blob: e23d0b7a538934158a2482e737cfc96ded864d72 [file] [log] [blame]
/*
* Copyright 2015 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/stats/BucketedTimeSeries.h>
#include <folly/stats/BucketedTimeSeries-defs.h>
#include <folly/stats/MultiLevelTimeSeries.h>
#include <folly/stats/MultiLevelTimeSeries-defs.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <folly/Foreach.h>
using std::chrono::seconds;
using std::string;
using std::vector;
using folly::BucketedTimeSeries;
struct TestData {
size_t duration;
size_t numBuckets;
vector<ssize_t> bucketStarts;
};
vector<TestData> testData = {
// 71 seconds x 4 buckets
{ 71, 4, {0, 18, 36, 54}},
// 100 seconds x 10 buckets
{ 100, 10, {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}},
// 10 seconds x 10 buckets
{ 10, 10, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}},
// 10 seconds x 1 buckets
{ 10, 1, {0}},
// 1 second x 1 buckets
{ 1, 1, {0}},
};
TEST(BucketedTimeSeries, getBucketInfo) {
for (const auto& data : testData) {
BucketedTimeSeries<int64_t> ts(data.numBuckets, seconds(data.duration));
for (uint32_t n = 0; n < 10000; n += 1234) {
seconds offset(n * data.duration);
for (uint32_t idx = 0; idx < data.numBuckets; ++idx) {
seconds bucketStart(data.bucketStarts[idx]);
seconds nextBucketStart;
if (idx + 1 < data.numBuckets) {
nextBucketStart = seconds(data.bucketStarts[idx + 1]);
} else {
nextBucketStart = seconds(data.duration);
}
seconds expectedStart = offset + bucketStart;
seconds expectedNextStart = offset + nextBucketStart;
seconds midpoint = (expectedStart + expectedNextStart) / 2;
vector<std::pair<string, seconds>> timePoints = {
{"expectedStart", expectedStart},
{"midpoint", midpoint},
{"expectedEnd", expectedNextStart - seconds(1)},
};
for (const auto& point : timePoints) {
// Check that getBucketIdx() returns the expected index
EXPECT_EQ(idx, ts.getBucketIdx(point.second)) <<
data.duration << "x" << data.numBuckets << ": " <<
point.first << "=" << point.second.count();
// Check the data returned by getBucketInfo()
size_t returnedIdx;
seconds returnedStart;
seconds returnedNextStart;
ts.getBucketInfo(expectedStart, &returnedIdx,
&returnedStart, &returnedNextStart);
EXPECT_EQ(idx, returnedIdx) <<
data.duration << "x" << data.numBuckets << ": " <<
point.first << "=" << point.second.count();
EXPECT_EQ(expectedStart.count(), returnedStart.count()) <<
data.duration << "x" << data.numBuckets << ": " <<
point.first << "=" << point.second.count();
EXPECT_EQ(expectedNextStart.count(), returnedNextStart.count()) <<
data.duration << "x" << data.numBuckets << ": " <<
point.first << "=" << point.second.count();
}
}
}
}
}
void testUpdate100x10(size_t offset) {
// This test code only works when offset is a multiple of the bucket width
CHECK_EQ(0, offset % 10);
// Create a 100 second timeseries, with 10 buckets
BucketedTimeSeries<int64_t> ts(10, seconds(100));
auto setup = [&] {
ts.clear();
// Add 1 value to each bucket
for (int n = 5; n <= 95; n += 10) {
ts.addValue(seconds(n + offset), 6);
}
EXPECT_EQ(10, ts.count());
EXPECT_EQ(60, ts.sum());
EXPECT_EQ(6, ts.avg());
};
// Update 2 buckets forwards. This should throw away 2 data points.
setup();
ts.update(seconds(110 + offset));
EXPECT_EQ(8, ts.count());
EXPECT_EQ(48, ts.sum());
EXPECT_EQ(6, ts.avg());
// The last time we added was 95.
// Try updating to 189. This should clear everything but the last bucket.
setup();
ts.update(seconds(151 + offset));
EXPECT_EQ(4, ts.count());
//EXPECT_EQ(6, ts.sum());
EXPECT_EQ(6, ts.avg());
// The last time we added was 95.
// Try updating to 193: This is nearly one full loop around,
// back to the same bucket. update() needs to clear everything
setup();
ts.update(seconds(193 + offset));
EXPECT_EQ(0, ts.count());
EXPECT_EQ(0, ts.sum());
EXPECT_EQ(0, ts.avg());
// The last time we added was 95.
