| /* |
| * Copyright (c) 2012 Clément Bœsch |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with FFmpeg; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
| */ |
| |
| /** |
| * @file |
| * EBU R.128 implementation |
| * @see http://tech.ebu.ch/loudness |
| * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer" |
| * @todo implement start/stop/reset through filter command injection |
| * @todo support other frequencies to avoid resampling |
| */ |
| |
| #include <math.h> |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/avstring.h" |
| #include "libavutil/channel_layout.h" |
| #include "libavutil/dict.h" |
| #include "libavutil/xga_font_data.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/timestamp.h" |
| #include "libswresample/swresample.h" |
| #include "audio.h" |
| #include "avfilter.h" |
| #include "formats.h" |
| #include "internal.h" |
| |
| #define MAX_CHANNELS 63 |
| |
| /* pre-filter coefficients */ |
| #define PRE_B0 1.53512485958697 |
| #define PRE_B1 -2.69169618940638 |
| #define PRE_B2 1.19839281085285 |
| #define PRE_A1 -1.69065929318241 |
| #define PRE_A2 0.73248077421585 |
| |
| /* RLB-filter coefficients */ |
| #define RLB_B0 1.0 |
| #define RLB_B1 -2.0 |
| #define RLB_B2 1.0 |
| #define RLB_A1 -1.99004745483398 |
| #define RLB_A2 0.99007225036621 |
| |
| #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold |
| #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum) |
| #define HIST_GRAIN 100 ///< defines histogram precision |
| #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1) |
| |
| /** |
| * A histogram is an array of HIST_SIZE hist_entry storing all the energies |
| * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES |
| * (at 0) to ABS_UP_THRES (at HIST_SIZE-1). |
| * This fixed-size system avoids the need of a list of energies growing |
| * infinitely over the time and is thus more scalable. |
| */ |
| struct hist_entry { |
| int count; ///< how many times the corresponding value occurred |
| double energy; ///< E = 10^((L + 0.691) / 10) |
| double loudness; ///< L = -0.691 + 10 * log10(E) |
| }; |
| |
| struct integrator { |
| double *cache[MAX_CHANNELS]; ///< window of filtered samples (N ms) |
| int cache_pos; ///< focus on the last added bin in the cache array |
| double sum[MAX_CHANNELS]; ///< sum of the last N ms filtered samples (cache content) |
| int filled; ///< 1 if the cache is completely filled, 0 otherwise |
| double rel_threshold; ///< relative threshold |
| double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold |
| int nb_kept_powers; ///< number of sum above absolute threshold |
| struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I |
| }; |
| |
| struct rect { int x, y, w, h; }; |
| |
| typedef struct { |
| const AVClass *class; ///< AVClass context for log and options purpose |
| |
| /* peak metering */ |
| int peak_mode; ///< enabled peak modes |
| double *true_peaks; ///< true peaks per channel |
| double *sample_peaks; ///< sample peaks per channel |
| double *true_peaks_per_frame; ///< true peaks in a frame per channel |
| #if CONFIG_SWRESAMPLE |
| SwrContext *swr_ctx; ///< over-sampling context for true peak metering |
| double *swr_buf; ///< resampled audio data for true peak metering |
| int swr_linesize; |
| #endif |
| |
| /* video */ |
| int do_video; ///< 1 if video output enabled, 0 otherwise |
| int w, h; ///< size of the video output |
| struct rect text; ///< rectangle for the LU legend on the left |
| struct rect graph; ///< rectangle for the main graph in the center |
| struct rect gauge; ///< rectangle for the gauge on the right |
| AVFrame *outpicref; ///< output picture reference, updated regularly |
| int meter; ///< select a EBU mode between +9 and +18 |
| int scale_range; ///< the range of LU values according to the meter |
| int y_zero_lu; ///< the y value (pixel position) for 0 LU |
| int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge |
| |
| /* audio */ |
| int nb_channels; ///< number of channels in the input |
