blob: bf9b7279ad264f18d193958815704900a41c93cf [file] [log] [blame]
// Copyright (c) 2010 Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// range_map_unittest.cc: Unit tests for RangeMap
//
// Author: Mark Mentovai
#include <limits.h>
#include <stdio.h>
#include "processor/range_map-inl.h"
#include "common/scoped_ptr.h"
#include "processor/linked_ptr.h"
#include "processor/logging.h"
namespace {
using google_breakpad::linked_ptr;
using google_breakpad::scoped_ptr;
using google_breakpad::RangeMap;
// A CountedObject holds an int. A global (not thread safe!) count of
// allocated CountedObjects is maintained to help test memory management.
class CountedObject {
public:
explicit CountedObject(int id) : id_(id) { ++count_; }
~CountedObject() { --count_; }
static int count() { return count_; }
int id() const { return id_; }
private:
static int count_;
int id_;
};
int CountedObject::count_;
typedef int AddressType;
typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap;
// RangeTest contains data to use for store and retrieve tests. See
// RunTests for descriptions of the tests.
struct RangeTest {
// Base address to use for test
AddressType address;
// Size of range to use for test
AddressType size;
// Unique ID of range - unstorable ranges must have unique IDs too
int id;
// Whether this range is expected to be stored successfully or not
bool expect_storable;
};
// A RangeTestSet encompasses multiple RangeTests, which are run in
// sequence on the same RangeMap.
struct RangeTestSet {
// An array of RangeTests
const RangeTest *range_tests;
// The number of tests in the set
unsigned int range_test_count;
};
// StoreTest uses the data in a RangeTest and calls StoreRange on the
// test RangeMap. It returns true if the expected result occurred, and
// false if something else happened.
static bool StoreTest(TestMap *range_map, const RangeTest *range_test) {
linked_ptr<CountedObject> object(new CountedObject(range_test->id));
bool stored = range_map->StoreRange(range_test->address,
range_test->size,
object);
if (stored != range_test->expect_storable) {
fprintf(stderr, "FAILED: "
"StoreRange id %d, expected %s, observed %s\n",
range_test->id,
range_test->expect_storable ? "storable" : "not storable",
stored ? "stored" : "not stored");
return false;
}
return true;
}
// RetrieveTest uses the data in RangeTest and calls RetrieveRange on the
// test RangeMap. If it retrieves the expected value (which can be no
// map entry at the specified range,) it returns true, otherwise, it returns
// false. RetrieveTest will check the values around the base address and
// the high address of a range to guard against off-by-one errors.
static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) {
for (unsigned int side = 0; side <= 1; ++side) {
// When side == 0, check the low side (base address) of each range.
// When side == 1, check the high side (base + size) of each range.
// Check one-less and one-greater than the target address in addition
// to the target address itself.
// If the size of the range is only 1, don't check one greater than
// the base or one less than the high - for a successfully stored
// range, these tests would erroneously fail because the range is too
// small.
AddressType low_offset = -1;
AddressType high_offset = 1;
if (range_test->size == 1) {
if (!side) // When checking the low side,
high_offset = 0; // don't check one over the target.
else // When checking the high side,
low_offset = 0; // don't check one under the target.
}
for (AddressType offset = low_offset; offset <= high_offset; ++offset) {
AddressType address =
offset +
(!side ? range_test->address :
range_test->address + range_test->size - 1);
bool expected_result = false; // This is correct for tests not stored.
if (range_test->expect_storable) {
if (offset == 0) // When checking the target address,
expected_result = true; // test should always succeed.
else if (offset == -1) // When checking one below the target,
expected_result = side; // should fail low and succeed high.
else // When checking one above the target,
expected_result = !side; // should succeed low and fail high.
}
linked_ptr<CountedObject> object;
AddressType retrieved_base = AddressType();
AddressType retrieved_size = AddressType();
bool retrieved = range_map->RetrieveRange(address, &object,
&retrieved_base,
&retrieved_size);
bool observed_result = retrieved && object->id() == range_test->id;
if (observed_result != expected_result) {
fprintf(stderr, "FAILED: "
"RetrieveRange id %d, side %d, offset %d, "
"expected %s, observed %s\n",
range_test->id,
side,
offset,
expected_result ? "true" : "false",
observed_result ? "true" : "false");
return false;
}
// If a range was successfully retrieved, check that the returned
// bounds match the range as stored.
if (observed_result == true &&
(retrieved_base != range_test->address ||
retrieved_size != range_test->size)) {
fprintf(stderr, "FAILED: "
"RetrieveRange id %d, side %d, offset %d, "
"expected base/size %d/%d, observed %d/%d\n",
range_test->id,
side,
offset,
range_test->address, range_test->size,
retrieved_base, retrieved_size);
return false;
}
// Now, check RetrieveNearestRange. The nearest range is always
// expected to be different from the test range when checking one
// less than the low side.
bool expected_nearest = range_test->expect_storable;
if (!side && offset < 0)
expected_nearest = false;
linked_ptr<CountedObject> nearest_object;
AddressType nearest_base = AddressType();
AddressType nearest_size = AddressType();
bool retrieved_nearest = range_map->RetrieveNearestRange(address,
&nearest_object,
&nearest_base,
&nearest_size);
// When checking one greater than the high side, RetrieveNearestRange
// should usually return the test range. When a different range begins
// at that address, though, then RetrieveNearestRange should return the
// range at the address instead of the test range.
