| /* |
| * Delay Locked Loop based time filter |
| * Copyright (c) 2009 Samalyse |
| * Copyright (c) 2009 Michael Niedermayer |
| * Author: Olivier Guilyardi <olivier samalyse com> |
| * Michael Niedermayer <michaelni gmx at> |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #include "libavutil/common.h" |
| #include "libavutil/mem.h" |
| #include "config.h" |
| #include "timefilter.h" |
| |
| struct TimeFilter { |
| // Delay Locked Loop data. These variables refer to mathematical |
| // concepts described in: http://www.kokkinizita.net/papers/usingdll.pdf |
| double cycle_time; |
| double feedback2_factor; |
| double feedback3_factor; |
| double clock_period; |
| int count; |
| }; |
| |
| /* 1 - exp(-x) using a 3-order power series */ |
| static double qexpneg(double x) |
| { |
| return 1 - 1 / (1 + x * (1 + x / 2 * (1 + x / 3))); |
| } |
| |
| TimeFilter *ff_timefilter_new(double time_base, |
| double period, |
| double bandwidth) |
| { |
| TimeFilter *self = av_mallocz(sizeof(TimeFilter)); |
| double o = 2 * M_PI * bandwidth * period * time_base; |
| |
| if (!self) |
| return NULL; |
| |
| self->clock_period = time_base; |
| self->feedback2_factor = qexpneg(M_SQRT2 * o); |
| self->feedback3_factor = qexpneg(o * o) / period; |
| return self; |
| } |
| |
| void ff_timefilter_destroy(TimeFilter *self) |
| { |
| av_freep(&self); |
| } |
| |
| void ff_timefilter_reset(TimeFilter *self) |
| { |
| self->count = 0; |
| } |
| |
| double ff_timefilter_update(TimeFilter *self, double system_time, double period) |
| { |
| self->count++; |
| if (self->count == 1) { |
| self->cycle_time = system_time; |
| } else { |
| double loop_error; |
| self->cycle_time += self->clock_period * period; |
| loop_error = system_time - self->cycle_time; |
| |
| self->cycle_time += FFMAX(self->feedback2_factor, 1.0 / self->count) * loop_error; |
| self->clock_period += self->feedback3_factor * loop_error; |
| } |
| return self->cycle_time; |
| } |
| |
| double ff_timefilter_eval(TimeFilter *self, double delta) |
| { |
| return self->cycle_time + self->clock_period * delta; |
| } |
| |
| #ifdef TEST |
| #include "libavutil/lfg.h" |
| #define LFG_MAX ((1LL << 32) - 1) |
| |
| int main(void) |
| { |
| AVLFG prng; |
| double n0, n1; |
| #define SAMPLES 1000 |
| double ideal[SAMPLES]; |
| double samples[SAMPLES]; |
| double samplet[SAMPLES]; |
| for (n0 = 0; n0 < 40; n0 = 2 * n0 + 1) { |
| for (n1 = 0; n1 < 10; n1 = 2 * n1 + 1) { |
| double best_error = 1000000000; |
| double bestpar0 = n0 ? 1 : 100000; |
| double bestpar1 = 1; |
| int better, i; |
| |
| av_lfg_init(&prng, 123); |
| for (i = 0; i < SAMPLES; i++) { |
| samplet[i] = 10 + i + (av_lfg_get(&prng) < LFG_MAX/2 ? 0 : 0.999); |
| ideal[i] = samplet[i] + n1 * i / (1000); |
| samples[i] = ideal[i] + n0 * (av_lfg_get(&prng) - LFG_MAX / 2) / (LFG_MAX * 10LL); |
| if(i && samples[i]<samples[i-1]) |
| samples[i]=samples[i-1]+0.001; |
| } |
| |
| do { |
| double par0, par1; |
| better = 0; |
| for (par0 = bestpar0 * 0.8; par0 <= bestpar0 * 1.21; par0 += bestpar0 * 0.05) { |
| for (par1 = bestpar1 * 0.8; par1 <= bestpar1 * 1.21; par1 += bestpar1 * 0.05) { |
| double error = 0; |
| TimeFilter *tf = ff_timefilter_new(1, par0, par1); |
| if (!tf) { |
| printf("Could not allocate memory for timefilter.\n"); |
| exit(1); |
| } |
| for (i = 0; i < SAMPLES; i++) { |
| double filtered; |
| filtered = ff_timefilter_update(tf, samples[i], i ? (samplet[i] - samplet[i-1]) : 1); |
| if(filtered < 0 || filtered > 1000000000) |
| printf("filter is unstable\n"); |
| error += (filtered - ideal[i]) * (filtered - ideal[i]); |
| } |
| ff_timefilter_destroy(tf); |
| if (error < best_error) { |
| best_error = error; |
| bestpar0 = par0; |
| bestpar1 = par1; |
| better = 1; |
| } |
| } |
| } |
| } while (better); |
| #if 0 |
| double lastfil = 9; |
| TimeFilter *tf = ff_timefilter_new(1, bestpar0, bestpar1); |
| for (i = 0; i < SAMPLES; i++) { |
| double filtered; |
| filtered = ff_timefilter_update(tf, samples[i], 1); |
| printf("%f %f %f %f\n", i - samples[i] + 10, filtered - samples[i], |
| samples[FFMAX(i, 1)] - samples[FFMAX(i - 1, 0)], filtered - lastfil); |
| lastfil = filtered; |
| } |
| ff_timefilter_destroy(tf); |
| #else |
| printf(" [%12f %11f %9f]", bestpar0, bestpar1, best_error); |
| #endif |
| } |
| printf("\n"); |
| } |
| return 0; |
| } |
| #endif |