| double *ch_weighting; ///< channel weighting mapping |
| int sample_count; ///< sample count used for refresh frequency, reset at refresh |
| |
| /* Filter caches. |
| * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */ |
| double x[MAX_CHANNELS * 3]; ///< 3 input samples cache for each channel |
| double y[MAX_CHANNELS * 3]; ///< 3 pre-filter samples cache for each channel |
| double z[MAX_CHANNELS * 3]; ///< 3 RLB-filter samples cache for each channel |
| |
| #define I400_BINS (48000 * 4 / 10) |
| #define I3000_BINS (48000 * 3) |
| struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I) |
| struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA) |
| |
| /* I and LRA specific */ |
| double integrated_loudness; ///< integrated loudness in LUFS (I) |
| double loudness_range; ///< loudness range in LU (LRA) |
| double lra_low, lra_high; ///< low and high LRA values |
| |
| /* misc */ |
| int loglevel; ///< log level for frame logging |
| int metadata; ///< whether or not to inject loudness results in frames |
| int dual_mono; ///< whether or not to treat single channel input files as dual-mono |
| double pan_law; ///< pan law value used to calulate dual-mono measurements |
| } EBUR128Context; |
| |
| enum { |
| PEAK_MODE_NONE = 0, |
| PEAK_MODE_SAMPLES_PEAKS = 1<<1, |
| PEAK_MODE_TRUE_PEAKS = 1<<2, |
| }; |
| |
| #define OFFSET(x) offsetof(EBUR128Context, x) |
| #define A AV_OPT_FLAG_AUDIO_PARAM |
| #define V AV_OPT_FLAG_VIDEO_PARAM |
| #define F AV_OPT_FLAG_FILTERING_PARAM |
| static const AVOption ebur128_options[] = { |
| { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F }, |
| { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F }, |
| { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F }, |
| { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" }, |
| { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" }, |
| { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" }, |
| { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F }, |
| { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" }, |
| { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" }, |
| { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" }, |
| { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" }, |
| { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F }, |
| { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F }, |
| { NULL }, |
| }; |
| |
| AVFILTER_DEFINE_CLASS(ebur128); |
| |
| static const uint8_t graph_colors[] = { |
| 0xdd, 0x66, 0x66, // value above 0LU non reached |
| 0x66, 0x66, 0xdd, // value below 0LU non reached |
| 0x96, 0x33, 0x33, // value above 0LU reached |
| 0x33, 0x33, 0x96, // value below 0LU reached |
| 0xdd, 0x96, 0x96, // value above 0LU line non reached |
| 0x96, 0x96, 0xdd, // value below 0LU line non reached |
| 0xdd, 0x33, 0x33, // value above 0LU line reached |
| 0x33, 0x33, 0xdd, // value below 0LU line reached |
| }; |
| |
| static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y) |
| { |
| const int below0 = y > ebur128->y_zero_lu; |
| const int reached = y >= v; |
| const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu; |
| const int colorid = 4*line + 2*reached + below0; |
| return graph_colors + 3*colorid; |
| } |
| |
| static inline int lu_to_y(const EBUR128Context *ebur128, double v) |
| { |
| v += 2 * ebur128->meter; // make it in range [0;...] |
| v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale |
| v = ebur128->scale_range - v; // invert value (y=0 is on top) |
| return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height |
| } |
| |
| #define FONT8 0 |
| #define FONT16 1 |
| |
| static const uint8_t font_colors[] = { |
| 0xdd, 0xdd, 0x00, |
| 0x00, 0x96, 0x96, |
| }; |
| |
| static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...) |
| { |
| int i; |
| char buf[128] = {0}; |
| const uint8_t *font; |
| int font_height; |
| va_list vl; |
| |
| if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16; |
