = 1 << bits; |
| } else { |
| s->samples_per_frame = 512; |
| } |
| |
| /** subframe info */ |
| log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
| s->max_num_subframes = 1 << log2_max_num_subframes; |
| if (s->max_num_subframes == 16 || s->max_num_subframes == 4) |
| s->max_subframe_len_bit = 1; |
| s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; |
| |
| num_possible_block_sizes = log2_max_num_subframes + 1; |
| s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
| s->dynamic_range_compression = (s->decode_flags & 0x80); |
| |
| if (s->max_num_subframes > MAX_SUBFRAMES) { |
| av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n", |
| s->max_num_subframes); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) { |
| av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n", |
| s->min_samples_per_subframe); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (s->avctx->sample_rate <= 0) { |
| av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (avctx->channels < 0) { |
| av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", |
| avctx->channels); |
| return AVERROR_INVALIDDATA; |
| } else if (avctx->channels > WMAPRO_MAX_CHANNELS) { |
| avpriv_request_sample(avctx, |
| "More than %d channels", WMAPRO_MAX_CHANNELS); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| /** init previous block len */ |
| for (i = 0; i < avctx->channels; i++) |
| s->channel[i].prev_block_len = s->samples_per_frame; |
| |
| /** extract lfe channel position */ |
| s->lfe_channel = -1; |
| |
| if (channel_mask & 8) { |
| unsigned int mask; |
| for (mask = 1; mask < 16; mask <<= 1) { |
| if (channel_mask & mask) |
| ++s->lfe_channel; |
| } |
| } |
| |
| INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, |
| scale_huffbits, 1, 1, |
| scale_huffcodes, 2, 2, 616); |
| |
| INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, |
| scale_rl_huffbits, 1, 1, |
| scale_rl_huffcodes, 4, 4, 1406); |
| |
| INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE, |
| coef0_huffbits, 1, 1, |
| coef0_huffcodes, 4, 4, 2108); |
| |
| INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE, |
| coef1_huffbits, 1, 1, |
| coef1_huffcodes, 4, 4, 3912); |
| |
| INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, |
| vec4_huffbits, 1, 1, |
| vec4_huffcodes, 2, 2, 604); |
| |
| INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, |
| vec2_huffbits, 1, 1, |
| vec2_huffcodes, 2, 2, 562); |
| |
| INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, |
| vec1_huffbits, 1, 1, |
| vec1_huffcodes, 2, 2, 562); |
| |
| /** calculate number of scale factor bands and their offsets |
| for every possible block size */ |
| for (i = 0; i < num_possible_block_sizes; i++) { |
| int subframe_len = s->samples_per_frame >> i; |
| int x; |
| int band = 1; |
| int rate = get_rate(avctx); |
| |
| s->sfb_offsets[i][0] = 0; |
| |
| for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { |
| int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2; |
| offset &= ~3; |
| if (offset > s->sfb_offsets[i][band - 1]) |
| s->sfb_offsets[i][band++] = offset; |
| |
| if (offset >= subframe_len) |
| break; |
| } |
| s->sfb_offsets[i][band - 1] = subframe_len; |
| s->num_sfb[i] = band - 1; |
| if (s->num_sfb[i] <= 0) { |
| av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } |
| |
| |
| /** Scale factors can be shared between blocks of different size |
| as every block has a different scale factor band layout. |
| The matrix sf_offsets is needed to find the correct scale factor. |
| */ |
| |
| for (i = 0; i < num_possible_block_sizes; i++) { |
| int b; |
| for (b = 0; b < s->num_sfb[i]; b++) { |
| int x; |
| int offset = ((s->sfb_offsets[i][b] |
| + s->sfb_offsets[i][b + 1] - 1) << i) >> 1; |
| for (x = 0; x < num_possible_block_sizes; x++) { |
| int v = 0; |
| while (s->sfb_offsets[x][v + 1] << x < offset) { |
| v++; |
| av_assert0(v < MAX_BANDS); |
| } |
| s->sf_offsets[i][x][b] = v; |
| } |
| } |
| } |
| |
| /** init MDCT, FIXME: only init needed sizes */ |
| for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
| ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1, |
| 1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1)) |
| / (1 << (s->bits_per_sample - 1))); |
| |
| /** init MDCT windows: simple sine window */ |
| for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { |
| const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; |
| ff_init_ff_sine_windows(win_idx); |
| s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx]; |
| } |
| |
| /** calculate subwoofer cutoff values */ |
| for (i = 0; i < num_possible_block_sizes; i++) { |
| int block_size = s->samples_per_frame >> i; |
| int cutoff = (440*block_size + 3LL * (s->avctx->sample_rate >> 1) - 1) |
| / s->avctx->sample_rate; |
| s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size); |
| } |
| |
| /** calculate sine values for the decorrelation matrix */ |
| for (i = 0; i < 33; i++) |
| sin64[i] = sin(i*M_PI / 64.0); |
| |
| if (avctx->debug & FF_DEBUG_BITSTREAM) |
| dump_context(s); |
| |
| avctx->channel_layout = channel_mask; |
| |
| return 0; |
| } |
| |
| /** |
| *@brief Decode the subframe length. |
| *@param s context |
| *@param offset sample offset in the frame |
| *@return decoded subframe length on success, < 0 in case of an error |
| */ |
| static int decode_subframe_length(WMAProDecodeCtx *s, int offset) |
| { |
