| // Copyright (c) 2010 Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // range_map_unittest.cc: Unit tests for RangeMap |
| // |
| // Author: Mark Mentovai |
| |
| |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include "processor/range_map-inl.h" |
| |
| #include "common/scoped_ptr.h" |
| #include "processor/linked_ptr.h" |
| #include "processor/logging.h" |
| |
| namespace { |
| |
| |
| using google_breakpad::linked_ptr; |
| using google_breakpad::scoped_ptr; |
| using google_breakpad::RangeMap; |
| |
| |
| // A CountedObject holds an int. A global (not thread safe!) count of |
| // allocated CountedObjects is maintained to help test memory management. |
| class CountedObject { |
| public: |
| explicit CountedObject(int id) : id_(id) { ++count_; } |
| ~CountedObject() { --count_; } |
| |
| static int count() { return count_; } |
| int id() const { return id_; } |
| |
| private: |
| static int count_; |
| int id_; |
| }; |
| |
| int CountedObject::count_; |
| |
| |
| typedef int AddressType; |
| typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap; |
| |
| |
| // RangeTest contains data to use for store and retrieve tests. See |
| // RunTests for descriptions of the tests. |
| struct RangeTest { |
| // Base address to use for test |
| AddressType address; |
| |
| // Size of range to use for test |
| AddressType size; |
| |
| // Unique ID of range - unstorable ranges must have unique IDs too |
| int id; |
| |
| // Whether this range is expected to be stored successfully or not |
| bool expect_storable; |
| }; |
| |
| |
| // A RangeTestSet encompasses multiple RangeTests, which are run in |
| // sequence on the same RangeMap. |
| struct RangeTestSet { |
| // An array of RangeTests |
| const RangeTest *range_tests; |
| |
| // The number of tests in the set |
| unsigned int range_test_count; |
| }; |
| |
| |
| // StoreTest uses the data in a RangeTest and calls StoreRange on the |
| // test RangeMap. It returns true if the expected result occurred, and |
| // false if something else happened. |
| static bool StoreTest(TestMap *range_map, const RangeTest *range_test) { |
| linked_ptr<CountedObject> object(new CountedObject(range_test->id)); |
| bool stored = range_map->StoreRange(range_test->address, |
| range_test->size, |
| object); |
| |
| if (stored != range_test->expect_storable) { |
| fprintf(stderr, "FAILED: " |
| "StoreRange id %d, expected %s, observed %s\n", |
| range_test->id, |
| range_test->expect_storable ? "storable" : "not storable", |
| stored ? "stored" : "not stored"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // RetrieveTest uses the data in RangeTest and calls RetrieveRange on the |
| // test RangeMap. If it retrieves the expected value (which can be no |
| // map entry at the specified range,) it returns true, otherwise, it returns |
| // false. RetrieveTest will check the values around the base address and |
| // the high address of a range to guard against off-by-one errors. |
| static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) { |
| for (unsigned int side = 0; side <= 1; ++side) { |
| // When side == 0, check the low side (base address) of each range. |
| // When side == 1, check the high side (base + size) of each range. |
| |
| // Check one-less and one-greater than the target address in addition |
| // to the target address itself. |
| |
| // If the size of the range is only 1, don't check one greater than |
| // the base or one less than the high - for a successfully stored |
| // range, these tests would erroneously fail because the range is too |
| // small. |
| AddressType low_offset = -1; |
| AddressType high_offset = 1; |
| if (range_test->size == 1) { |
| if (!side) // When checking the low side, |
| high_offset = 0; // don't check one over the target. |
| else // When checking the high side, |
| low_offset = 0; // don't check one under the target. |
| } |
| |
| for (AddressType offset = low_offset; offset <= high_offset; ++offset) { |
| AddressType address = |
| offset + |
| (!side ? range_test->address : |
| range_test->address + range_test->size - 1); |
| |
| bool expected_result = false; // This is correct for tests not stored. |
| if (range_test->expect_storable) { |
| if (offset == 0) // When checking the target address, |
| expected_result = true; // test should always succeed. |
| else if (offset == -1) // When checking one below the target, |
| expected_result = side; // should fail low and succeed high. |
| else // When checking one above the target, |
| expected_result = !side; // should succeed low and fail high. |
| } |
| |
| linked_ptr<CountedObject> object; |