| else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8; |
| else return; |
| |
| va_start(vl, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, vl); |
| va_end(vl); |
| |
| for (i = 0; buf[i]; i++) { |
| int char_y, mask; |
| uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3; |
| |
| for (char_y = 0; char_y < font_height; char_y++) { |
| for (mask = 0x80; mask; mask >>= 1) { |
| if (font[buf[i] * font_height + char_y] & mask) |
| memcpy(p, color, 3); |
| else |
| memcpy(p, "\x00\x00\x00", 3); |
| p += 3; |
| } |
| p += pic->linesize[0] - 8*3; |
| } |
| } |
| } |
| |
| static void drawline(AVFrame *pic, int x, int y, int len, int step) |
| { |
| int i; |
| uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3; |
| |
| for (i = 0; i < len; i++) { |
| memcpy(p, "\x00\xff\x00", 3); |
| p += step; |
| } |
| } |
| |
| static int config_video_output(AVFilterLink *outlink) |
| { |
| int i, x, y; |
| uint8_t *p; |
| AVFilterContext *ctx = outlink->src; |
| EBUR128Context *ebur128 = ctx->priv; |
| AVFrame *outpicref; |
| |
| /* check if there is enough space to represent everything decently */ |
| if (ebur128->w < 640 || ebur128->h < 480) { |
| av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, " |
| "minimum size is 640x480\n", ebur128->w, ebur128->h); |
| return AVERROR(EINVAL); |
| } |
| outlink->w = ebur128->w; |
| outlink->h = ebur128->h; |
| |
| #define PAD 8 |
| |
| /* configure text area position and size */ |
| ebur128->text.x = PAD; |
| ebur128->text.y = 40; |
| ebur128->text.w = 3 * 8; // 3 characters |
| ebur128->text.h = ebur128->h - PAD - ebur128->text.y; |
| |
| /* configure gauge position and size */ |
| ebur128->gauge.w = 20; |
| ebur128->gauge.h = ebur128->text.h; |
| ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w; |
| ebur128->gauge.y = ebur128->text.y; |
| |
| /* configure graph position and size */ |
| ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD; |
| ebur128->graph.y = ebur128->gauge.y; |
| ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD; |
| ebur128->graph.h = ebur128->gauge.h; |
| |
| /* graph and gauge share the LU-to-pixel code */ |
| av_assert0(ebur128->graph.h == ebur128->gauge.h); |
| |
| /* prepare the initial picref buffer */ |
| av_frame_free(&ebur128->outpicref); |
| ebur128->outpicref = outpicref = |
| ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!outpicref) |
| return AVERROR(ENOMEM); |
| outlink->sample_aspect_ratio = (AVRational){1,1}; |
| |
| /* init y references values (to draw LU lines) */ |
| ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref)); |
| if (!ebur128->y_line_ref) |
| return AVERROR(ENOMEM); |
| |
| /* black background */ |
| memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]); |
| |
| /* draw LU legends */ |
| drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU"); |
| for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) { |
| y = lu_to_y(ebur128, i); |
| x = PAD + (i < 10 && i > -10) * 8; |
| ebur128->y_line_ref[y] = i; |
| y -= 4; // -4 to center vertically |
| drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3, |
| "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i)); |
| } |
| |
| /* draw graph */ |
| ebur128->y_zero_lu = lu_to_y(ebur128, 0); |
| p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0] |
| + ebur128->graph.x * 3; |
| for (y = 0; y < ebur128->graph.h; y++) { |
| const uint8_t *c = get_graph_color(ebur128, INT_MAX, y); |
| |
| for (x = 0; x < ebur128->graph.w; x++) |
| memcpy(p + x*3, c, 3); |
| p += outpicref->linesize[0]; |
| } |
| |
| /* draw fancy rectangles around the graph and the gauge */ |
| #define DRAW_RECT(r) do { \ |
| drawline(outpicref, r.x, r.y - 1, r.w, 3); \ |
| drawline(outpicref, r.x, r.y + r.h, r.w, 3); \ |
| drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \ |
| drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \ |
| } while (0) |
| DRAW_RECT(ebur128->graph); |
| DRAW_RECT(ebur128->gauge); |
| |
| return 0; |
| } |
| |