// Try updating to 197: This is slightly over one full loop around,
// back to the same bucket. update() needs to clear everything
setup();
ts.update(seconds(197 + offset));
EXPECT_EQ(0, ts.count());
EXPECT_EQ(0, ts.sum());
EXPECT_EQ(0, ts.avg());
// The last time we added was 95.
// Try updating to 230: This is well over one full loop around,
// and everything should be cleared.
setup();
ts.update(seconds(230 + offset));
EXPECT_EQ(0, ts.count());
EXPECT_EQ(0, ts.sum());
EXPECT_EQ(0, ts.avg());
}
TEST(BucketedTimeSeries, update100x10) {
// Run testUpdate100x10() multiple times, with various offsets.
// This makes sure the update code works regardless of which bucket it starts
// at in the modulo arithmetic.
testUpdate100x10(0);
testUpdate100x10(50);
testUpdate100x10(370);
testUpdate100x10(1937090);
}
TEST(BucketedTimeSeries, update71x5) {
// Create a 71 second timeseries, with 5 buckets
// This tests when the number of buckets does not divide evenly into the
// duration.
BucketedTimeSeries<int64_t> ts(5, seconds(71));
auto setup = [&] {
ts.clear();
// Add 1 value to each bucket
ts.addValue(seconds(11), 6);
ts.addValue(seconds(24), 6);
ts.addValue(seconds(42), 6);
ts.addValue(seconds(43), 6);
ts.addValue(seconds(66), 6);
EXPECT_EQ(5, ts.count());
EXPECT_EQ(30, ts.sum());
EXPECT_EQ(6, ts.avg());
};
// Update 2 buckets forwards. This should throw away 2 data points.
setup();
ts.update(seconds(99));
EXPECT_EQ(3, ts.count());
EXPECT_EQ(18, ts.sum());
EXPECT_EQ(6, ts.avg());
// Update 3 buckets forwards. This should throw away 3 data points.
setup();
ts.update(seconds(100));
EXPECT_EQ(2, ts.count());
EXPECT_EQ(12, ts.sum());
EXPECT_EQ(6, ts.avg());
// Update 4 buckets forwards, just under the wrap limit.
// This should throw everything but the last bucket away.
setup();
ts.update(seconds(127));
EXPECT_EQ(1, ts.count());
EXPECT_EQ(6, ts.sum());
EXPECT_EQ(6, ts.avg());
// Update 5 buckets forwards, exactly at the wrap limit.
// This should throw everything away.
setup();
ts.update(seconds(128));
EXPECT_EQ(0, ts.count());
EXPECT_EQ(0, ts.sum());
EXPECT_EQ(0, ts.avg());
// Update very far forwards, wrapping multiple times.
// This should throw everything away.
setup();
ts.update(seconds(1234));
EXPECT_EQ(0, ts.count());
EXPECT_EQ(0, ts.sum());
EXPECT_EQ(0, ts.avg());
}
TEST(BucketedTimeSeries, elapsed) {
BucketedTimeSeries<int64_t> ts(60, seconds(600));
// elapsed() is 0 when no data points have been added
EXPECT_EQ(0, ts.elapsed().count());
// With exactly 1 data point, elapsed() should report 1 second of data
seconds start(239218);
ts.addValue(start + seconds(0), 200);
EXPECT_EQ(1, ts.elapsed().count());
// Adding a data point 10 seconds later should result in an elapsed time of
// 11 seconds (the time range is [0, 10], inclusive).
