| /* |
| * Copyright (c) 2015 Stupeflix |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Generate one palette for a whole video stream. |
| */ |
| |
| #include "libavutil/avassert.h" |
| #include "libavutil/internal.h" |
| #include "libavutil/opt.h" |
| #include "libavutil/qsort.h" |
| #include "avfilter.h" |
| #include "internal.h" |
| |
| /* Reference a color and how much it's used */ |
| struct color_ref { |
| uint32_t color; |
| uint64_t count; |
| }; |
| |
| /* Store a range of colors */ |
| struct range_box { |
| uint32_t color; // average color |
| int64_t variance; // overall variance of the box (how much the colors are spread) |
| int start; // index in PaletteGenContext->refs |
| int len; // number of referenced colors |
| int sorted_by; // whether range of colors is sorted by red (0), green (1) or blue (2) |
| }; |
| |
| struct hist_node { |
| struct color_ref *entries; |
| int nb_entries; |
| }; |
| |
| enum { |
| STATS_MODE_ALL_FRAMES, |
| STATS_MODE_DIFF_FRAMES, |
| NB_STATS_MODE |
| }; |
| |
| #define NBITS 5 |
| #define HIST_SIZE (1<<(3*NBITS)) |
| |
| typedef struct { |
| const AVClass *class; |
| |
| int max_colors; |
| int reserve_transparent; |
| int stats_mode; |
| |
| AVFrame *prev_frame; // previous frame used for the diff stats_mode |
| struct hist_node histogram[HIST_SIZE]; // histogram/hashtable of the colors |
| struct color_ref **refs; // references of all the colors used in the stream |
| int nb_refs; // number of color references (or number of different colors) |
| struct range_box boxes[256]; // define the segmentation of the colorspace (the final palette) |
| int nb_boxes; // number of boxes (increase will segmenting them) |
| int palette_pushed; // if the palette frame is pushed into the outlink or not |
| } PaletteGenContext; |
| |
| #define OFFSET(x) offsetof(PaletteGenContext, x) |
| #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM |
| static const AVOption palettegen_options[] = { |
| { "max_colors", "set the maximum number of colors to use in the palette", OFFSET(max_colors), AV_OPT_TYPE_INT, {.i64=256}, 4, 256, FLAGS }, |
| { "reserve_transparent", "reserve a palette entry for transparency", OFFSET(reserve_transparent), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS }, |
| { "stats_mode", "set statistics mode", OFFSET(stats_mode), AV_OPT_TYPE_INT, {.i64=STATS_MODE_ALL_FRAMES}, 0, NB_STATS_MODE, FLAGS, "mode" }, |
| { "full", "compute full frame histograms", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_ALL_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" }, |
| { "diff", "compute histograms only for the part that differs from previous frame", 0, AV_OPT_TYPE_CONST, {.i64=STATS_MODE_DIFF_FRAMES}, INT_MIN, INT_MAX, FLAGS, "mode" }, |
| { NULL } |
| }; |
| |
| AVFILTER_DEFINE_CLASS(palettegen); |
| |
| static int query_formats(AVFilterContext *ctx) |
| { |
| static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; |
| static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE}; |
| int ret; |
| AVFilterFormats *in = ff_make_format_list(in_fmts); |
| AVFilterFormats *out = ff_make_format_list(out_fmts); |
| if (!in || !out) { |
| av_freep(&in); |
| av_freep(&out); |
| return AVERROR(ENOMEM); |
| } |
| if ((ret = ff_formats_ref(in , &ctx->inputs[0]->out_formats)) < 0 || |
| (ret = ff_formats_ref(out, &ctx->outputs[0]->in_formats)) < 0) |
| return ret; |