| static int config_audio_input(AVFilterLink *inlink) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| EBUR128Context *ebur128 = ctx->priv; |
| |
| /* Force 100ms framing in case of metadata injection: the frames must have |
| * a granularity of the window overlap to be accurately exploited. |
| * As for the true peaks mode, it just simplifies the resampling buffer |
| * allocation and the lookup in it (since sample buffers differ in size, it |
| * can be more complex to integrate in the one-sample loop of |
| * filter_frame()). */ |
| if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) |
| inlink->min_samples = |
| inlink->max_samples = |
| inlink->partial_buf_size = inlink->sample_rate / 10; |
| return 0; |
| } |
| |
| static int config_audio_output(AVFilterLink *outlink) |
| { |
| int i; |
| AVFilterContext *ctx = outlink->src; |
| EBUR128Context *ebur128 = ctx->priv; |
| const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout); |
| |
| #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \ |
| AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \ |
| AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \ |
| AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT) |
| |
| ebur128->nb_channels = nb_channels; |
| ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting)); |
| if (!ebur128->ch_weighting) |
| return AVERROR(ENOMEM); |
| |
| for (i = 0; i < nb_channels; i++) { |
| /* channel weighting */ |
| const uint16_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i); |
| if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) { |
| ebur128->ch_weighting[i] = 0; |
| } else if (chl & BACK_MASK) { |
| ebur128->ch_weighting[i] = 1.41; |
| } else { |
| ebur128->ch_weighting[i] = 1.0; |
| } |
| |
| if (!ebur128->ch_weighting[i]) |
| continue; |
| |
| /* bins buffer for the two integration window (400ms and 3s) */ |
| ebur128->i400.cache[i] = av_calloc(I400_BINS, sizeof(*ebur128->i400.cache[0])); |
| ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0])); |
| if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i]) |
| return AVERROR(ENOMEM); |
| } |
| |
| #if CONFIG_SWRESAMPLE |
| if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) { |
| int ret; |
| |
| ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double)); |
| ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks)); |
| ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame)); |
| ebur128->swr_ctx = swr_alloc(); |
| if (!ebur128->swr_buf || !ebur128->true_peaks || |
| !ebur128->true_peaks_per_frame || !ebur128->swr_ctx) |
| return AVERROR(ENOMEM); |
| |
| av_opt_set_int(ebur128->swr_ctx, "in_channel_layout", outlink->channel_layout, 0); |
| av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0); |
| av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0); |
| |
| av_opt_set_int(ebur128->swr_ctx, "out_channel_layout", outlink->channel_layout, 0); |
| av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0); |
| av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0); |
| |
| ret = swr_init(ebur128->swr_ctx); |
| if (ret < 0) |
| return ret; |
| } |
| #endif |
| |
| if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) { |
| ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks)); |
| if (!ebur128->sample_peaks) |
| return AVERROR(ENOMEM); |
| } |
| |
| return 0; |
| } |
| |
| #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.)) |
| #define LOUDNESS(energy) (-0.691 + 10 * log10(energy)) |
| #define DBFS(energy) (20 * log10(energy)) |
| |
| static struct hist_entry *get_histogram(void) |
| { |
| int i; |
| struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h)); |
| |
| if (!h) |
| return NULL; |
| for (i = 0; i < HIST_SIZE; i++) { |
| h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES; |
| h[i].energy = ENERGY(h[i].loudness); |
| } |
| return h; |
| } |
| |
| static av_cold int init(AVFilterContext *ctx) |
| { |
| EBUR128Context *ebur128 = ctx->priv; |
| AVFilterPad pad; |
| |
| if (ebur128->loglevel != AV_LOG_INFO && |