ts.addValue(start + seconds(10), 200);
EXPECT_EQ(11, ts.elapsed().count());
// elapsed() returns to 0 after clear()
ts.clear();
EXPECT_EQ(0, ts.elapsed().count());
// Restart, with the starting point on an easier number to work with
ts.addValue(seconds(10), 200);
EXPECT_EQ(1, ts.elapsed().count());
ts.addValue(seconds(580), 200);
EXPECT_EQ(571, ts.elapsed().count());
ts.addValue(seconds(590), 200);
EXPECT_EQ(581, ts.elapsed().count());
ts.addValue(seconds(598), 200);
EXPECT_EQ(589, ts.elapsed().count());
ts.addValue(seconds(599), 200);
EXPECT_EQ(590, ts.elapsed().count());
ts.addValue(seconds(600), 200);
EXPECT_EQ(591, ts.elapsed().count());
ts.addValue(seconds(608), 200);
EXPECT_EQ(599, ts.elapsed().count());
ts.addValue(seconds(609), 200);
EXPECT_EQ(600, ts.elapsed().count());
// Once we reach 600 seconds worth of data, when we move on to the next
// second a full bucket will get thrown out. Now we drop back down to 591
// seconds worth of data
ts.addValue(seconds(610), 200);
EXPECT_EQ(591, ts.elapsed().count());
ts.addValue(seconds(618), 200);
EXPECT_EQ(599, ts.elapsed().count());
ts.addValue(seconds(619), 200);
EXPECT_EQ(600, ts.elapsed().count());
ts.addValue(seconds(620), 200);
EXPECT_EQ(591, ts.elapsed().count());
ts.addValue(seconds(123419), 200);
EXPECT_EQ(600, ts.elapsed().count());
ts.addValue(seconds(123420), 200);
EXPECT_EQ(591, ts.elapsed().count());
ts.addValue(seconds(123425), 200);
EXPECT_EQ(596, ts.elapsed().count());
// Time never moves backwards.
// Calling update with an old timestamp will just be ignored.
ts.update(seconds(29));
EXPECT_EQ(596, ts.elapsed().count());
}
TEST(BucketedTimeSeries, rate) {
BucketedTimeSeries<int64_t> ts(60, seconds(600));
// Add 3 values every 2 seconds, until fill up the buckets
for (size_t n = 0; n < 600; n += 2) {
ts.addValue(seconds(n), 200, 3);
}
EXPECT_EQ(900, ts.count());
EXPECT_EQ(180000, ts.sum());
EXPECT_EQ(200, ts.avg());
// Really we only entered 599 seconds worth of data: [0, 598] (inclusive)
EXPECT_EQ(599, ts.elapsed().count());
EXPECT_NEAR(300.5, ts.rate(), 0.005);
EXPECT_NEAR(1.5, ts.countRate(), 0.005);
// If we add 1 more second, now we will have 600 seconds worth of data
ts.update(seconds(599));
EXPECT_EQ(600, ts.elapsed().count());
EXPECT_NEAR(300, ts.rate(), 0.005);
EXPECT_EQ(300, ts.rate<int>());
EXPECT_NEAR(1.5, ts.countRate(), 0.005);
// However, 1 more second after that and we will have filled up all the
// buckets, and have to drop one.
ts.update(seconds(600));
EXPECT_EQ(591, ts.elapsed().count());
EXPECT_NEAR(299.5, ts.rate(), 0.01);
EXPECT_EQ(299, ts.rate<int>());
EXPECT_NEAR(1.5, ts.countRate(), 0.005);
}
TEST(BucketedTimeSeries, avgTypeConversion) {
// Make sure the computed average values are accurate regardless
// of the input type and return type.
{
// Simple sanity tests for small positive integer values
BucketedTimeSeries<int64_t> ts(60, seconds(600));
ts.addValue(seconds(0), 4, 100);
ts.addValue(seconds(0), 10, 200);
ts.addValue(seconds(0), 16, 100);
EXPECT_DOUBLE_EQ(10.0, ts.avg());
EXPECT_DOUBLE_EQ(10.0, ts.avg<float>());
EXPECT_EQ(10, ts.avg<uint64_t>());
EXPECT_EQ(10, ts.avg<int64_t>());
EXPECT_EQ(10, ts.avg<int32_t>());