| int frame_len_shift = 0; |
| int subframe_len; |
| |
| /** no need to read from the bitstream when only one length is possible */ |
| if (offset == s->samples_per_frame - s->min_samples_per_subframe) |
| return s->min_samples_per_subframe; |
| |
| if (get_bits_left(&s->gb) < 1) |
| return AVERROR_INVALIDDATA; |
| |
| /** 1 bit indicates if the subframe is of maximum length */ |
| if (s->max_subframe_len_bit) { |
| if (get_bits1(&s->gb)) |
| frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); |
| } else |
| frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); |
| |
| subframe_len = s->samples_per_frame >> frame_len_shift; |
| |
| /** sanity check the length */ |
| if (subframe_len < s->min_samples_per_subframe || |
| subframe_len > s->samples_per_frame) { |
| av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", |
| subframe_len); |
| return AVERROR_INVALIDDATA; |
| } |
| return subframe_len; |
| } |
| |
| /** |
| *@brief Decode how the data in the frame is split into subframes. |
| * Every WMA frame contains the encoded data for a fixed number of |
| * samples per channel. The data for every channel might be split |
| * into several subframes. This function will reconstruct the list of |
| * subframes for every channel. |
| * |
| * If the subframes are not evenly split, the algorithm estimates the |
| * channels with the lowest number of total samples. |
| * Afterwards, for each of these channels a bit is read from the |
| * bitstream that indicates if the channel contains a subframe with the |
| * next subframe size that is going to be read from the bitstream or not. |
| * If a channel contains such a subframe, the subframe size gets added to |
| * the channel's subframe list. |
| * The algorithm repeats these steps until the frame is properly divided |
| * between the individual channels. |
| * |
| *@param s context |
| *@return 0 on success, < 0 in case of an error |
| */ |
| static int decode_tilehdr(WMAProDecodeCtx *s) |
| { |
| uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */ |
| uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */ |
| int channels_for_cur_subframe = s->avctx->channels; /**< number of channels that contain the current subframe */ |
| int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */ |
| int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */ |
| int c; |
| |
| /* Should never consume more than 3073 bits (256 iterations for the |
| * while loop when always the minimum amount of 128 samples is subtracted |
| * from missing samples in the 8 channel case). |
| * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) |
| */ |
| |
| /** reset tiling information */ |
| for (c = 0; c < s->avctx->channels; c++) |
| s->channel[c].num_subframes = 0; |
| |
| if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
| fixed_channel_layout = 1; |
| |
| /** loop until the frame data is split between the subframes */ |
| do { |
| int subframe_len; |
| |
| /** check which channels contain the subframe */ |
| for (c = 0; c < s->avctx->channels; c++) { |
| if (num_samples[c] == min_channel_len) { |
| if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
| (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) |
| contains_subframe[c] = 1; |
| else |
| contains_subframe[c] = get_bits1(&s->gb); |
| } else |
| contains_subframe[c] = 0; |
| } |
| |
| /** get subframe length, subframe_len == 0 is not allowed */ |
| if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
| return AVERROR_INVALIDDATA; |
| |
| /** add subframes to the individual channels and find new min_channel_len */ |
| min_channel_len += subframe_len; |
| for (c = 0; c < s->avctx->channels; c++) { |
| WMAProChannelCtx* chan = &s->channel[c]; |
| |
| if (contains_subframe[c]) { |
| if (chan->num_subframes >= MAX_SUBFRAMES) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "broken frame: num subframes > 31\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| chan->subframe_len[chan->num_subframes] = subframe_len; |
| num_samples[c] += subframe_len; |
| ++chan->num_subframes; |
| if (num_samples[c] > s->samples_per_frame) { |
| av_log(s->avctx, AV_LOG_ERROR, "broken frame: " |
| "channel len > samples_per_frame\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| } else if (num_samples[c] <= min_channel_len) { |
| if (num_samples[c] < min_channel_len) { |
| channels_for_cur_subframe = 0; |
| min_channel_len = num_samples[c]; |
| } |
| ++channels_for_cur_subframe; |
| } |
| } |
| } while (min_channel_len < s->samples_per_frame); |
| |
| for (c = 0; c < s->avctx->channels; c++) { |
| int i; |
| int offset = 0; |
| for (i = 0; i < s->channel[c].num_subframes; i++) { |
| ff_dlog(s->avctx, "frame[%i] channel[%i] subframe[%i]" |
| " len %i\n", s->frame_num, c, i, |
| s->channel[c].subframe_len[i]); |
| s->channel[c].subframe_offset[i] = offset; |
| offset += s->channel[c].subframe_len[i]; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| *@brief Calculate a decorrelation matrix from the bitstream parameters. |
| *@param s codec context |
| *@param chgroup channel group for which the matrix needs to be calculated |
| */ |
| static void decode_decorrelation_matrix(WMAProDecodeCtx *s, |
| WMAProChannelGrp *chgroup) |
| { |
| int i; |
| int offset = 0; |
| int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; |
| memset(chgroup->decorrelation_matrix, 0, s->avctx->channels * |