| ebur128->loglevel != AV_LOG_VERBOSE) { |
| if (ebur128->do_video || ebur128->metadata) |
| ebur128->loglevel = AV_LOG_VERBOSE; |
| else |
| ebur128->loglevel = AV_LOG_INFO; |
| } |
| |
| if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) { |
| av_log(ctx, AV_LOG_ERROR, |
| "True-peak mode requires libswresample to be performed\n"); |
| return AVERROR(EINVAL); |
| } |
| |
| // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9) |
| // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18) |
| ebur128->scale_range = 3 * ebur128->meter; |
| |
| ebur128->i400.histogram = get_histogram(); |
| ebur128->i3000.histogram = get_histogram(); |
| if (!ebur128->i400.histogram || !ebur128->i3000.histogram) |
| return AVERROR(ENOMEM); |
| |
| ebur128->integrated_loudness = ABS_THRES; |
| ebur128->loudness_range = 0; |
| |
| /* insert output pads */ |
| if (ebur128->do_video) { |
| pad = (AVFilterPad){ |
| .name = av_strdup("out0"), |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_video_output, |
| }; |
| if (!pad.name) |
| return AVERROR(ENOMEM); |
| ff_insert_outpad(ctx, 0, &pad); |
| } |
| pad = (AVFilterPad){ |
| .name = av_asprintf("out%d", ebur128->do_video), |
| .type = AVMEDIA_TYPE_AUDIO, |
| .config_props = config_audio_output, |
| }; |
| if (!pad.name) |
| return AVERROR(ENOMEM); |
| ff_insert_outpad(ctx, ebur128->do_video, &pad); |
| |
| /* summary */ |
| av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter); |
| |
| return 0; |
| } |
| |
| #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN) |
| |
| /* loudness and power should be set such as loudness = -0.691 + |
| * 10*log10(power), we just avoid doing that calculus two times */ |
| static int gate_update(struct integrator *integ, double power, |
| double loudness, int gate_thres) |
| { |
| int ipower; |
| double relative_threshold; |
| int gate_hist_pos; |
| |
| /* update powers histograms by incrementing current power count */ |
| ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1); |
| integ->histogram[ipower].count++; |
| |
| /* compute relative threshold and get its position in the histogram */ |
| integ->sum_kept_powers += power; |
| integ->nb_kept_powers++; |
| relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers; |
| if (!relative_threshold) |
| relative_threshold = 1e-12; |
| integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres; |
| gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1); |
| |
| return gate_hist_pos; |
| } |
| |
| static int filter_frame(AVFilterLink *inlink, AVFrame *insamples) |
| { |
| int i, ch, idx_insample; |
| AVFilterContext *ctx = inlink->dst; |
| EBUR128Context *ebur128 = ctx->priv; |
| const int nb_channels = ebur128->nb_channels; |
| const int nb_samples = insamples->nb_samples; |
| const double *samples = (double *)insamples->data[0]; |
| AVFrame *pic = ebur128->outpicref; |
| |
| #if CONFIG_SWRESAMPLE |
| if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) { |
| const double *swr_samples = ebur128->swr_buf; |
| int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200, |
| (const uint8_t **)insamples->data, nb_samples); |
| if (ret < 0) |
| return ret; |
| for (ch = 0; ch < nb_channels; ch++) |
| ebur128->true_peaks_per_frame[ch] = 0.0; |
| for (idx_insample = 0; idx_insample < ret; idx_insample++) { |
| for (ch = 0; ch < nb_channels; ch++) { |
| ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples)); |
| ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch], |
| fabs(*swr_samples)); |
| swr_samples++; |
| } |
| } |
| } |
| #endif |
| |
| for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) { |
| const int bin_id_400 = ebur128->i400.cache_pos; |
| const int bin_id_3000 = ebur128->i3000.cache_pos; |
| |
| #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \ |
| ebur128->i##time.cache_pos++; \ |
| if (ebur128->i##time.cache_pos == I##time##_BINS) { \ |
| ebur128->i##time.filled = 1; \ |
| ebur128->i##time.cache_pos = 0; \ |
| } \ |
| } while (0) |
| |
| MOVE_TO_NEXT_CACHED_ENTRY(400); |
