| /* |
| * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com> |
| * |
| * Triangular with Noise Shaping is based on opusfile. |
| * Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors |
| * |
| * This file is part of FFmpeg. |
| * |
| * FFmpeg is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * FFmpeg is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with FFmpeg; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /** |
| * @file |
| * Dithered Audio Sample Quantization |
| * |
| * Converts from dbl, flt, or s32 to s16 using dithering. |
| */ |
| |
| #include <math.h> |
| #include <stdint.h> |
| |
| #include "libavutil/attributes.h" |
| #include "libavutil/common.h" |
| #include "libavutil/lfg.h" |
| #include "libavutil/mem.h" |
| #include "libavutil/samplefmt.h" |
| #include "audio_convert.h" |
| #include "dither.h" |
| #include "internal.h" |
| |
| typedef struct DitherState { |
| int mute; |
| unsigned int seed; |
| AVLFG lfg; |
| float *noise_buf; |
| int noise_buf_size; |
| int noise_buf_ptr; |
| float dither_a[4]; |
| float dither_b[4]; |
| } DitherState; |
| |
| struct DitherContext { |
| DitherDSPContext ddsp; |
| enum AVResampleDitherMethod method; |
| int apply_map; |
| ChannelMapInfo *ch_map_info; |
| |
| int mute_dither_threshold; // threshold for disabling dither |
| int mute_reset_threshold; // threshold for resetting noise shaping |
| const float *ns_coef_b; // noise shaping coeffs |
| const float *ns_coef_a; // noise shaping coeffs |
| |
| int channels; |
| DitherState *state; // dither states for each channel |
| |
| AudioData *flt_data; // input data in fltp |
| AudioData *s16_data; // dithered output in s16p |
| AudioConvert *ac_in; // converter for input to fltp |
| AudioConvert *ac_out; // converter for s16p to s16 (if needed) |
| |
| void (*quantize)(int16_t *dst, const float *src, float *dither, int len); |
| int samples_align; |
| }; |
| |
| /* mute threshold, in seconds */ |
| #define MUTE_THRESHOLD_SEC 0.000333 |
| |
| /* scale factor for 16-bit output. |
| The signal is attenuated slightly to avoid clipping */ |
| #define S16_SCALE 32753.0f |
| |
| /* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */ |
| #define LFG_SCALE (1.0f / (2.0f * INT32_MAX)) |
| |
| /* noise shaping coefficients */ |
| |
| static const float ns_48_coef_b[4] = { |
| 2.2374f, -0.7339f, -0.1251f, -0.6033f |
| }; |
| |
| static const float ns_48_coef_a[4] = { |
| 0.9030f, 0.0116f, -0.5853f, -0.2571f |
| }; |
| |
| static const float ns_44_coef_b[4] = { |
| 2.2061f, -0.4707f, -0.2534f, -0.6213f |
| }; |
| |
| static const float ns_44_coef_a[4] = { |
| 1.0587f, 0.0676f, -0.6054f, -0.2738f |
| }; |
| |
| static void dither_int_to_float_rectangular_c(float *dst, int *src, int len) |
| { |
| int i; |
| for (i = 0; i < len; i++) |
| dst[i] = src[i] * LFG_SCALE; |
| } |
| |
| static void dither_int_to_float_triangular_c(float *dst, int *src0, int len) |
| { |
| int i; |
| int *src1 = src0 + len; |
| |
| for (i = 0; i < len; i++) { |
| float r = src0[i] * LFG_SCALE; |
| r += src1[i] * LFG_SCALE; |
| dst[i] = r; |
| } |
| } |
| |
| static void quantize_c(int16_t *dst, const float *src, float *dither, int len) |
| { |
| int i; |
| for (i = 0; i < len; i++) |
| dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i])); |
| } |
| |
| #define SQRT_1_6 0.40824829046386301723f |
| |
| static void dither_highpass_filter(float *src, int len) |
| { |
| int i; |
| |
| /* filter is from libswresample in FFmpeg */ |
| for (i = 0; i < len - 2; i++) |
| src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6; |
| } |
| |
| static int generate_dither_noise(DitherContext *c, DitherState *state, |
| int min_samples) |
| { |
| int i; |
| int nb_samples = FFALIGN(min_samples, 16) + 16; |
| int buf_samples = nb_samples * |
| (c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2); |
| unsigned int *noise_buf_ui; |
| |
| av_freep(&state->noise_buf); |
| state->noise_buf_size = state->noise_buf_ptr = 0; |
| |
| state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf)); |
| if (!state->noise_buf) |
| return AVERROR(ENOMEM); |