| s->avctx->channels * sizeof(*chgroup->decorrelation_matrix)); |
| |
| for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) |
| rotation_offset[i] = get_bits(&s->gb, 6); |
| |
| for (i = 0; i < chgroup->num_channels; i++) |
| chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = |
| get_bits1(&s->gb) ? 1.0 : -1.0; |
| |
| for (i = 1; i < chgroup->num_channels; i++) { |
| int x; |
| for (x = 0; x < i; x++) { |
| int y; |
| for (y = 0; y < i + 1; y++) { |
| float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y]; |
| float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y]; |
| int n = rotation_offset[offset + x]; |
| float sinv; |
| float cosv; |
| |
| if (n < 32) { |
| sinv = sin64[n]; |
| cosv = sin64[32 - n]; |
| } else { |
| sinv = sin64[64 - n]; |
| cosv = -sin64[n - 32]; |
| } |
| |
| chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = |
| (v1 * sinv) - (v2 * cosv); |
| chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = |
| (v1 * cosv) + (v2 * sinv); |
| } |
| } |
| offset += i; |
| } |
| } |
| |
| /** |
| *@brief Decode channel transformation parameters |
| *@param s codec context |
| *@return >= 0 in case of success, < 0 in case of bitstream errors |
| */ |
| static int decode_channel_transform(WMAProDecodeCtx* s) |
| { |
| int i; |
| /* should never consume more than 1921 bits for the 8 channel case |
| * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS |
| * + MAX_CHANNELS + MAX_BANDS + 1) |
| */ |
| |
| /** in the one channel case channel transforms are pointless */ |
| s->num_chgroups = 0; |
| if (s->avctx->channels > 1) { |
| int remaining_channels = s->channels_for_cur_subframe; |
| |
| if (get_bits1(&s->gb)) { |
| avpriv_request_sample(s->avctx, |
| "Channel transform bit"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| for (s->num_chgroups = 0; remaining_channels && |
| s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { |
| WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; |
| float** channel_data = chgroup->channel_data; |
| chgroup->num_channels = 0; |
| chgroup->transform = 0; |
| |
| /** decode channel mask */ |
| if (remaining_channels > 2) { |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
| if (!s->channel[channel_idx].grouped |
| && get_bits1(&s->gb)) { |
| ++chgroup->num_channels; |
| s->channel[channel_idx].grouped = 1; |
| *channel_data++ = s->channel[channel_idx].coeffs; |
| } |
| } |
| } else { |
| chgroup->num_channels = remaining_channels; |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
| if (!s->channel[channel_idx].grouped) |
| *channel_data++ = s->channel[channel_idx].coeffs; |
| s->channel[channel_idx].grouped = 1; |
| } |
| } |
| |
| /** decode transform type */ |
| if (chgroup->num_channels == 2) { |
| if (get_bits1(&s->gb)) { |
| if (get_bits1(&s->gb)) { |
| avpriv_request_sample(s->avctx, |
| "Unknown channel transform type"); |
| return AVERROR_PATCHWELCOME; |
| } |
| } else { |
| chgroup->transform = 1; |
| if (s->avctx->channels == 2) { |
| chgroup->decorrelation_matrix[0] = 1.0; |
| chgroup->decorrelation_matrix[1] = -1.0; |
| chgroup->decorrelation_matrix[2] = 1.0; |
| chgroup->decorrelation_matrix[3] = 1.0; |
| } else { |
| /** cos(pi/4) */ |
| chgroup->decorrelation_matrix[0] = 0.70703125; |
| chgroup->decorrelation_matrix[1] = -0.70703125; |
| chgroup->decorrelation_matrix[2] = 0.70703125; |
| chgroup->decorrelation_matrix[3] = 0.70703125; |
| } |
| } |
| } else if (chgroup->num_channels > 2) { |
| if (get_bits1(&s->gb)) { |
| chgroup->transform = 1; |
| if (get_bits1(&s->gb)) { |
| decode_decorrelation_matrix(s, chgroup); |
| } else { |
| /** FIXME: more than 6 coupled channels not supported */ |
| if (chgroup->num_channels > 6) { |
| avpriv_request_sample(s->avctx, |
| "Coupled channels > 6"); |
| } else { |
| memcpy(chgroup->decorrelation_matrix, |
| default_decorrelation[chgroup->num_channels], |
| chgroup->num_channels * chgroup->num_channels * |
| sizeof(*chgroup->decorrelation_matrix)); |
| } |
| } |
| } |
| } |
| |
| /** decode transform on / off */ |
| if (chgroup->transform) { |
| if (!get_bits1(&s->gb)) { |
| int i; |
| /** transform can be enabled for individual bands */ |
| for (i = 0; i < s->num_bands; i++) { |
| chgroup->transform_band[i] = get_bits1(&s->gb); |
| } |
| } else { |
| memset(chgroup->transform_band, 1, s->num_bands); |
| } |
| } |
| remaining_channels -= chgroup->num_channels; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| *@brief Extract the coefficients from the bitstream. |
| *@param s codec context |
| *@param c current channel number |
| *@return 0 on success, < 0 in case of bitstream errors |
| */ |
| static int decode_coeffs(WMAProDecodeCtx *s, int c) |
| { |
| /* Integers 0..15 as single-precision floats. The table saves a |
| costly int to float conversion, and storing the values as |
| integers allows fast sign-flipping. */ |
| static const uint32_t fval_tab[16] = { |
| 0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
| 0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
| 0x41000000, 0x41100000, 0x41200000, 0x41300000, |
| 0x41400000, 0x41500000, 0x41600000, 0x41700000, |
| }; |
| int vlctable; |
| VLC* vlc; |
| WMAProChannelCtx* ci = &s->channel[c]; |
| int rl_mode = 0; |
| int cur_coeff = 0; |
| int num_zeros = 0; |
| const uint16_t* run; |
| const float* level; |
| |
| ff_dlog(s->avctx, "decode coefficients for channel %i\n", c); |