| MOVE_TO_NEXT_CACHED_ENTRY(3000); |
| |
| for (ch = 0; ch < nb_channels; ch++) { |
| double bin; |
| |
| if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) |
| ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(*samples)); |
| |
| ebur128->x[ch * 3] = *samples++; // set X[i] |
| |
| if (!ebur128->ch_weighting[ch]) |
| continue; |
| |
| /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */ |
| #define FILTER(Y, X, name) do { \ |
| double *dst = ebur128->Y + ch*3; \ |
| double *src = ebur128->X + ch*3; \ |
| dst[2] = dst[1]; \ |
| dst[1] = dst[0]; \ |
| dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \ |
| - dst[1]*name##_A1 - dst[2]*name##_A2; \ |
| } while (0) |
| |
| // TODO: merge both filters in one? |
| FILTER(y, x, PRE); // apply pre-filter |
| ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1]; |
| ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ]; |
| FILTER(z, y, RLB); // apply RLB-filter |
| |
| bin = ebur128->z[ch * 3] * ebur128->z[ch * 3]; |
| |
| /* add the new value, and limit the sum to the cache size (400ms or 3s) |
| * by removing the oldest one */ |
| ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400]; |
| ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000]; |
| |
| /* override old cache entry with the new value */ |
| ebur128->i400.cache [ch][bin_id_400 ] = bin; |
| ebur128->i3000.cache[ch][bin_id_3000] = bin; |
| } |
| |
| /* For integrated loudness, gating blocks are 400ms long with 75% |
| * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms |
| * (4800 samples at 48kHz). */ |
| if (++ebur128->sample_count == 4800) { |
| double loudness_400, loudness_3000; |
| double power_400 = 1e-12, power_3000 = 1e-12; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| const int64_t pts = insamples->pts + |
| av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate }, |
| outlink->time_base); |
| |
| ebur128->sample_count = 0; |
| |
| #define COMPUTE_LOUDNESS(m, time) do { \ |
| if (ebur128->i##time.filled) { \ |
| /* weighting sum of the last <time> ms */ \ |
| for (ch = 0; ch < nb_channels; ch++) \ |
| power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \ |
| power_##time /= I##time##_BINS; \ |
| } \ |
| loudness_##time = LOUDNESS(power_##time); \ |
| } while (0) |
| |
| COMPUTE_LOUDNESS(M, 400); |
| COMPUTE_LOUDNESS(S, 3000); |
| |
| /* Integrated loudness */ |
| #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard |
| |
| if (loudness_400 >= ABS_THRES) { |
| double integrated_sum = 0; |
| int nb_integrated = 0; |
| int gate_hist_pos = gate_update(&ebur128->i400, power_400, |
| loudness_400, I_GATE_THRES); |
| |
| /* compute integrated loudness by summing the histogram values |
| * above the relative threshold */ |
| for (i = gate_hist_pos; i < HIST_SIZE; i++) { |
| const int nb_v = ebur128->i400.histogram[i].count; |
| nb_integrated += nb_v; |
| integrated_sum += nb_v * ebur128->i400.histogram[i].energy; |
| } |
| if (nb_integrated) { |
| ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated); |
| /* dual-mono correction */ |
| if (nb_channels == 1 && ebur128->dual_mono) { |
| ebur128->integrated_loudness -= ebur128->pan_law; |
| } |
| } |
| } |
| |
| /* LRA */ |
| #define LRA_GATE_THRES -20 |
| #define LRA_LOWER_PRC 10 |
| #define LRA_HIGHER_PRC 95 |
| |
| /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770 |
| * specs is ">" */ |
| if (loudness_3000 >= ABS_THRES) { |
| int nb_powers = 0; |
| int gate_hist_pos = gate_update(&ebur128->i3000, power_3000, |
| loudness_3000, LRA_GATE_THRES); |
| |
| for (i = gate_hist_pos; i < HIST_SIZE; i++) |
| nb_powers += ebur128->i3000.histogram[i].count; |
| if (nb_powers) { |
| int n, nb_pow; |
| |
| /* get lower loudness to consider */ |
| n = 0; |
| nb_pow = LRA_LOWER_PRC * nb_powers / 100. + 0.5; |
| for (i = gate_hist_pos; i < HIST_SIZE; i++) { |
| n += ebur128->i3000.histogram[i].count; |
| if (n >= nb_pow) { |
| ebur128->lra_low = ebur128->i3000.histogram[i].loudness; |
| break; |
| } |