| return 0; |
| } |
| |
| typedef int (*cmp_func)(const void *, const void *); |
| |
| #define DECLARE_CMP_FUNC(name, pos) \ |
| static int cmp_##name(const void *pa, const void *pb) \ |
| { \ |
| const struct color_ref * const *a = pa; \ |
| const struct color_ref * const *b = pb; \ |
| return ((*a)->color >> (8 * (2 - (pos))) & 0xff) \ |
| - ((*b)->color >> (8 * (2 - (pos))) & 0xff); \ |
| } |
| |
| DECLARE_CMP_FUNC(r, 0) |
| DECLARE_CMP_FUNC(g, 1) |
| DECLARE_CMP_FUNC(b, 2) |
| |
| static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b}; |
| |
| /** |
| * Simple color comparison for sorting the final palette |
| */ |
| static int cmp_color(const void *a, const void *b) |
| { |
| const struct range_box *box1 = a; |
| const struct range_box *box2 = b; |
| return FFDIFFSIGN(box1->color , box2->color); |
| } |
| |
| static av_always_inline int diff(const uint32_t a, const uint32_t b) |
| { |
| const uint8_t c1[] = {a >> 16 & 0xff, a >> 8 & 0xff, a & 0xff}; |
| const uint8_t c2[] = {b >> 16 & 0xff, b >> 8 & 0xff, b & 0xff}; |
| const int dr = c1[0] - c2[0]; |
| const int dg = c1[1] - c2[1]; |
| const int db = c1[2] - c2[2]; |
| return dr*dr + dg*dg + db*db; |
| } |
| |
| /** |
| * Find the next box to split: pick the one with the highest variance |
| */ |
| static int get_next_box_id_to_split(PaletteGenContext *s) |
| { |
| int box_id, i, best_box_id = -1; |
| int64_t max_variance = -1; |
| |
| if (s->nb_boxes == s->max_colors - s->reserve_transparent) |
| return -1; |
| |
| for (box_id = 0; box_id < s->nb_boxes; box_id++) { |
| struct range_box *box = &s->boxes[box_id]; |
| |
| if (s->boxes[box_id].len >= 2) { |
| |
| if (box->variance == -1) { |
| int64_t variance = 0; |
| |
| for (i = 0; i < box->len; i++) { |
| const struct color_ref *ref = s->refs[box->start + i]; |
| variance += diff(ref->color, box->color) * ref->count; |
| } |
| box->variance = variance; |
| } |
| if (box->variance > max_variance) { |
| best_box_id = box_id; |
| max_variance = box->variance; |
| } |
| } else { |
| box->variance = -1; |
| } |
| } |
| return best_box_id; |
| } |
| |
| /** |
| * Get the 32-bit average color for the range of RGB colors enclosed in the |
| * specified box. Takes into account the weight of each color. |
| */ |
| static uint32_t get_avg_color(struct color_ref * const *refs, |
| const struct range_box *box) |
| { |
| int i; |
| const int n = box->len; |
| uint64_t r = 0, g = 0, b = 0, div = 0; |
| |
| for (i = 0; i < n; i++) { |
| const struct color_ref *ref = refs[box->start + i]; |
| r += (ref->color >> 16 & 0xff) * ref->count; |
| g += (ref->color >> 8 & 0xff) * ref->count; |
| b += (ref->color & 0xff) * ref->count; |
| div += ref->count; |
| } |
| |
| r = r / div; |
| g = g / div; |
| b = b / div; |
| |
| return 0xffU<<24 | r<<16 | g<<8 | b; |
| } |
| |
| /** |
| * Split given box in two at position n. The original box becomes the left part |
| * of the split, and the new index box is the right part. |
| */ |
| static void split_box(PaletteGenContext *s, struct range_box *box, int n) |
| { |
| struct range_box *new_box = &s->boxes[s->nb_boxes++]; |
| new_box->start = n + 1; |
| new_box->len = box->start + box->len - new_box->start; |
| new_box->sorted_by = box->sorted_by; |
| box->len -= new_box->len; |
| |
| av_assert0(box->len >= 1); |
| av_assert0(new_box->len >= 1); |
| |
| box->color = get_avg_color(s->refs, box); |