| state->noise_buf_size = FFALIGN(min_samples, 16); |
| noise_buf_ui = (unsigned int *)state->noise_buf; |
| |
| av_lfg_init(&state->lfg, state->seed); |
| for (i = 0; i < buf_samples; i++) |
| noise_buf_ui[i] = av_lfg_get(&state->lfg); |
| |
| c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples); |
| |
| if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP) |
| dither_highpass_filter(state->noise_buf, nb_samples); |
| |
| return 0; |
| } |
| |
| static void quantize_triangular_ns(DitherContext *c, DitherState *state, |
| int16_t *dst, const float *src, |
| int nb_samples) |
| { |
| int i, j; |
| float *dither = &state->noise_buf[state->noise_buf_ptr]; |
| |
| if (state->mute > c->mute_reset_threshold) |
| memset(state->dither_a, 0, sizeof(state->dither_a)); |
| |
| for (i = 0; i < nb_samples; i++) { |
| float err = 0; |
| float sample = src[i] * S16_SCALE; |
| |
| for (j = 0; j < 4; j++) { |
| err += c->ns_coef_b[j] * state->dither_b[j] - |
| c->ns_coef_a[j] * state->dither_a[j]; |
| } |
| for (j = 3; j > 0; j--) { |
| state->dither_a[j] = state->dither_a[j - 1]; |
| state->dither_b[j] = state->dither_b[j - 1]; |
| } |
| state->dither_a[0] = err; |
| sample -= err; |
| |
| if (state->mute > c->mute_dither_threshold) { |
| dst[i] = av_clip_int16(lrintf(sample)); |
| state->dither_b[0] = 0; |
| } else { |
| dst[i] = av_clip_int16(lrintf(sample + dither[i])); |
| state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f); |
| } |
| |
| state->mute++; |
| if (src[i]) |
| state->mute = 0; |
| } |
| } |
| |
| static int convert_samples(DitherContext *c, int16_t **dst, float * const *src, |
| int channels, int nb_samples) |
| { |
| int ch, ret; |
| int aligned_samples = FFALIGN(nb_samples, 16); |
| |
| for (ch = 0; ch < channels; ch++) { |
| DitherState *state = &c->state[ch]; |
| |
| if (state->noise_buf_size < aligned_samples) { |
| ret = generate_dither_noise(c, state, nb_samples); |
| if (ret < 0) |
| return ret; |
| } else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) { |
| state->noise_buf_ptr = 0; |
| } |
| |
| if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
| quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples); |
| } else { |
| c->quantize(dst[ch], src[ch], |
| &state->noise_buf[state->noise_buf_ptr], |
| FFALIGN(nb_samples, c->samples_align)); |
| } |
| |
| state->noise_buf_ptr += aligned_samples; |
| } |
| |
| return 0; |
| } |
| |
| int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src) |
| { |
| int ret; |
| AudioData *flt_data; |
| |
| /* output directly to dst if it is planar */ |
| if (dst->sample_fmt == AV_SAMPLE_FMT_S16P) |
| c->s16_data = dst; |
| else { |
| /* make sure s16_data is large enough for the output */ |
| ret = ff_audio_data_realloc(c->s16_data, src->nb_samples); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { |
| /* make sure flt_data is large enough for the input */ |
| ret = ff_audio_data_realloc(c->flt_data, src->nb_samples); |
| if (ret < 0) |
| return ret; |
| flt_data = c->flt_data; |
| } |
| |
| if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) { |
| /* convert input samples to fltp and scale to s16 range */ |
| ret = ff_audio_convert(c->ac_in, flt_data, src); |
| if (ret < 0) |
| return ret; |
| } else if (c->apply_map) { |
| ret = ff_audio_data_copy(flt_data, src, c->ch_map_info); |
| if (ret < 0) |
| return ret; |
| } else { |
| flt_data = src; |
| } |
| |
| /* check alignment and padding constraints */ |
| if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
| int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align); |
| int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align); |
| int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align); |
| |
| if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) { |
| c->quantize = c->ddsp.quantize; |
| c->samples_align = c->ddsp.samples_align; |
| } else { |
| c->quantize = quantize_c; |
| c->samples_align = 1; |
| } |
| } |
| |
| ret = convert_samples(c, (int16_t **)c->s16_data->data, |
| (float * const *)flt_data->data, src->channels, |
| src->nb_samples); |
| if (ret < 0) |
| return ret; |