| } |
| |
| /* get higher loudness to consider */ |
| n = nb_powers; |
| nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5; |
| for (i = HIST_SIZE - 1; i >= 0; i--) { |
| n -= ebur128->i3000.histogram[i].count; |
| if (n < nb_pow) { |
| ebur128->lra_high = ebur128->i3000.histogram[i].loudness; |
| break; |
| } |
| } |
| |
| // XXX: show low & high on the graph? |
| ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low; |
| } |
| } |
| |
| /* dual-mono correction */ |
| if (nb_channels == 1 && ebur128->dual_mono) { |
| loudness_400 -= ebur128->pan_law; |
| loudness_3000 -= ebur128->pan_law; |
| } |
| |
| #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU" |
| |
| /* push one video frame */ |
| if (ebur128->do_video) { |
| int x, y, ret; |
| uint8_t *p; |
| |
| const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23); |
| const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400 + 23); |
| |
| /* draw the graph using the short-term loudness */ |
| p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3; |
| for (y = 0; y < ebur128->graph.h; y++) { |
| const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y); |
| |
| memmove(p, p + 3, (ebur128->graph.w - 1) * 3); |
| memcpy(p + (ebur128->graph.w - 1) * 3, c, 3); |
| p += pic->linesize[0]; |
| } |
| |
| /* draw the gauge using the momentary loudness */ |
| p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3; |
| for (y = 0; y < ebur128->gauge.h; y++) { |
| const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y); |
| |
| for (x = 0; x < ebur128->gauge.w; x++) |
| memcpy(p + x*3, c, 3); |
| p += pic->linesize[0]; |
| } |
| |
| /* draw textual info */ |
| drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors, |
| LOG_FMT " ", // padding to erase trailing characters |
| loudness_400, loudness_3000, |
| ebur128->integrated_loudness, ebur128->loudness_range); |
| |
| /* set pts and push frame */ |
| pic->pts = pts; |
| ret = ff_filter_frame(outlink, av_frame_clone(pic)); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (ebur128->metadata) { /* happens only once per filter_frame call */ |
| char metabuf[128]; |
| #define META_PREFIX "lavfi.r128." |
| |
| #define SET_META(name, var) do { \ |
| snprintf(metabuf, sizeof(metabuf), "%.3f", var); \ |
| av_dict_set(&insamples->metadata, name, metabuf, 0); \ |
| } while (0) |
| |
| #define SET_META_PEAK(name, ptype) do { \ |
| if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ |
| char key[64]; \ |
| for (ch = 0; ch < nb_channels; ch++) { \ |
| snprintf(key, sizeof(key), \ |
| META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \ |
| SET_META(key, ebur128->name##_peaks[ch]); \ |
| } \ |
| } \ |
| } while (0) |
| |
| SET_META(META_PREFIX "M", loudness_400); |
| SET_META(META_PREFIX "S", loudness_3000); |
| SET_META(META_PREFIX "I", ebur128->integrated_loudness); |
| SET_META(META_PREFIX "LRA", ebur128->loudness_range); |
| SET_META(META_PREFIX "LRA.low", ebur128->lra_low); |
| SET_META(META_PREFIX "LRA.high", ebur128->lra_high); |
| |
| SET_META_PEAK(sample, SAMPLES); |
| SET_META_PEAK(true, TRUE); |
| } |
| |
| av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT, |
| av_ts2timestr(pts, &outlink->time_base), |
| loudness_400, loudness_3000, |
| ebur128->integrated_loudness, ebur128->loudness_range); |
| |
| #define PRINT_PEAKS(str, sp, ptype) do { \ |
| if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ |
| av_log(ctx, ebur128->loglevel, " " str ":"); \ |
| for (ch = 0; ch < nb_channels; ch++) \ |
| av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \ |
| av_log(ctx, ebur128->loglevel, " dBFS"); \ |
| } \ |
| } while (0) |
| |
| PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES); |
| PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE); |
| PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE); |
| av_log(ctx, ebur128->loglevel, "\n"); |
| } |
| } |
| |
| return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples); |