| new_box->color = get_avg_color(s->refs, new_box); |
| box->variance = -1; |
| new_box->variance = -1; |
| } |
| |
| /** |
| * Write the palette into the output frame. |
| */ |
| static void write_palette(AVFilterContext *ctx, AVFrame *out) |
| { |
| const PaletteGenContext *s = ctx->priv; |
| int x, y, box_id = 0; |
| uint32_t *pal = (uint32_t *)out->data[0]; |
| const int pal_linesize = out->linesize[0] >> 2; |
| uint32_t last_color = 0; |
| |
| for (y = 0; y < out->height; y++) { |
| for (x = 0; x < out->width; x++) { |
| if (box_id < s->nb_boxes) { |
| pal[x] = s->boxes[box_id++].color; |
| if ((x || y) && pal[x] == last_color) |
| av_log(ctx, AV_LOG_WARNING, "Dupped color: %08X\n", pal[x]); |
| last_color = pal[x]; |
| } else { |
| pal[x] = 0xff000000; // pad with black |
| } |
| } |
| pal += pal_linesize; |
| } |
| |
| if (s->reserve_transparent) { |
| av_assert0(s->nb_boxes < 256); |
| pal[out->width - pal_linesize - 1] = 0x0000ff00; // add a green transparent color |
| } |
| } |
| |
| /** |
| * Crawl the histogram to get all the defined colors, and create a linear list |
| * of them (each color reference entry is a pointer to the value in the |
| * histogram/hash table). |
| */ |
| static struct color_ref **load_color_refs(const struct hist_node *hist, int nb_refs) |
| { |
| int i, j, k = 0; |
| struct color_ref **refs = av_malloc_array(nb_refs, sizeof(*refs)); |
| |
| if (!refs) |
| return NULL; |
| |
| for (j = 0; j < HIST_SIZE; j++) { |
| const struct hist_node *node = &hist[j]; |
| |
| for (i = 0; i < node->nb_entries; i++) |
| refs[k++] = &node->entries[i]; |
| } |
| |
| return refs; |
| } |
| |
| static double set_colorquant_ratio_meta(AVFrame *out, int nb_out, int nb_in) |
| { |
| char buf[32]; |
| const double ratio = (double)nb_out / nb_in; |
| snprintf(buf, sizeof(buf), "%f", ratio); |
| av_dict_set(&out->metadata, "lavfi.color_quant_ratio", buf, 0); |
| return ratio; |
| } |
| |
| /** |
| * Main function implementing the Median Cut Algorithm defined by Paul Heckbert |
| * in Color Image Quantization for Frame Buffer Display (1982) |
| */ |
| static AVFrame *get_palette_frame(AVFilterContext *ctx) |
| { |
| AVFrame *out; |
| PaletteGenContext *s = ctx->priv; |
| AVFilterLink *outlink = ctx->outputs[0]; |
| double ratio; |
| int box_id = 0; |
| struct range_box *box; |
| |
| /* reference only the used colors from histogram */ |
| s->refs = load_color_refs(s->histogram, s->nb_refs); |
| if (!s->refs) { |
| av_log(ctx, AV_LOG_ERROR, "Unable to allocate references for %d different colors\n", s->nb_refs); |
| return NULL; |
| } |
| |
| /* create the palette frame */ |
| out = ff_get_video_buffer(outlink, outlink->w, outlink->h); |
| if (!out) |
| return NULL; |
| out->pts = 0; |
| |
| /* set first box for 0..nb_refs */ |
| box = &s->boxes[box_id]; |
| box->len = s->nb_refs; |
| box->sorted_by = -1; |
| box->color = get_avg_color(s->refs, box); |
| box->variance = -1; |
| s->nb_boxes = 1; |
| |
| while (box && box->len > 1) { |
| int i, rr, gr, br, longest; |
| uint64_t median, box_weight = 0; |
| |
| /* compute the box weight (sum all the weights of the colors in the |
| * range) and its boundings */ |
| uint8_t min[3] = {0xff, 0xff, 0xff}; |
| uint8_t max[3] = {0x00, 0x00, 0x00}; |
| for (i = box->start; i < box->start + box->len; i++) { |
| const struct color_ref *ref = s->refs[i]; |
| const uint32_t rgb = ref->color; |