| |
| c->s16_data->nb_samples = src->nb_samples; |
| |
| /* interleave output to dst if needed */ |
| if (dst->sample_fmt == AV_SAMPLE_FMT_S16) { |
| ret = ff_audio_convert(c->ac_out, dst, c->s16_data); |
| if (ret < 0) |
| return ret; |
| } else |
| c->s16_data = NULL; |
| |
| return 0; |
| } |
| |
| void ff_dither_free(DitherContext **cp) |
| { |
| DitherContext *c = *cp; |
| int ch; |
| |
| if (!c) |
| return; |
| ff_audio_data_free(&c->flt_data); |
| ff_audio_data_free(&c->s16_data); |
| ff_audio_convert_free(&c->ac_in); |
| ff_audio_convert_free(&c->ac_out); |
| for (ch = 0; ch < c->channels; ch++) |
| av_free(c->state[ch].noise_buf); |
| av_free(c->state); |
| av_freep(cp); |
| } |
| |
| static av_cold void dither_init(DitherDSPContext *ddsp, |
| enum AVResampleDitherMethod method) |
| { |
| ddsp->quantize = quantize_c; |
| ddsp->ptr_align = 1; |
| ddsp->samples_align = 1; |
| |
| if (method == AV_RESAMPLE_DITHER_RECTANGULAR) |
| ddsp->dither_int_to_float = dither_int_to_float_rectangular_c; |
| else |
| ddsp->dither_int_to_float = dither_int_to_float_triangular_c; |
| |
| if (ARCH_X86) |
| ff_dither_init_x86(ddsp, method); |
| } |
| |
| DitherContext *ff_dither_alloc(AVAudioResampleContext *avr, |
| enum AVSampleFormat out_fmt, |
| enum AVSampleFormat in_fmt, |
| int channels, int sample_rate, int apply_map) |
| { |
| AVLFG seed_gen; |
| DitherContext *c; |
| int ch; |
| |
| if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 || |
| av_get_bytes_per_sample(in_fmt) <= 2) { |
| av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n", |
| av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt)); |
| return NULL; |
| } |
| |
| c = av_mallocz(sizeof(*c)); |
| if (!c) |
| return NULL; |
| |
| c->apply_map = apply_map; |
| if (apply_map) |
| c->ch_map_info = &avr->ch_map_info; |
| |
| if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS && |
| sample_rate != 48000 && sample_rate != 44100) { |
| av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz " |
| "for triangular_ns dither. using triangular_hp instead.\n"); |
| avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP; |
| } |
| c->method = avr->dither_method; |
| dither_init(&c->ddsp, c->method); |
| |
| if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
| if (sample_rate == 48000) { |
| c->ns_coef_b = ns_48_coef_b; |
| c->ns_coef_a = ns_48_coef_a; |
| } else { |
| c->ns_coef_b = ns_44_coef_b; |
| c->ns_coef_a = ns_44_coef_a; |
| } |
| } |
| |
| /* Either s16 or s16p output format is allowed, but s16p is used |
| internally, so we need to use a temp buffer and interleave if the output |
| format is s16 */ |
| if (out_fmt != AV_SAMPLE_FMT_S16P) { |
| c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P, |
| "dither s16 buffer"); |
| if (!c->s16_data) |
| goto fail; |
| |
| c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P, |
| channels, sample_rate, 0); |
| if (!c->ac_out) |
| goto fail; |
| } |
| |
| if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { |
| c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP, |
| "dither flt buffer"); |
| if (!c->flt_data) |
| goto fail; |
| } |
| if (in_fmt != AV_SAMPLE_FMT_FLTP) { |
| c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt, |
| channels, sample_rate, c->apply_map); |
| if (!c->ac_in) |
| goto fail; |
| } |
| |
| c->state = av_mallocz(channels * sizeof(*c->state)); |
| if (!c->state) |
| goto fail; |
| c->channels = channels; |
| |
| /* calculate thresholds for turning off dithering during periods of |
| silence to avoid replacing digital silence with quiet dither noise */ |
| c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC); |
| c->mute_reset_threshold = c->mute_dither_threshold * 4; |
| |
| /* initialize dither states */ |
| av_lfg_init(&seed_gen, 0xC0FFEE); |
| for (ch = 0; ch < channels; ch++) { |
| DitherState *state = &c->state[ch]; |
| state->mute = c->mute_reset_threshold + 1; |
| state->seed = av_lfg_get(&seed_gen); |
| generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2)); |
| } |
| |
| return c; |
| |
| fail: |
| ff_dither_free(&c); |
| return NULL; |
| } |