| |
| vlctable = get_bits1(&s->gb); |
| vlc = &coef_vlc[vlctable]; |
| |
| if (vlctable) { |
| run = coef1_run; |
| level = coef1_level; |
| } else { |
| run = coef0_run; |
| level = coef0_level; |
| } |
| |
| /** decode vector coefficients (consumes up to 167 bits per iteration for |
| 4 vector coded large values) */ |
| while ((s->transmit_num_vec_coeffs || !rl_mode) && |
| (cur_coeff + 3 < ci->num_vec_coeffs)) { |
| uint32_t vals[4]; |
| int i; |
| unsigned int idx; |
| |
| idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); |
| |
| if (idx == HUFF_VEC4_SIZE - 1) { |
| for (i = 0; i < 4; i += 2) { |
| idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
| if (idx == HUFF_VEC2_SIZE - 1) { |
| uint32_t v0, v1; |
| v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
| if (v0 == HUFF_VEC1_SIZE - 1) |
| v0 += ff_wma_get_large_val(&s->gb); |
| v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
| if (v1 == HUFF_VEC1_SIZE - 1) |
| v1 += ff_wma_get_large_val(&s->gb); |
| vals[i ] = av_float2int(v0); |
| vals[i+1] = av_float2int(v1); |
| } else { |
| vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ]; |
| vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
| } |
| } |
| } else { |
| vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
| vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
| vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
| vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
| } |
| |
| /** decode sign */ |
| for (i = 0; i < 4; i++) { |
| if (vals[i]) { |
| uint32_t sign = get_bits1(&s->gb) - 1; |
| AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31); |
| num_zeros = 0; |
| } else { |
| ci->coeffs[cur_coeff] = 0; |
| /** switch to run level mode when subframe_len / 128 zeros |
| were found in a row */ |
| rl_mode |= (++num_zeros > s->subframe_len >> 8); |
| } |
| ++cur_coeff; |
| } |
| } |
| |
| /** decode run level coded coefficients */ |
| if (cur_coeff < s->subframe_len) { |
| memset(&ci->coeffs[cur_coeff], 0, |
| sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff)); |
| if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc, |
| level, run, 1, ci->coeffs, |
| cur_coeff, s->subframe_len, |
| s->subframe_len, s->esc_len, 0)) |
| return AVERROR_INVALIDDATA; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| *@brief Extract scale factors from the bitstream. |
| *@param s codec context |
| *@return 0 on success, < 0 in case of bitstream errors |
| */ |
| static int decode_scale_factors(WMAProDecodeCtx* s) |
| { |
| int i; |
| |
| /** should never consume more than 5344 bits |
| * MAX_CHANNELS * (1 + MAX_BANDS * 23) |
| */ |
| |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| int* sf; |
| int* sf_end; |
| s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; |
| sf_end = s->channel[c].scale_factors + s->num_bands; |
| |
| /** resample scale factors for the new block size |
| * as the scale factors might need to be resampled several times |
| * before some new values are transmitted, a backup of the last |
| * transmitted scale factors is kept in saved_scale_factors |
| */ |
| if (s->channel[c].reuse_sf) { |
| const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx]; |
| int b; |
| for (b = 0; b < s->num_bands; b++) |
| s->channel[c].scale_factors[b] = |
| s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; |
| } |
| |
| if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) { |
| |
| if (!s->channel[c].reuse_sf) { |
| int val; |
| /** decode DPCM coded scale factors */ |
| s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; |
| val = 45 / s->channel[c].scale_factor_step; |
| for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) { |
| val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60; |
| *sf = val; |
| } |
| } else { |
| int i; |
| /** run level decode differences to the resampled factors */ |
| for (i = 0; i < s->num_bands; i++) { |
| int idx; |
| int skip; |
| int val; |
| int sign; |
| |
| idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); |
| |
| if (!idx) { |
| uint32_t code = get_bits(&s->gb, 14); |
| val = code >> 6; |
| sign = (code & 1) - 1; |
| skip = (code & 0x3f) >> 1; |
| } else if (idx == 1) { |
| break; |
| } else { |
| skip = scale_rl_run[idx]; |
| val = scale_rl_level[idx]; |
| sign = get_bits1(&s->gb)-1; |
| } |
| |
| i += skip; |
| if (i >= s->num_bands) { |
| av_log(s->avctx, AV_LOG_ERROR, |
| "invalid scale factor coding\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| s->channel[c].scale_factors[i] += (val ^ sign) - sign; |
| } |
| } |
| /** swap buffers */ |
| s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; |
| s->channel[c].table_idx = s->table_idx; |
| s->channel[c].reuse_sf = 1; |
| } |
| |
| /** calculate new scale factor maximum */ |
| s->channel[c].max_scale_factor = s->channel[c].scale_factors[0]; |
| for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { |
| s->channel[c].max_scale_factor = |
| FFMAX(s->channel[c].max_scale_factor, *sf); |
| } |
| |
| } |
| return 0; |
| } |
| |
| /** |
| *@brief Reconstruct the individual channel data. |
| *@param s codec context |
| */ |
| static void inverse_channel_transform(WMAProDecodeCtx *s) |
| { |
| int i; |
| |
| for (i = 0; i < s->num_chgroups; i++) { |
| if (s->chgroup[i].transform) { |
| float data[WMAPRO_MAX_CHANNELS]; |
| const int num_channels = s->chgroup[i].num_channels; |