| AddressType retrieved_base = AddressType(); |
| AddressType retrieved_size = AddressType(); |
| bool retrieved = range_map->RetrieveRange(address, &object, |
| &retrieved_base, |
| &retrieved_size); |
| |
| bool observed_result = retrieved && object->id() == range_test->id; |
| |
| if (observed_result != expected_result) { |
| fprintf(stderr, "FAILED: " |
| "RetrieveRange id %d, side %d, offset %d, " |
| "expected %s, observed %s\n", |
| range_test->id, |
| side, |
| offset, |
| expected_result ? "true" : "false", |
| observed_result ? "true" : "false"); |
| return false; |
| } |
| |
| // If a range was successfully retrieved, check that the returned |
| // bounds match the range as stored. |
| if (observed_result == true && |
| (retrieved_base != range_test->address || |
| retrieved_size != range_test->size)) { |
| fprintf(stderr, "FAILED: " |
| "RetrieveRange id %d, side %d, offset %d, " |
| "expected base/size %d/%d, observed %d/%d\n", |
| range_test->id, |
| side, |
| offset, |
| range_test->address, range_test->size, |
| retrieved_base, retrieved_size); |
| return false; |
| } |
| |
| // Now, check RetrieveNearestRange. The nearest range is always |
| // expected to be different from the test range when checking one |
| // less than the low side. |
| bool expected_nearest = range_test->expect_storable; |
| if (!side && offset < 0) |
| expected_nearest = false; |
| |
| linked_ptr<CountedObject> nearest_object; |
| AddressType nearest_base = AddressType(); |
| AddressType nearest_size = AddressType(); |
| bool retrieved_nearest = range_map->RetrieveNearestRange(address, |
| &nearest_object, |
| &nearest_base, |
| &nearest_size); |
| |
| // When checking one greater than the high side, RetrieveNearestRange |
| // should usually return the test range. When a different range begins |
| // at that address, though, then RetrieveNearestRange should return the |
| // range at the address instead of the test range. |
| if (side && offset > 0 && nearest_base == address) { |
| expected_nearest = false; |
| } |
| |
| bool observed_nearest = retrieved_nearest && |
| nearest_object->id() == range_test->id; |
| |
| if (observed_nearest != expected_nearest) { |
| fprintf(stderr, "FAILED: " |
| "RetrieveNearestRange id %d, side %d, offset %d, " |
| "expected %s, observed %s\n", |
| range_test->id, |
| side, |
| offset, |
| expected_nearest ? "true" : "false", |
| observed_nearest ? "true" : "false"); |
| return false; |
| } |
| |
| // If a range was successfully retrieved, check that the returned |
| // bounds match the range as stored. |
| if (expected_nearest && |
| (nearest_base != range_test->address || |
| nearest_size != range_test->size)) { |
| fprintf(stderr, "FAILED: " |
| "RetrieveNearestRange id %d, side %d, offset %d, " |
| "expected base/size %d/%d, observed %d/%d\n", |
| range_test->id, |
| side, |
| offset, |
| range_test->address, range_test->size, |
| nearest_base, nearest_size); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // Test RetrieveRangeAtIndex, which is supposed to return objects in order |
| // according to their addresses. This test is performed by looping through |
| // the map, calling RetrieveRangeAtIndex for all possible indices in sequence, |
| // and verifying that each call returns a different object than the previous |
| // call, and that ranges are returned with increasing base addresses. Returns |
| // false if the test fails. |
| static bool RetrieveIndexTest(TestMap *range_map, int set) { |
| linked_ptr<CountedObject> object; |
| CountedObject *last_object = NULL; |
| AddressType last_base = 0; |
| |
| int object_count = range_map->GetCount(); |
| for (int object_index = 0; object_index < object_count; ++object_index) { |
| AddressType base; |
| if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { |
| fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
| "expected success, observed failure\n", |
| set, object_index); |
| return false; |
| } |
| |
| if (!object.get()) { |
| fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
| "expected object, observed NULL\n", |
| set, object_index); |
| return false; |
| } |
| |
| // It's impossible to do these comparisons unless there's a previous |
| // object to compare against. |
| if (last_object) { |
| // The object must be different from the last one. |
| if (object->id() == last_object->id()) { |
| fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
| "expected different objects, observed same objects (%d)\n", |
| set, object_index, object->id()); |
| return false; |
| } |
| |
| // Each object must have a base greater than the previous object's base. |