| const uint8_t r = rgb >> 16 & 0xff, g = rgb >> 8 & 0xff, b = rgb & 0xff; |
| min[0] = FFMIN(r, min[0]), max[0] = FFMAX(r, max[0]); |
| min[1] = FFMIN(g, min[1]), max[1] = FFMAX(g, max[1]); |
| min[2] = FFMIN(b, min[2]), max[2] = FFMAX(b, max[2]); |
| box_weight += ref->count; |
| } |
| |
| /* define the axis to sort by according to the widest range of colors */ |
| rr = max[0] - min[0]; |
| gr = max[1] - min[1]; |
| br = max[2] - min[2]; |
| longest = 1; // pick green by default (the color the eye is the most sensitive to) |
| if (br >= rr && br >= gr) longest = 2; |
| if (rr >= gr && rr >= br) longest = 0; |
| if (gr >= rr && gr >= br) longest = 1; // prefer green again |
| |
| ff_dlog(ctx, "box #%02X [%6d..%-6d] (%6d) w:%-6"PRIu64" ranges:[%2x %2x %2x] sort by %c (already sorted:%c) ", |
| box_id, box->start, box->start + box->len - 1, box->len, box_weight, |
| rr, gr, br, "rgb"[longest], box->sorted_by == longest ? 'y':'n'); |
| |
| /* sort the range by its longest axis if it's not already sorted */ |
| if (box->sorted_by != longest) { |
| cmp_func cmpf = cmp_funcs[longest]; |
| AV_QSORT(&s->refs[box->start], box->len, const struct color_ref *, cmpf); |
| box->sorted_by = longest; |
| } |
| |
| /* locate the median where to split */ |
| median = (box_weight + 1) >> 1; |
| box_weight = 0; |
| /* if you have 2 boxes, the maximum is actually #0: you must have at |
| * least 1 color on each side of the split, hence the -2 */ |
| for (i = box->start; i < box->start + box->len - 2; i++) { |
| box_weight += s->refs[i]->count; |
| if (box_weight > median) |
| break; |
| } |
| ff_dlog(ctx, "split @ i=%-6d with w=%-6"PRIu64" (target=%6"PRIu64")\n", i, box_weight, median); |
| split_box(s, box, i); |
| |
| box_id = get_next_box_id_to_split(s); |
| box = box_id >= 0 ? &s->boxes[box_id] : NULL; |
| } |
| |
| ratio = set_colorquant_ratio_meta(out, s->nb_boxes, s->nb_refs); |
| av_log(ctx, AV_LOG_INFO, "%d%s colors generated out of %d colors; ratio=%f\n", |
| s->nb_boxes, s->reserve_transparent ? "(+1)" : "", s->nb_refs, ratio); |
| |
| qsort(s->boxes, s->nb_boxes, sizeof(*s->boxes), cmp_color); |
| |
| write_palette(ctx, out); |
| |
| return out; |
| } |
| |
| /** |
| * Hashing function for the color. |
| * It keeps the NBITS least significant bit of each component to make it |
| * "random" even if the scene doesn't have much different colors. |
| */ |
| static inline unsigned color_hash(uint32_t color) |
| { |
| const uint8_t r = color >> 16 & ((1<<NBITS)-1); |
| const uint8_t g = color >> 8 & ((1<<NBITS)-1); |
| const uint8_t b = color & ((1<<NBITS)-1); |
| return r<<(NBITS*2) | g<<NBITS | b; |
| } |
| |
| /** |
| * Locate the color in the hash table and increment its counter. |
| */ |
| static int color_inc(struct hist_node *hist, uint32_t color) |
| { |
| int i; |
| const unsigned hash = color_hash(color); |
| struct hist_node *node = &hist[hash]; |
| struct color_ref *e; |
| |
| for (i = 0; i < node->nb_entries; i++) { |
| e = &node->entries[i]; |
| if (e->color == color) { |
| e->count++; |
| return 0; |
| } |
| } |
| |
| e = av_dynarray2_add((void**)&node->entries, &node->nb_entries, |
| sizeof(*node->entries), NULL); |
| if (!e) |
| return AVERROR(ENOMEM); |
| e->color = color; |
| e->count = 1; |
| return 1; |
| } |
| |
| /** |
| * Update histogram when pixels differ from previous frame. |
| */ |