| float** ch_data = s->chgroup[i].channel_data; |
| float** ch_end = ch_data + num_channels; |
| const int8_t* tb = s->chgroup[i].transform_band; |
| int16_t* sfb; |
| |
| /** multichannel decorrelation */ |
| for (sfb = s->cur_sfb_offsets; |
| sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { |
| int y; |
| if (*tb++ == 1) { |
| /** multiply values with the decorrelation_matrix */ |
| for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { |
| const float* mat = s->chgroup[i].decorrelation_matrix; |
| const float* data_end = data + num_channels; |
| float* data_ptr = data; |
| float** ch; |
| |
| for (ch = ch_data; ch < ch_end; ch++) |
| *data_ptr++ = (*ch)[y]; |
| |
| for (ch = ch_data; ch < ch_end; ch++) { |
| float sum = 0; |
| data_ptr = data; |
| while (data_ptr < data_end) |
| sum += *data_ptr++ * *mat++; |
| |
| (*ch)[y] = sum; |
| } |
| } |
| } else if (s->avctx->channels == 2) { |
| int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; |
| s->fdsp->vector_fmul_scalar(ch_data[0] + sfb[0], |
| ch_data[0] + sfb[0], |
| 181.0 / 128, len); |
| s->fdsp->vector_fmul_scalar(ch_data[1] + sfb[0], |
| ch_data[1] + sfb[0], |
| 181.0 / 128, len); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| *@brief Apply sine window and reconstruct the output buffer. |
| *@param s codec context |
| */ |
| static void wmapro_window(WMAProDecodeCtx *s) |
| { |
| int i; |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| const float* window; |
| int winlen = s->channel[c].prev_block_len; |
| float* start = s->channel[c].coeffs - (winlen >> 1); |
| |
| if (s->subframe_len < winlen) { |
| start += (winlen - s->subframe_len) >> 1; |
| winlen = s->subframe_len; |
| } |
| |
| window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS]; |
| |
| winlen >>= 1; |
| |
| s->fdsp->vector_fmul_window(start, start, start + winlen, |
| window, winlen); |
| |
| s->channel[c].prev_block_len = s->subframe_len; |
| } |
| } |
| |
| /** |
| *@brief Decode a single subframe (block). |
| *@param s codec context |
| *@return 0 on success, < 0 when decoding failed |
| */ |
| static int decode_subframe(WMAProDecodeCtx *s) |
| { |
| int offset = s->samples_per_frame; |
| int subframe_len = s->samples_per_frame; |
| int i; |
| int total_samples = s->samples_per_frame * s->avctx->channels; |
| int transmit_coeffs = 0; |
| int cur_subwoofer_cutoff; |
| |
| s->subframe_offset = get_bits_count(&s->gb); |
| |
| /** reset channel context and find the next block offset and size |
| == the next block of the channel with the smallest number of |
| decoded samples |
| */ |
| for (i = 0; i < s->avctx->channels; i++) { |
| s->channel[i].grouped = 0; |
| if (offset > s->channel[i].decoded_samples) { |
| offset = s->channel[i].decoded_samples; |
| subframe_len = |
| s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
| } |
| } |
| |
| ff_dlog(s->avctx, |
| "processing subframe with offset %i len %i\n", offset, subframe_len); |
| |
| /** get a list of all channels that contain the estimated block */ |
| s->channels_for_cur_subframe = 0; |
| for (i = 0; i < s->avctx->channels; i++) { |
| const int cur_subframe = s->channel[i].cur_subframe; |
| /** subtract already processed samples */ |
| total_samples -= s->channel[i].decoded_samples; |
| |
| /** and count if there are multiple subframes that match our profile */ |
| if (offset == s->channel[i].decoded_samples && |
| subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
| total_samples -= s->channel[i].subframe_len[cur_subframe]; |
| s->channel[i].decoded_samples += |
| s->channel[i].subframe_len[cur_subframe]; |
| s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
| ++s->channels_for_cur_subframe; |
| } |
| } |
| |
| /** check if the frame will be complete after processing the |
| estimated block */ |
| if (!total_samples) |
| s->parsed_all_subframes = 1; |
| |
| |
| ff_dlog(s->avctx, "subframe is part of %i channels\n", |
| s->channels_for_cur_subframe); |
| |
| /** calculate number of scale factor bands and their offsets */ |
| s->table_idx = av_log2(s->samples_per_frame/subframe_len); |
| s->num_bands = s->num_sfb[s->table_idx]; |
| s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; |
| cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; |
| |
| /** configure the decoder for the current subframe */ |
| offset += s->samples_per_frame >> 1; |
| |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| |
| s->channel[c].coeffs = &s->channel[c].out[offset]; |
| } |
| |
| s->subframe_len = subframe_len; |
| s->esc_len = av_log2(s->subframe_len - 1) + 1; |
| |
| /** skip extended header if any */ |
| if (get_bits1(&s->gb)) { |
| int num_fill_bits; |
| if (!(num_fill_bits = get_bits(&s->gb, 2))) { |
| int len = get_bits(&s->gb, 4); |
| num_fill_bits = get_bitsz(&s->gb, len) + 1; |
| } |
| |
| if (num_fill_bits >= 0) { |
| if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) { |
| av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| skip_bits_long(&s->gb, num_fill_bits); |
| } |
| } |
| |
| /** no idea for what the following bit is used */ |
| if (get_bits1(&s->gb)) { |
| avpriv_request_sample(s->avctx, "Reserved bit"); |
| return AVERROR_PATCHWELCOME; |
| } |
| |
| |
| if (decode_channel_transform(s) < 0) |
| return AVERROR_INVALIDDATA; |
| |
| |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| if ((s->channel[c].transmit_coefs = get_bits1(&s->gb))) |