EXPECT_EQ(10, ts.avg<int16_t>());
EXPECT_EQ(10, ts.avg<int8_t>());
EXPECT_EQ(10, ts.avg<uint8_t>());
}
{
// Test signed integer types with negative values
BucketedTimeSeries<int64_t> ts(60, seconds(600));
ts.addValue(seconds(0), -100);
ts.addValue(seconds(0), -200);
ts.addValue(seconds(0), -300);
ts.addValue(seconds(0), -200, 65535);
EXPECT_DOUBLE_EQ(-200.0, ts.avg());
EXPECT_DOUBLE_EQ(-200.0, ts.avg<float>());
EXPECT_EQ(-200, ts.avg<int64_t>());
EXPECT_EQ(-200, ts.avg<int32_t>());
EXPECT_EQ(-200, ts.avg<int16_t>());
}
{
// Test uint64_t values that would overflow int64_t
BucketedTimeSeries<uint64_t> ts(60, seconds(600));
ts.addValueAggregated(seconds(0),
std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
EXPECT_DOUBLE_EQ(1.0, ts.avg());
EXPECT_DOUBLE_EQ(1.0, ts.avg<float>());
EXPECT_EQ(1, ts.avg<uint64_t>());
EXPECT_EQ(1, ts.avg<int64_t>());
EXPECT_EQ(1, ts.avg<int8_t>());
}
{
// Test doubles with small-ish values that will fit in integer types
BucketedTimeSeries<double> ts(60, seconds(600));
ts.addValue(seconds(0), 4.0, 100);
ts.addValue(seconds(0), 10.0, 200);
ts.addValue(seconds(0), 16.0, 100);
EXPECT_DOUBLE_EQ(10.0, ts.avg());
EXPECT_DOUBLE_EQ(10.0, ts.avg<float>());
EXPECT_EQ(10, ts.avg<uint64_t>());
EXPECT_EQ(10, ts.avg<int64_t>());
EXPECT_EQ(10, ts.avg<int32_t>());
EXPECT_EQ(10, ts.avg<int16_t>());
EXPECT_EQ(10, ts.avg<int8_t>());
EXPECT_EQ(10, ts.avg<uint8_t>());
}
{
// Test doubles with huge values
BucketedTimeSeries<double> ts(60, seconds(600));
ts.addValue(seconds(0), 1e19, 100);
ts.addValue(seconds(0), 2e19, 200);
ts.addValue(seconds(0), 3e19, 100);
EXPECT_DOUBLE_EQ(ts.avg(), 2e19);
EXPECT_NEAR(ts.avg<float>(), 2e19, 1e11);
}
{
// Test doubles where the sum adds up larger than a uint64_t,
// but the average fits in an int64_t
BucketedTimeSeries<double> ts(60, seconds(600));
uint64_t value = 0x3fffffffffffffff;
FOR_EACH_RANGE(i, 0, 16) {
ts.addValue(seconds(0), value);
}
EXPECT_DOUBLE_EQ(value, ts.avg());
EXPECT_DOUBLE_EQ(value, ts.avg<float>());
// Some precision is lost here due to the huge sum, so the
// integer average returned is off by one.
EXPECT_NEAR(value, ts.avg<uint64_t>(), 1);
EXPECT_NEAR(value, ts.avg<int64_t>(), 1);
}
{
// Test BucketedTimeSeries with a smaller integer type
BucketedTimeSeries<int16_t> ts(60, seconds(600));
FOR_EACH_RANGE(i, 0, 101) {
ts.addValue(seconds(0), i);
}
EXPECT_DOUBLE_EQ(50.0, ts.avg());
EXPECT_DOUBLE_EQ(50.0, ts.avg<float>());
EXPECT_EQ(50, ts.avg<uint64_t>());
EXPECT_EQ(50, ts.avg<int64_t>());
EXPECT_EQ(50, ts.avg<int16_t>());
EXPECT_EQ(50, ts.avg<int8_t>());
}
{
// Test BucketedTimeSeries with long double input
BucketedTimeSeries<long double> ts(60, seconds(600));
ts.addValueAggregated(seconds(0), 1000.0L, 7);
long double expected = 1000.0L / 7.0L;
EXPECT_DOUBLE_EQ(static_cast<double>(expected), ts.avg());
EXPECT_DOUBLE_EQ(static_cast<float>(expected), ts.avg<float>());
EXPECT_DOUBLE_EQ(expected, ts.avg<long double>());
EXPECT_EQ(static_cast<uint64_t>(expected), ts.avg<uint64_t>());
EXPECT_EQ(static_cast<int64_t>(expected), ts.avg<int64_t>());
}
{
// Test BucketedTimeSeries with int64_t values,
// but using an average that requires a fair amount of precision.