| if (base <= last_base) { |
| fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " |
| "expected different bases, observed same bases (%d)\n", |
| set, object_index, base); |
| return false; |
| } |
| } |
| |
| last_object = object.get(); |
| last_base = base; |
| } |
| |
| // Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that |
| // are too high. |
| if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL, NULL)) { |
| fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), " |
| "expected failure, observed success\n", |
| set, object_count); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex(). |
| // Bug info: RetrieveRangeAtIndex() previously retrieves the high address of |
| // entry, however, it is supposed to retrieve the base address of entry as |
| // stated in the comment in range_map.h. |
| static bool RetriveAtIndexTest2() { |
| scoped_ptr<TestMap> range_map(new TestMap()); |
| |
| // Store ranges with base address = 2 * object_id: |
| const int range_size = 2; |
| for (int object_id = 0; object_id < 100; ++object_id) { |
| linked_ptr<CountedObject> object(new CountedObject(object_id)); |
| int base_address = 2 * object_id; |
| range_map->StoreRange(base_address, range_size, object); |
| } |
| |
| linked_ptr<CountedObject> object; |
| int object_count = range_map->GetCount(); |
| for (int object_index = 0; object_index < object_count; ++object_index) { |
| AddressType base; |
| if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { |
| fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, " |
| "expected success, observed failure\n", object_index); |
| return false; |
| } |
| |
| int expected_base = 2 * object->id(); |
| if (base != expected_base) { |
| fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, " |
| "expected base %d, observed base %d", |
| object_index, expected_base, base); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // RunTests runs a series of test sets. |
| static bool RunTests() { |
| // These tests will be run sequentially. The first set of tests exercises |
| // most functions of RangeTest, and verifies all of the bounds-checking. |
| const RangeTest range_tests_0[] = { |
| { INT_MIN, 16, 1, true }, // lowest possible range |
| { -2, 5, 2, true }, // a range through zero |
| { INT_MAX - 9, 11, 3, false }, // tests anti-overflow |
| { INT_MAX - 9, 10, 4, true }, // highest possible range |
| { 5, 0, 5, false }, // tests anti-zero-size |
| { 5, 1, 6, true }, // smallest possible range |
| { -20, 15, 7, true }, // entirely negative |
| |
| { 10, 10, 10, true }, // causes the following tests to fail |
| { 9, 10, 11, false }, // one-less base, one-less high |
| { 9, 11, 12, false }, // one-less base, identical high |
| { 9, 12, 13, false }, // completely contains existing |
| { 10, 9, 14, false }, // identical base, one-less high |
| { 10, 10, 15, false }, // exactly identical to existing range |
| { 10, 11, 16, false }, // identical base, one-greater high |
| { 11, 8, 17, false }, // contained completely within |
| { 11, 9, 18, false }, // one-greater base, identical high |
| { 11, 10, 19, false }, // one-greater base, one-greater high |
| { 9, 2, 20, false }, // overlaps bottom by one |
| { 10, 1, 21, false }, // overlaps bottom by one, contained |
| { 19, 1, 22, false }, // overlaps top by one, contained |
| { 19, 2, 23, false }, // overlaps top by one |
| |
| { 9, 1, 24, true }, // directly below without overlap |
| { 20, 1, 25, true }, // directly above without overlap |
| |
| { 6, 3, 26, true }, // exactly between two ranges, gapless |
| { 7, 3, 27, false }, // tries to span two ranges |
| { 7, 5, 28, false }, // tries to span three ranges |
| { 4, 20, 29, false }, // tries to contain several ranges |
| |
| { 30, 50, 30, true }, |
| { 90, 25, 31, true }, |
| { 35, 65, 32, false }, // tries to span two noncontiguous |
| { 120, 10000, 33, true }, // > 8-bit |
| { 20000, 20000, 34, true }, // > 8-bit |
| { 0x10001, 0x10001, 35, true }, // > 16-bit |
| |
| { 27, -1, 36, false } // tests high < base |
| }; |
| |
| // Attempt to fill the entire space. The entire space must be filled with |
| // three stores because AddressType is signed for these tests, so RangeMap |
| // treats the size as signed and rejects sizes that appear to be negative. |
| // Even if these tests were run as unsigned, two stores would be needed |
| // to fill the space because the entire size of the space could only be |
| // described by using one more bit than would be present in AddressType. |
| const RangeTest range_tests_1[] = { |
| { INT_MIN, INT_MAX, 50, true }, // From INT_MIN to -2, inclusive |