| transmit_coeffs = 1; |
| } |
| |
| av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE); |
| if (transmit_coeffs) { |
| int step; |
| int quant_step = 90 * s->bits_per_sample >> 4; |
| |
| /** decode number of vector coded coefficients */ |
| if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) { |
| int num_bits = av_log2((s->subframe_len + 3)/4) + 1; |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2; |
| if (num_vec_coeffs > s->subframe_len) { |
| av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs); |
| return AVERROR_INVALIDDATA; |
| } |
| av_assert0(num_vec_coeffs + offset <= FF_ARRAY_ELEMS(s->channel[c].out)); |
| s->channel[c].num_vec_coeffs = num_vec_coeffs; |
| } |
| } else { |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| s->channel[c].num_vec_coeffs = s->subframe_len; |
| } |
| } |
| /** decode quantization step */ |
| step = get_sbits(&s->gb, 6); |
| quant_step += step; |
| if (step == -32 || step == 31) { |
| const int sign = (step == 31) - 1; |
| int quant = 0; |
| while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && |
| (step = get_bits(&s->gb, 5)) == 31) { |
| quant += 31; |
| } |
| quant_step += ((quant + step) ^ sign) - sign; |
| } |
| if (quant_step < 0) { |
| av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n"); |
| } |
| |
| /** decode quantization step modifiers for every channel */ |
| |
| if (s->channels_for_cur_subframe == 1) { |
| s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step; |
| } else { |
| int modifier_len = get_bits(&s->gb, 3); |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| s->channel[c].quant_step = quant_step; |
| if (get_bits1(&s->gb)) { |
| if (modifier_len) { |
| s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1; |
| } else |
| ++s->channel[c].quant_step; |
| } |
| } |
| } |
| |
| /** decode scale factors */ |
| if (decode_scale_factors(s) < 0) |
| return AVERROR_INVALIDDATA; |
| } |
| |
| ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n", |
| get_bits_count(&s->gb) - s->subframe_offset); |
| |
| /** parse coefficients */ |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| if (s->channel[c].transmit_coefs && |
| get_bits_count(&s->gb) < s->num_saved_bits) { |
| decode_coeffs(s, c); |
| } else |
| memset(s->channel[c].coeffs, 0, |
| sizeof(*s->channel[c].coeffs) * subframe_len); |
| } |
| |
| ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n", |
| get_bits_count(&s->gb) - s->subframe_offset); |
| |
| if (transmit_coeffs) { |
| FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS]; |
| /** reconstruct the per channel data */ |
| inverse_channel_transform(s); |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| const int* sf = s->channel[c].scale_factors; |
| int b; |
| |
| if (c == s->lfe_channel) |
| memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * |
| (subframe_len - cur_subwoofer_cutoff)); |
| |
| /** inverse quantization and rescaling */ |
| for (b = 0; b < s->num_bands; b++) { |
| const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); |
| const int exp = s->channel[c].quant_step - |
| (s->channel[c].max_scale_factor - *sf++) * |
| s->channel[c].scale_factor_step; |
| const float quant = ff_exp10(exp / 20.0); |
| int start = s->cur_sfb_offsets[b]; |
| s->fdsp->vector_fmul_scalar(s->tmp + start, |
| s->channel[c].coeffs + start, |
| quant, end - start); |
| } |
| |
| /** apply imdct (imdct_half == DCTIV with reverse) */ |
| mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp); |
| } |
| } |
| |
| /** window and overlapp-add */ |
| wmapro_window(s); |
| |
| /** handled one subframe */ |
| for (i = 0; i < s->channels_for_cur_subframe; i++) { |
| int c = s->channel_indexes_for_cur_subframe[i]; |
| if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { |
| av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); |
| return AVERROR_INVALIDDATA; |
| } |
| ++s->channel[c].cur_subframe; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| *@brief Decode one WMA frame. |
| *@param s codec context |
| *@return 0 if the trailer bit indicates that this is the last frame, |
| * 1 if there are additional frames |
| */ |
| static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr) |
| { |
| AVCodecContext *avctx = s->avctx; |
| GetBitContext* gb = &s->gb; |
| int more_frames = 0; |
| int len = 0; |
| int i, ret; |
| |
| /** get frame length */ |
| if (s->len_prefix) |
| len = get_bits(gb, s->log2_frame_size); |
| |
| ff_dlog(s->avctx, "decoding frame with length %x\n", len); |
| |
| /** decode tile information */ |
| if (decode_tilehdr(s)) { |
| s->packet_loss = 1; |
| return 0; |
| } |
| |
| /** read postproc transform */ |
| if (s->avctx->channels > 1 && get_bits1(gb)) { |
| if (get_bits1(gb)) { |
| for (i = 0; i < avctx->channels * avctx->channels; i++) |
| skip_bits(gb, 4); |
| } |
| } |
| |
| /** read drc info */ |
| if (s->dynamic_range_compression) { |
| s->drc_gain = get_bits(gb, 8); |
| ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain); |
| } |
| |
| /** no idea what these are for, might be the number of samples |
| that need to be skipped at the beginning or end of a stream */ |
| if (get_bits1(gb)) { |
| int av_unused skip; |
| |
| /** usually true for the first frame */ |
| if (get_bits1(gb)) { |
| skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
| ff_dlog(s->avctx, "start skip: %i\n", skip); |
| } |
| |