BucketedTimeSeries<int64_t> ts(60, seconds(600));
ts.addValueAggregated(seconds(0), 1000, 7);
long double expected = 1000.0L / 7.0L;
EXPECT_DOUBLE_EQ(static_cast<double>(expected), ts.avg());
EXPECT_DOUBLE_EQ(static_cast<float>(expected), ts.avg<float>());
EXPECT_DOUBLE_EQ(expected, ts.avg<long double>());
EXPECT_EQ(static_cast<uint64_t>(expected), ts.avg<uint64_t>());
EXPECT_EQ(static_cast<int64_t>(expected), ts.avg<int64_t>());
}
}
TEST(BucketedTimeSeries, forEachBucket) {
typedef BucketedTimeSeries<int64_t>::Bucket Bucket;
struct BucketInfo {
BucketInfo(const Bucket* b, seconds s, seconds ns)
: bucket(b), start(s), nextStart(ns) {}
const Bucket* bucket;
seconds start;
seconds nextStart;
};
for (const auto& data : testData) {
BucketedTimeSeries<int64_t> ts(data.numBuckets, seconds(data.duration));
vector<BucketInfo> info;
auto fn = [&](const Bucket& bucket, seconds bucketStart,
seconds bucketEnd) -> bool {
info.emplace_back(&bucket, bucketStart, bucketEnd);
return true;
};
// If we haven't yet added any data, the current bucket will start at 0,
// and all data previous buckets will have negative times.
ts.forEachBucket(fn);
CHECK_EQ(data.numBuckets, info.size());
// Check the data passed in to the function
size_t infoIdx = 0;
size_t bucketIdx = 1;
ssize_t offset = -data.duration;
for (size_t n = 0; n < data.numBuckets; ++n) {
if (bucketIdx >= data.numBuckets) {
bucketIdx = 0;
offset += data.duration;
}
EXPECT_EQ(data.bucketStarts[bucketIdx] + offset,
info[infoIdx].start.count()) <<
data.duration << "x" << data.numBuckets << ": bucketIdx=" <<
bucketIdx << ", infoIdx=" << infoIdx;
size_t nextBucketIdx = bucketIdx + 1;
ssize_t nextOffset = offset;
if (nextBucketIdx >= data.numBuckets) {
nextBucketIdx = 0;
nextOffset += data.duration;
}
EXPECT_EQ(data.bucketStarts[nextBucketIdx] + nextOffset,
info[infoIdx].nextStart.count()) <<
data.duration << "x" << data.numBuckets << ": bucketIdx=" <<
bucketIdx << ", infoIdx=" << infoIdx;
EXPECT_EQ(&ts.getBucketByIndex(bucketIdx), info[infoIdx].bucket);
++bucketIdx;
++infoIdx;
}
}
}
TEST(BucketedTimeSeries, queryByIntervalSimple) {
BucketedTimeSeries<int> a(3, seconds(12));
for (int i = 0; i < 8; i++) {
a.addValue(seconds(i), 1);
}
// We added 1 at each second from 0..7
// Query from the time period 0..2.
// This is entirely in the first bucket, which has a sum of 4.
// The code knows only part of the bucket is covered, and correctly
// estimates the desired sum as 3.
EXPECT_EQ(2, a.sum(seconds(0), seconds(2)));
}
TEST(BucketedTimeSeries, queryByInterval) {
// Set up a BucketedTimeSeries tracking 6 seconds in 3 buckets
const int kNumBuckets = 3;
const int kDuration = 6;
BucketedTimeSeries<double> b(kNumBuckets, seconds(kDuration));
for (unsigned int i = 0; i < kDuration; ++i) {
// add value 'i' at time 'i'
b.addValue(seconds(i), i);
}
// Current bucket state:
// 0: time=[0, 2): values=(0, 1), sum=1, count=2
// 1: time=[2, 4): values=(2, 3), sum=5, count=1
// 2: time=[4, 6): values=(4, 5), sum=9, count=2
double expectedSums1[kDuration + 1][kDuration + 1] = {
{0, 4.5, 9, 11.5, 14, 14.5, 15},
{0, 4.5, 7, 9.5, 10, 10.5, -1},
{0, 2.5, 5, 5.5, 6, -1, -1},
{0, 2.5, 3, 3.5, -1, -1, -1},
{0, 0.5, 1, -1, -1, -1, -1},
{0, 0.5, -1, -1, -1, -1, -1},
{0, -1, -1, -1, -1, -1, -1}
};
int expectedCounts1[kDuration + 1][kDuration + 1] = {
{0, 1, 2, 3, 4, 5, 6},
{0, 1, 2, 3, 4, 5, -1},
{0, 1, 2, 3, 4, -1, -1},
{0, 1, 2, 3, -1, -1, -1},
{0, 1, 2, -1, -1, -1, -1},
{0, 1, -1, -1, -1, -1, -1},
{0, -1, -1, -1, -1, -1, -1}
};
seconds currentTime = b.getLatestTime() + seconds(1);
for (int i = 0; i <= kDuration + 1; i++) {
for (int j = 0; j <= kDuration - i; j++) {
seconds start = currentTime - seconds(i + j);
seconds end = currentTime - seconds(i);
double expectedSum = expectedSums1[i][j];
EXPECT_EQ(expectedSum, b.sum(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
uint64_t expectedCount = expectedCounts1[i][j];
EXPECT_EQ(expectedCount, b.count(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
double expectedAvg = expectedCount ? expectedSum / expectedCount : 0;
EXPECT_EQ(expectedAvg, b.avg(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
double expectedRate = j ? expectedSum / j : 0;
EXPECT_EQ(expectedRate, b.rate(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
}
}
// Add 3 more values.