| static int update_histogram_diff(struct hist_node *hist, |
| const AVFrame *f1, const AVFrame *f2) |
| { |
| int x, y, ret, nb_diff_colors = 0; |
| |
| for (y = 0; y < f1->height; y++) { |
| const uint32_t *p = (const uint32_t *)(f1->data[0] + y*f1->linesize[0]); |
| const uint32_t *q = (const uint32_t *)(f2->data[0] + y*f2->linesize[0]); |
| |
| for (x = 0; x < f1->width; x++) { |
| if (p[x] == q[x]) |
| continue; |
| ret = color_inc(hist, p[x]); |
| if (ret < 0) |
| return ret; |
| nb_diff_colors += ret; |
| } |
| } |
| return nb_diff_colors; |
| } |
| |
| /** |
| * Simple histogram of the frame. |
| */ |
| static int update_histogram_frame(struct hist_node *hist, const AVFrame *f) |
| { |
| int x, y, ret, nb_diff_colors = 0; |
| |
| for (y = 0; y < f->height; y++) { |
| const uint32_t *p = (const uint32_t *)(f->data[0] + y*f->linesize[0]); |
| |
| for (x = 0; x < f->width; x++) { |
| ret = color_inc(hist, p[x]); |
| if (ret < 0) |
| return ret; |
| nb_diff_colors += ret; |
| } |
| } |
| return nb_diff_colors; |
| } |
| |
| /** |
| * Update the histogram for each passing frame. No frame will be pushed here. |
| */ |
| static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
| { |
| AVFilterContext *ctx = inlink->dst; |
| PaletteGenContext *s = ctx->priv; |
| const int ret = s->prev_frame ? update_histogram_diff(s->histogram, s->prev_frame, in) |
| : update_histogram_frame(s->histogram, in); |
| |
| if (ret > 0) |
| s->nb_refs += ret; |
| |
| if (s->stats_mode == STATS_MODE_DIFF_FRAMES) { |
| av_frame_free(&s->prev_frame); |
| s->prev_frame = in; |
| } else { |
| av_frame_free(&in); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Returns only one frame at the end containing the full palette. |
| */ |
| static int request_frame(AVFilterLink *outlink) |
| { |
| AVFilterContext *ctx = outlink->src; |
| AVFilterLink *inlink = ctx->inputs[0]; |
| PaletteGenContext *s = ctx->priv; |
| int r; |
| |
| r = ff_request_frame(inlink); |
| if (r == AVERROR_EOF && !s->palette_pushed && s->nb_refs) { |
| r = ff_filter_frame(outlink, get_palette_frame(ctx)); |
| s->palette_pushed = 1; |
| return r; |
| } |
| return r; |
| } |
| |
| /** |
| * The output is one simple 16x16 squared-pixels palette. |
| */ |
| static int config_output(AVFilterLink *outlink) |
| { |
| outlink->w = outlink->h = 16; |
| outlink->sample_aspect_ratio = av_make_q(1, 1); |
| return 0; |
| } |
| |
| static av_cold void uninit(AVFilterContext *ctx) |
| { |
| int i; |
| PaletteGenContext *s = ctx->priv; |
| |
| for (i = 0; i < HIST_SIZE; i++) |
| av_freep(&s->histogram[i].entries); |
| av_freep(&s->refs); |
| av_frame_free(&s->prev_frame); |
| } |
| |
| static const AVFilterPad palettegen_inputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .filter_frame = filter_frame, |
| }, |
| { NULL } |
| }; |
| |
| static const AVFilterPad palettegen_outputs[] = { |
| { |
| .name = "default", |
| .type = AVMEDIA_TYPE_VIDEO, |
| .config_props = config_output, |
| .request_frame = request_frame, |
| }, |
| { NULL } |
| }; |
| |
| AVFilter ff_vf_palettegen = { |
| .name = "palettegen", |
| .description = NULL_IF_CONFIG_SMALL("Find the optimal palette for a given stream."), |
| .priv_size = sizeof(PaletteGenContext), |
| .uninit = uninit, |
| .query_formats = query_formats, |
| .inputs = palettegen_inputs, |
| .outputs = palettegen_outputs, |
| .priv_class = &palettegen_class, |
| }; |