| /** sometimes true for the last frame */ |
| if (get_bits1(gb)) { |
| skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
| ff_dlog(s->avctx, "end skip: %i\n", skip); |
| } |
| |
| } |
| |
| ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n", |
| get_bits_count(gb) - s->frame_offset); |
| |
| /** reset subframe states */ |
| s->parsed_all_subframes = 0; |
| for (i = 0; i < avctx->channels; i++) { |
| s->channel[i].decoded_samples = 0; |
| s->channel[i].cur_subframe = 0; |
| s->channel[i].reuse_sf = 0; |
| } |
| |
| /** decode all subframes */ |
| while (!s->parsed_all_subframes) { |
| if (decode_subframe(s) < 0) { |
| s->packet_loss = 1; |
| return 0; |
| } |
| } |
| |
| /* get output buffer */ |
| frame->nb_samples = s->samples_per_frame; |
| if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) { |
| s->packet_loss = 1; |
| return 0; |
| } |
| |
| /** copy samples to the output buffer */ |
| for (i = 0; i < avctx->channels; i++) |
| memcpy(frame->extended_data[i], s->channel[i].out, |
| s->samples_per_frame * sizeof(*s->channel[i].out)); |
| |
| for (i = 0; i < avctx->channels; i++) { |
| /** reuse second half of the IMDCT output for the next frame */ |
| memcpy(&s->channel[i].out[0], |
| &s->channel[i].out[s->samples_per_frame], |
| s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
| } |
| |
| if (s->skip_frame) { |
| s->skip_frame = 0; |
| *got_frame_ptr = 0; |
| av_frame_unref(frame); |
| } else { |
| *got_frame_ptr = 1; |
| } |
| |
| if (s->len_prefix) { |
| if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
| /** FIXME: not sure if this is always an error */ |
| av_log(s->avctx, AV_LOG_ERROR, |
| "frame[%"PRIu32"] would have to skip %i bits\n", |
| s->frame_num, |
| len - (get_bits_count(gb) - s->frame_offset) - 1); |
| s->packet_loss = 1; |
| return 0; |
| } |
| |
| /** skip the rest of the frame data */ |
| skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); |
| } else { |
| while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) { |
| } |
| } |
| |
| /** decode trailer bit */ |
| more_frames = get_bits1(gb); |
| |
| ++s->frame_num; |
| return more_frames; |
| } |
| |
| /** |
| *@brief Calculate remaining input buffer length. |
| *@param s codec context |
| *@param gb bitstream reader context |
| *@return remaining size in bits |
| */ |
| static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) |
| { |
| return s->buf_bit_size - get_bits_count(gb); |
| } |
| |
| /** |
| *@brief Fill the bit reservoir with a (partial) frame. |
| *@param s codec context |
| *@param gb bitstream reader context |
| *@param len length of the partial frame |
| *@param append decides whether to reset the buffer or not |
| */ |
| static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, |
| int append) |
| { |
| int buflen; |
| |
| /** when the frame data does not need to be concatenated, the input buffer |
| is reset and additional bits from the previous frame are copied |
| and skipped later so that a fast byte copy is possible */ |
| |
| if (!append) { |
| s->frame_offset = get_bits_count(gb) & 7; |
| s->num_saved_bits = s->frame_offset; |
| init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
| } |
| |
| buflen = (put_bits_count(&s->pb) + len + 8) >> 3; |
| |
| if (len <= 0 || buflen > MAX_FRAMESIZE) { |
| avpriv_request_sample(s->avctx, "Too small input buffer"); |
| s->packet_loss = 1; |
| return; |
| } |
| |
| av_assert0(len <= put_bits_left(&s->pb)); |
| |
| s->num_saved_bits += len; |
| if (!append) { |
| avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), |
| s->num_saved_bits); |
| } else { |
| int align = 8 - (get_bits_count(gb) & 7); |
| align = FFMIN(align, len); |
| put_bits(&s->pb, align, get_bits(gb, align)); |
| len -= align; |
| avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); |
| } |
| skip_bits_long(gb, len); |
| |
| { |
| PutBitContext tmp = s->pb; |
| flush_put_bits(&tmp); |
| } |
| |
| init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
| skip_bits(&s->gb, s->frame_offset); |
| } |
| |
| /** |
| *@brief Decode a single WMA packet. |
| *@param avctx codec context |
| *@param data the output buffer |
| *@param avpkt input packet |
| *@return number of bytes that were read from the input buffer |
| */ |
| static int decode_packet(AVCodecContext *avctx, void *data, |
| int *got_frame_ptr, AVPacket* avpkt) |
| { |
| WMAProDecodeCtx *s = avctx->priv_data; |
| GetBitContext* gb = &s->pgb; |
| const uint8_t* buf = avpkt->data; |
| int buf_size = avpkt->size; |
| int num_bits_prev_frame; |
| int packet_sequence_number; |
| |
| *got_frame_ptr = 0; |
| |
| if (s->skip_packets > 0) { |
| s->skip_packets--; |
| return FFMIN(avpkt->size, avctx->block_align); |
| } |
| |
| if (s->packet_done || s->packet_loss) { |
| s->packet_done = 0; |
| |
| /** sanity check for the buffer length */ |
| if (avctx->codec_id == AV_CODEC_ID_WMAPRO && buf_size < avctx->block_align) { |
| av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n", |
| buf_size, avctx->block_align); |
| return AVERROR_INVALIDDATA; |
| } |
| |
| if (avctx->codec_id == AV_CODEC_ID_WMAPRO) { |
| s->next_packet_start = buf_size - avctx->block_align; |
| buf_size = avctx->block_align; |
| } else { |
| s->next_packet_start = buf_size - FFMIN(buf_size, avctx->block_align); |
| buf_size = FFMIN(buf_size, avctx->block_align); |
| } |
| s->buf_bit_size = buf_size << 3; |
| |
| /** parse packet header */ |