// This will overwrite 1 full bucket, and put us halfway through the next.
for (unsigned int i = kDuration; i < kDuration + 3; ++i) {
b.addValue(seconds(i), i);
}
EXPECT_EQ(seconds(4), b.getEarliestTime());
// Current bucket state:
// 0: time=[6, 8): values=(6, 7), sum=13, count=2
// 1: time=[8, 10): values=(8), sum=8, count=1
// 2: time=[4, 6): values=(4, 5), sum=9, count=2
double expectedSums2[kDuration + 1][kDuration + 1] = {
{0, 8, 14.5, 21, 25.5, 30, 30},
{0, 6.5, 13, 17.5, 22, 22, -1},
{0, 6.5, 11, 15.5, 15.5, -1, -1},
{0, 4.5, 9, 9, -1, -1, -1},
{0, 4.5, 4.5, -1, -1, -1, -1},
{0, 0, -1, -1, -1, -1, -1},
{0, -1, -1, -1, -1, -1, -1}
};
int expectedCounts2[kDuration + 1][kDuration + 1] = {
{0, 1, 2, 3, 4, 5, 5},
{0, 1, 2, 3, 4, 4, -1},
{0, 1, 2, 3, 3, -1, -1},
{0, 1, 2, 2, -1, -1, -1},
{0, 1, 1, -1, -1, -1, -1},
{0, 0, -1, -1, -1, -1, -1},
{0, -1, -1, -1, -1, -1, -1}
};
currentTime = b.getLatestTime() + seconds(1);
for (int i = 0; i <= kDuration + 1; i++) {
for (int j = 0; j <= kDuration - i; j++) {
seconds start = currentTime - seconds(i + j);
seconds end = currentTime - seconds(i);
double expectedSum = expectedSums2[i][j];
EXPECT_EQ(expectedSum, b.sum(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
uint64_t expectedCount = expectedCounts2[i][j];
EXPECT_EQ(expectedCount, b.count(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
double expectedAvg = expectedCount ? expectedSum / expectedCount : 0;
EXPECT_EQ(expectedAvg, b.avg(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
seconds dataStart = std::max(start, b.getEarliestTime());
seconds dataEnd = std::max(end, dataStart);
seconds expectedInterval = dataEnd - dataStart;
EXPECT_EQ(expectedInterval, b.elapsed(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
double expectedRate = expectedInterval.count() ?
expectedSum / expectedInterval.count() : 0;
EXPECT_EQ(expectedRate, b.rate(start, end)) <<
"i=" << i << ", j=" << j <<
", interval=[" << start.count() << ", " << end.count() << ")";
}
}
}
TEST(BucketedTimeSeries, rateByInterval) {
const int kNumBuckets = 5;
const seconds kDuration(10);
BucketedTimeSeries<double> b(kNumBuckets, kDuration);
// Add data points at a constant rate of 10 per second.
// Start adding data points at kDuration, and fill half of the buckets for
// now.
seconds start = kDuration;
seconds end = kDuration + (kDuration / 2);
const double kFixedRate = 10.0;
for (seconds i = start; i < end; ++i) {
b.addValue(i, kFixedRate);
}
// Querying the rate should yield kFixedRate.
EXPECT_EQ(kFixedRate, b.rate());
EXPECT_EQ(kFixedRate, b.rate(start, end));
EXPECT_EQ(kFixedRate, b.rate(start, start + kDuration));
EXPECT_EQ(kFixedRate, b.rate(end - kDuration, end));
EXPECT_EQ(kFixedRate, b.rate(end - seconds(1), end));
// We have been adding 1 data point per second, so countRate()
// should be 1.