| } |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| EBUR128Context *ebur128 = ctx->priv; |
| AVFilterFormats *formats; |
| AVFilterChannelLayouts *layouts; |
| AVFilterLink *inlink = ctx->inputs[0]; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| int ret; |
| |
| static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; |
| static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz |
| static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE }; |
| |
| /* set optional output video format */ |
| if (ebur128->do_video) { |
| formats = ff_make_format_list(pix_fmts); |
| if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) |
| return ret; |
| outlink = ctx->outputs[1]; |
| } |
| |
| /* set input and output audio formats |
| * Note: ff_set_common_* functions are not used because they affect all the |
| * links, and thus break the video format negotiation */ |
| formats = ff_make_format_list(sample_fmts); |
| if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0 || |
| (ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) |
| return ret; |
| |
| layouts = ff_all_channel_layouts(); |
| if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0 || |
| (ret = ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts)) < 0) |
| return ret; |
| |
| formats = ff_make_format_list(input_srate); |
| if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0 || |
| (ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| int i; |
| EBUR128Context *ebur128 = ctx->priv; |
| |
| /* dual-mono correction */ |
| if (ebur128->nb_channels == 1 && ebur128->dual_mono) { |
| ebur128->i400.rel_threshold -= ebur128->pan_law; |
| ebur128->i3000.rel_threshold -= ebur128->pan_law; |
| ebur128->lra_low -= ebur128->pan_law; |
| ebur128->lra_high -= ebur128->pan_law; |
| } |
| |
| av_log(ctx, AV_LOG_INFO, "Summary:\n\n" |
| " Integrated loudness:\n" |
| " I: %5.1f LUFS\n" |
| " Threshold: %5.1f LUFS\n\n" |
| " Loudness range:\n" |
| " LRA: %5.1f LU\n" |
| " Threshold: %5.1f LUFS\n" |
| " LRA low: %5.1f LUFS\n" |
| " LRA high: %5.1f LUFS", |
| ebur128->integrated_loudness, ebur128->i400.rel_threshold, |
| ebur128->loudness_range, ebur128->i3000.rel_threshold, |
| ebur128->lra_low, ebur128->lra_high); |
| |
| #define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \ |
| int ch; \ |
| double maxpeak; \ |
| maxpeak = 0.0; \ |
| if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ |
| for (ch = 0; ch < ebur128->nb_channels; ch++) \ |
| maxpeak = FFMAX(maxpeak, sp[ch]); \ |
| av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \ |
| " Peak: %5.1f dBFS", \ |
| DBFS(maxpeak)); \ |
| } \ |
| } while (0) |
| |
| PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES); |
| PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE); |
| av_log(ctx, AV_LOG_INFO, "\n"); |
| |
| av_freep(&ebur128->y_line_ref); |
| av_freep(&ebur128->ch_weighting); |
| av_freep(&ebur128->true_peaks); |
| av_freep(&ebur128->sample_peaks); |
| av_freep(&ebur128->true_peaks_per_frame); |
| av_freep(&ebur128->i400.histogram); |
| av_freep(&ebur128->i3000.histogram); |
| for (i = 0; i < ebur128->nb_channels; i++) { |
| av_freep(&ebur128->i400.cache[i]); |
| av_freep(&ebur128->i3000.cache[i]); |
| } |
| for (i = 0; i < ctx->nb_outputs; i++) |
| av_freep(&ctx->output_pads[i].name); |
| av_frame_free(&ebur128->outpicref); |
| #if CONFIG_SWRESAMPLE |
| av_freep(&ebur128->swr_buf); |
| swr_free(&ebur128->swr_ctx); |
| #endif |
| } |
| |
| static const AVFilterPad ebur128_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_AUDIO, |
| .filter_frame = filter_frame, |
| .config_props = config_audio_input, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_af_ebur128 = { |
| .name = "ebur128", |
| .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."), |
| .priv_size = sizeof(EBUR128Context), |
| .init = init, |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = ebur128_inputs, |
| .outputs = NULL, |
| .priv_class = &ebur128_class, |
| .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS, |
| }; |