| init_get_bits(gb, buf, s->buf_bit_size); |
| if (avctx->codec_id != AV_CODEC_ID_XMA2) { |
| packet_sequence_number = get_bits(gb, 4); |
| skip_bits(gb, 2); |
| } else { |
| s->num_frames = get_bits(gb, 6); |
| packet_sequence_number = 0; |
| } |
| |
| /** get number of bits that need to be added to the previous frame */ |
| num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
| if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { |
| skip_bits(gb, 3); |
| s->skip_packets = get_bits(gb, 8); |
| } |
| |
| ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number, |
| num_bits_prev_frame); |
| |
| /** check for packet loss */ |
| if (avctx->codec_id != AV_CODEC_ID_XMA2 && !s->packet_loss && |
| ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
| s->packet_loss = 1; |
| av_log(avctx, AV_LOG_ERROR, |
| "Packet loss detected! seq %"PRIx8" vs %x\n", |
| s->packet_sequence_number, packet_sequence_number); |
| } |
| s->packet_sequence_number = packet_sequence_number; |
| |
| if (num_bits_prev_frame > 0) { |
| int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb); |
| if (num_bits_prev_frame >= remaining_packet_bits) { |
| num_bits_prev_frame = remaining_packet_bits; |
| s->packet_done = 1; |
| } |
| |
| /** append the previous frame data to the remaining data from the |
| previous packet to create a full frame */ |
| save_bits(s, gb, num_bits_prev_frame, 1); |
| ff_dlog(avctx, "accumulated %x bits of frame data\n", |
| s->num_saved_bits - s->frame_offset); |
| |
| /** decode the cross packet frame if it is valid */ |
| if (!s->packet_loss) |
| decode_frame(s, data, got_frame_ptr); |
| } else if (s->num_saved_bits - s->frame_offset) { |
| ff_dlog(avctx, "ignoring %x previously saved bits\n", |
| s->num_saved_bits - s->frame_offset); |
| } |
| |
| if (s->packet_loss) { |
| /** reset number of saved bits so that the decoder |
| does not start to decode incomplete frames in the |
| s->len_prefix == 0 case */ |
| s->num_saved_bits = 0; |
| s->packet_loss = 0; |
| } |
| |
| } else { |
| int frame_size; |
| s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3; |
| init_get_bits(gb, avpkt->data, s->buf_bit_size); |
| skip_bits(gb, s->packet_offset); |
| if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size && |
| (frame_size = show_bits(gb, s->log2_frame_size)) && |
| frame_size <= remaining_bits(s, gb)) { |
| save_bits(s, gb, frame_size, 0); |
| if (!s->packet_loss) |
| s->packet_done = !decode_frame(s, data, got_frame_ptr); |
| } else if (!s->len_prefix |
| && s->num_saved_bits > get_bits_count(&s->gb)) { |
| /** when the frames do not have a length prefix, we don't know |
| the compressed length of the individual frames |
| however, we know what part of a new packet belongs to the |
| previous frame |
| therefore we save the incoming packet first, then we append |
| the "previous frame" data from the next packet so that |
| we get a buffer that only contains full frames */ |
| s->packet_done = !decode_frame(s, data, got_frame_ptr); |
| } else |
| s->packet_done = 1; |
| } |
| |
| if (remaining_bits(s, gb) < 0) { |
| av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb)); |
| s->packet_loss = 1; |
| } |
| |
| if (s->packet_done && !s->packet_loss && |
| remaining_bits(s, gb) > 0) { |
| /** save the rest of the data so that it can be decoded |
| with the next packet */ |
| save_bits(s, gb, remaining_bits(s, gb), 0); |
| } |
| |
| s->packet_offset = get_bits_count(gb) & 7; |
| if (s->packet_loss) |
| return AVERROR_INVALIDDATA; |
| |
| return get_bits_count(gb) >> 3; |
| } |
| |
| /** |
| *@brief Clear decoder buffers (for seeking). |
| *@param avctx codec context |
| */ |
| static void flush(AVCodecContext *avctx) |
| { |
| WMAProDecodeCtx *s = avctx->priv_data; |
| int i; |
| /** reset output buffer as a part of it is used during the windowing of a |
| new frame */ |
| for (i = 0; i < avctx->channels; i++) |
| memset(s->channel[i].out, 0, s->samples_per_frame * |
| sizeof(*s->channel[i].out)); |
| s->packet_loss = 1; |
| } |
| |
| |
| /** |
| *@brief wmapro decoder |
| */ |
| AVCodec ff_wmapro_decoder = { |
| .name = "wmapro", |
| .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_WMAPRO, |
| .priv_data_size = sizeof(WMAProDecodeCtx), |
| .init = decode_init, |
| .close = decode_end, |
| .decode = decode_packet, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
| .flush = flush, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| }; |
| |
| AVCodec ff_xma1_decoder = { |
| .name = "xma1", |
| .long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 1"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_XMA1, |
| .priv_data_size = sizeof(WMAProDecodeCtx), |
| .init = decode_init, |
| .close = decode_end, |
| .decode = decode_packet, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
| .flush = flush, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| }; |
| |
| AVCodec ff_xma2_decoder = { |
| .name = "xma2", |
| .long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 2"), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .id = AV_CODEC_ID_XMA2, |
| .priv_data_size = sizeof(WMAProDecodeCtx), |
| .init = decode_init, |
| .close = decode_end, |
| .decode = decode_packet, |
| .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
| .flush = flush, |
| .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
| AV_SAMPLE_FMT_NONE }, |
| }; |