EXPECT_EQ(1.0, b.countRate());
EXPECT_EQ(1.0, b.countRate(start, end));
EXPECT_EQ(1.0, b.countRate(start, start + kDuration));
EXPECT_EQ(1.0, b.countRate(end - kDuration, end));
EXPECT_EQ(1.0, b.countRate(end - seconds(1), end));
// We haven't added anything before time kDuration.
// Querying data earlier than this should result in a rate of 0.
EXPECT_EQ(0.0, b.rate(seconds(0), seconds(1)));
EXPECT_EQ(0.0, b.countRate(seconds(0), seconds(1)));
// Fill the remainder of the timeseries from kDuration to kDuration*2
start = end;
end = kDuration * 2;
for (seconds i = start; i < end; ++i) {
b.addValue(i, kFixedRate);
}
EXPECT_EQ(kFixedRate, b.rate());
EXPECT_EQ(kFixedRate, b.rate(kDuration, kDuration * 2));
EXPECT_EQ(kFixedRate, b.rate(seconds(0), kDuration * 2));
EXPECT_EQ(kFixedRate, b.rate(seconds(0), kDuration * 10));
EXPECT_EQ(1.0, b.countRate());
EXPECT_EQ(1.0, b.countRate(kDuration, kDuration * 2));
EXPECT_EQ(1.0, b.countRate(seconds(0), kDuration * 2));
EXPECT_EQ(1.0, b.countRate(seconds(0), kDuration * 10));
}
TEST(BucketedTimeSeries, addHistorical) {
const int kNumBuckets = 5;
const seconds kDuration(10);
BucketedTimeSeries<double> b(kNumBuckets, kDuration);
// Initially fill with a constant rate of data
for (seconds i = seconds(0); i < seconds(10); ++i) {
b.addValue(i, 10.0);
}
EXPECT_EQ(10.0, b.rate());
EXPECT_EQ(10.0, b.avg());
EXPECT_EQ(10, b.count());
// Add some more data points to the middle bucket
b.addValue(seconds(4), 40.0);
b.addValue(seconds(5), 40.0);
EXPECT_EQ(15.0, b.avg());
EXPECT_EQ(18.0, b.rate());
EXPECT_EQ(12, b.count());
// Now start adding more current data points, until we are about to roll over
// the bucket where we added the extra historical data.
for (seconds i = seconds(10); i < seconds(14); ++i) {
b.addValue(i, 10.0);
}
EXPECT_EQ(15.0, b.avg());
EXPECT_EQ(18.0, b.rate());
EXPECT_EQ(12, b.count());
// Now roll over the middle bucket
b.addValue(seconds(14), 10.0);
b.addValue(seconds(15), 10.0);
EXPECT_EQ(10.0, b.avg());
EXPECT_EQ(10.0, b.rate());
EXPECT_EQ(10, b.count());
// Add more historical values past the bucket window.
// These should be ignored.
EXPECT_FALSE(b.addValue(seconds(4), 40.0));
EXPECT_FALSE(b.addValue(seconds(5), 40.0));
EXPECT_EQ(10.0, b.avg());
EXPECT_EQ(10.0, b.rate());
EXPECT_EQ(10, b.count());
}
namespace IntMHTS {
enum Levels {
MINUTE,
HOUR,
ALLTIME,
NUM_LEVELS,
};
const seconds kMinuteHourDurations[] = {
seconds(60), seconds(3600), seconds(0)
};
};
TEST(MinuteHourTimeSeries, Basic) {
folly::MultiLevelTimeSeries<int> mhts(60, IntMHTS::NUM_LEVELS,
IntMHTS::kMinuteHourDurations);
EXPECT_EQ(mhts.numLevels(), IntMHTS::NUM_LEVELS);
EXPECT_EQ(mhts.numLevels(), 3);
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 0);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 0);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0);
EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 0);
EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 0);
EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 0);
EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 0);
EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 0);
EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 0);
EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 0);
EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 0);
EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 0);
seconds cur_time(0);
mhts.addValue(cur_time++, 10);
mhts.flush();
EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 1);
EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 1);
EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 1);
for (int i = 0; i < 299; ++i) {
mhts.addValue(cur_time++, 10);
}
mhts.flush();
EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60);
EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 300);
EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 300);
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 300*10);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 300*10);
EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10);
EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10);
EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10);
EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10);
EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10);
EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10);
for (int i = 0; i < 3600*3 - 300; ++i) {
mhts.addValue(cur_time++, 10);
}
mhts.flush();
EXPECT_EQ(mhts.getLevel(IntMHTS::MINUTE).elapsed().count(), 60);
EXPECT_EQ(mhts.getLevel(IntMHTS::HOUR).elapsed().count(), 3600);
EXPECT_EQ(mhts.getLevel(IntMHTS::ALLTIME).elapsed().count(), 3600*3);
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 600);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*10);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 3600*3*10);
EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 10);
EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 10);
EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 10);
EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 10);
EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 10);
EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 10);
for (int i = 0; i < 3600; ++i) {
mhts.addValue(cur_time++, 100);
}
mhts.flush();
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*100);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR), 3600*100);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME),
3600*3*10 + 3600*100);
EXPECT_EQ(mhts.avg(IntMHTS::MINUTE), 100);
EXPECT_EQ(mhts.avg(IntMHTS::HOUR), 100);
EXPECT_EQ(mhts.avg(IntMHTS::ALLTIME), 32.5);
EXPECT_EQ(mhts.rate(IntMHTS::MINUTE), 100);
EXPECT_EQ(mhts.rate(IntMHTS::HOUR), 100);
EXPECT_EQ(mhts.rate(IntMHTS::ALLTIME), 32);
for (int i = 0; i < 1800; ++i) {
mhts.addValue(cur_time++, 120);
}
mhts.flush();
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*120);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR),
1800*100 + 1800*120);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME),
3600*3*10 + 3600*100 + 1800*120);
for (int i = 0; i < 60; ++i) {
mhts.addValue(cur_time++, 1000);
}
mhts.flush();
EXPECT_EQ(mhts.sum(IntMHTS::MINUTE), 60*1000);
EXPECT_EQ(mhts.sum(IntMHTS::HOUR),
1740*100 + 1800*120 + 60*1000);
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME),
3600*3*10 + 3600*100 + 1800*120 + 60*1000);
mhts.clear();
EXPECT_EQ(mhts.sum(IntMHTS::ALLTIME), 0);
}
TEST(MinuteHourTimeSeries, QueryByInterval) {
folly::MultiLevelTimeSeries<int> mhts(60, IntMHTS::NUM_LEVELS,
IntMHTS::kMinuteHourDurations);
seconds curTime(0);
for (curTime = seconds(0); curTime < seconds(7200); curTime++) {
mhts.addValue(curTime, 1);
}
for (curTime = seconds(7200); curTime < seconds(7200 + 3540); curTime++) {
mhts.addValue(curTime, 10);
}
for (curTime = seconds(7200 + 3540); curTime < seconds(7200 + 3600);
curTime++) {
mhts.addValue(curTime, 100);
}
mhts.flush();
struct TimeInterval {
seconds start;
seconds end;
};
TimeInterval intervals[12] = {
{ curTime - seconds(60), curTime },
{ curTime - seconds(3600), curTime },
{ curTime - seconds(7200), curTime },
{ curTime - seconds(3600), curTime - seconds(60) },
{ curTime - seconds(7200), curTime - seconds(60) },
{ curTime - seconds(7200), curTime - seconds(3600) },
{ curTime - seconds(50), curTime - seconds(20) },
{ curTime - seconds(3020), curTime - seconds(20) },
{ curTime - seconds(7200), curTime - seconds(20) },
{ curTime - seconds(3000), curTime - seconds(1000) },
{ curTime - seconds(7200), curTime - seconds(1000) },
{ curTime - seconds(7200), curTime - seconds(3600) },
};
int expectedSums[12] = {
6000, 41400, 32400, 35400, 32130, 16200, 3000, 33600, 32310, 20000, 27900,
16200
};
int expectedCounts[12] = {
60, 3600, 7200, 3540, 7140, 3600, 30, 3000, 7180, 2000, 6200, 3600
};
for (int i = 0; i < 12; ++i) {
TimeInterval interval = intervals[i];
int s = mhts.sum(interval.start, interval.end);
EXPECT_EQ(expectedSums[i], s);
int c = mhts.count(interval.start, interval.end);
EXPECT_EQ(expectedCounts[i], c);
int a = mhts.avg<int>(interval.start, interval.end);
EXPECT_EQ(expectedCounts[i] ?
(expectedSums[i] / expectedCounts[i]) : 0,
a);
int r = mhts.rate<int>(interval.start, interval.end);
int expectedRate =
expectedSums[i] / (interval.end - interval.start).count();
EXPECT_EQ(expectedRate, r);
}
}