| { -1, 2, 51, true }, // From -1 to 0, inclusive |
| { 1, INT_MAX, 52, true }, // From 1 to INT_MAX, inclusive |
| { INT_MIN, INT_MAX, 53, false }, // Can't fill the space twice |
| { -1, 2, 54, false }, |
| { 1, INT_MAX, 55, false }, |
| { -3, 6, 56, false }, // -3 to 2, inclusive - spans 3 ranges |
| }; |
| |
| // A light round of testing to verify that RetrieveRange does the right |
| // the right thing at the extremities of the range when nothing is stored |
| // there. Checks are forced without storing anything at the extremities |
| // by setting size = 0. |
| const RangeTest range_tests_2[] = { |
| { INT_MIN, 0, 100, false }, // makes RetrieveRange check low end |
| { -1, 3, 101, true }, |
| { INT_MAX, 0, 102, false }, // makes RetrieveRange check high end |
| }; |
| |
| // Similar to the previous test set, but with a couple of ranges closer |
| // to the extremities. |
| const RangeTest range_tests_3[] = { |
| { INT_MIN + 1, 1, 110, true }, |
| { INT_MAX - 1, 1, 111, true }, |
| { INT_MIN, 0, 112, false }, // makes RetrieveRange check low end |
| { INT_MAX, 0, 113, false } // makes RetrieveRange check high end |
| }; |
| |
| // The range map is cleared between sets of tests listed here. |
| const RangeTestSet range_test_sets[] = { |
| { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) }, |
| { range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) }, |
| { range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) }, |
| { range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) }, |
| { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) } // Run again |
| }; |
| |
| // Maintain the range map in a pointer so that deletion can be meaningfully |
| // tested. |
| scoped_ptr<TestMap> range_map(new TestMap()); |
| |
| // Run all of the test sets in sequence. |
| unsigned int range_test_set_count = sizeof(range_test_sets) / |
| sizeof(RangeTestSet); |
| for (unsigned int range_test_set_index = 0; |
| range_test_set_index < range_test_set_count; |
| ++range_test_set_index) { |
| const RangeTest *range_tests = |
| range_test_sets[range_test_set_index].range_tests; |
| unsigned int range_test_count = |
| range_test_sets[range_test_set_index].range_test_count; |
| |
| // Run the StoreRange test, which validates StoreRange and initializes |
| // the RangeMap with data for the RetrieveRange test. |
| int stored_count = 0; // The number of ranges successfully stored |
| for (unsigned int range_test_index = 0; |
| range_test_index < range_test_count; |
| ++range_test_index) { |
| const RangeTest *range_test = &range_tests[range_test_index]; |
| if (!StoreTest(range_map.get(), range_test)) |
| return false; |
| |
| if (range_test->expect_storable) |
| ++stored_count; |
| } |
| |
| // There should be exactly one CountedObject for everything successfully |
| // stored in the RangeMap. |
| if (CountedObject::count() != stored_count) { |
| fprintf(stderr, "FAILED: " |
| "stored object counts don't match, expected %d, observed %d\n", |
| stored_count, |
| CountedObject::count()); |
| |
| return false; |
| } |
| |
| // The RangeMap's own count of objects should also match. |
| if (range_map->GetCount() != stored_count) { |
| fprintf(stderr, "FAILED: stored object count doesn't match GetCount, " |
| "expected %d, observed %d\n", |
| stored_count, range_map->GetCount()); |
| |
| return false; |
| } |
| |
| // Run the RetrieveRange test |
| for (unsigned int range_test_index = 0; |
| range_test_index < range_test_count; |
| ++range_test_index) { |
| const RangeTest *range_test = &range_tests[range_test_index]; |
| if (!RetrieveTest(range_map.get(), range_test)) |
| return false; |
| } |
| |
| if (!RetrieveIndexTest(range_map.get(), range_test_set_index)) |
| return false; |
| |
| // Clear the map between test sets. If this is the final test set, |
| // delete the map instead to test destruction. |
| if (range_test_set_index < range_test_set_count - 1) |
| range_map->Clear(); |
| else |
| range_map.reset(); |
| |
| // Test that all stored objects are freed when the RangeMap is cleared |
| // or deleted. |
| if (CountedObject::count() != 0) { |
| fprintf(stderr, "FAILED: " |
| "did not free all objects after %s, %d still allocated\n", |
| range_test_set_index < range_test_set_count - 1 ? "clear" |
| : "delete", |
| CountedObject::count()); |
| |
| return false; |
| } |
| } |
| |
| if (!RetriveAtIndexTest2()) { |
| fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| } // namespace |
| |
| |
| int main(int argc, char **argv) { |
| BPLOG_INIT(&argc, &argv); |
| |
| return RunTests() ? 0 : 1; |
| } |