if (side && offset > 0 && nearest_base == address) {
expected_nearest = false;
}
bool observed_nearest = retrieved_nearest &&
nearest_object->id() == range_test->id;
if (observed_nearest != expected_nearest) {
fprintf(stderr, "FAILED: "
"RetrieveNearestRange id %d, side %d, offset %d, "
"expected %s, observed %s\n",
range_test->id,
side,
offset,
expected_nearest ? "true" : "false",
observed_nearest ? "true" : "false");
return false;
}
// If a range was successfully retrieved, check that the returned
// bounds match the range as stored.
if (expected_nearest &&
(nearest_base != range_test->address ||
nearest_size != range_test->size)) {
fprintf(stderr, "FAILED: "
"RetrieveNearestRange id %d, side %d, offset %d, "
"expected base/size %d/%d, observed %d/%d\n",
range_test->id,
side,
offset,
range_test->address, range_test->size,
nearest_base, nearest_size);
return false;
}
}
}
return true;
}
// Test RetrieveRangeAtIndex, which is supposed to return objects in order
// according to their addresses. This test is performed by looping through
// the map, calling RetrieveRangeAtIndex for all possible indices in sequence,
// and verifying that each call returns a different object than the previous
// call, and that ranges are returned with increasing base addresses. Returns
// false if the test fails.
static bool RetrieveIndexTest(TestMap *range_map, int set) {
linked_ptr<CountedObject> object;
CountedObject *last_object = NULL;
AddressType last_base = 0;
int object_count = range_map->GetCount();
for (int object_index = 0; object_index < object_count; ++object_index) {
AddressType base;
if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) {
fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
"expected success, observed failure\n",
set, object_index);
return false;
}
if (!object.get()) {
fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
"expected object, observed NULL\n",
set, object_index);
return false;
}
// It's impossible to do these comparisons unless there's a previous
// object to compare against.
if (last_object) {
// The object must be different from the last one.
if (object->id() == last_object->id()) {
fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
"expected different objects, observed same objects (%d)\n",
set, object_index, object->id());
return false;
}
// Each object must have a base greater than the previous object's base.
if (base <= last_base) {
fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, "
"expected different bases, observed same bases (%d)\n",
set, object_index, base);
return false;
}
}
last_object = object.get();
last_base = base;
}
// Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that
// are too high.
if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL, NULL)) {
fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), "
"expected failure, observed success\n",
set, object_count);
return false;
}
return true;
}
// Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex().
// Bug info: RetrieveRangeAtIndex() previously retrieves the high address of
// entry, however, it is supposed to retrieve the base address of entry as
// stated in the comment in range_map.h.
static bool RetriveAtIndexTest2() {
scoped_ptr<TestMap> range_map(new TestMap());
// Store ranges with base address = 2 * object_id:
const int range_size = 2;
for (int object_id = 0; object_id < 100; ++object_id) {
linked_ptr<CountedObject> object(new CountedObject(object_id));
int base_address = 2 * object_id;
range_map->StoreRange(base_address, range_size, object);
}
linked_ptr<CountedObject> object;
int object_count = range_map->GetCount();
for (int object_index = 0; object_index < object_count; ++object_index) {
AddressType base;
if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) {
fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, "
"expected success, observed failure\n", object_index);
return false;
}
int expected_base = 2 * object->id();
if (base != expected_base) {
fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, "
"expected base %d, observed base %d",
object_index, expected_base, base);
return false;
}
}
return true;
}
// RunTests runs a series of test sets.
static bool RunTests() {
// These tests will be run sequentially. The first set of tests exercises
// most functions of RangeTest, and verifies all of the bounds-checking.
const RangeTest range_tests_0[] = {
{ INT_MIN, 16, 1, true }, // lowest possible range
{ -2, 5, 2, true }, // a range through zero
{ INT_MAX - 9, 11, 3, false }, // tests anti-overflow
{ INT_MAX - 9, 10, 4, true }, // highest possible range
{ 5, 0, 5, false }, // tests anti-zero-size
{ 5, 1, 6, true }, // smallest possible range
{ -20, 15, 7, true }, // entirely negative
{ 10, 10, 10, true }, // causes the following tests to fail
{ 9, 10, 11, false }, // one-less base, one-less high
{ 9, 11, 12, false }, // one-less base, identical high
{ 9, 12, 13, false }, // completely contains existing
{ 10, 9, 14, false }, // identical base, one-less high
{ 10, 10, 15, false }, // exactly identical to existing range
{ 10, 11, 16, false }, // identical base, one-greater high
{ 11, 8, 17, false }, // contained completely within
{ 11, 9, 18, false }, // one-greater base, identical high
{ 11, 10, 19, false }, // one-greater base, one-greater high
{ 9, 2, 20, false }, // overlaps bottom by one
{ 10, 1, 21, false }, // overlaps bottom by one, contained
{ 19, 1, 22, false }, // overlaps top by one, contained
{ 19, 2, 23, false }, // overlaps top by one
{ 9, 1, 24, true }, // directly below without overlap
{ 20, 1, 25, true }, // directly above without overlap
{ 6, 3, 26, true }, // exactly between two ranges, gapless
{ 7, 3, 27, false }, // tries to span two ranges
{ 7, 5, 28, false }, // tries to span three ranges
{ 4, 20, 29, false }, // tries to contain several ranges
{ 30, 50, 30, true },
{ 90, 25, 31, true },
{ 35, 65, 32, false }, // tries to span two noncontiguous
{ 120, 10000, 33, true }, // > 8-bit
{ 20000, 20000, 34, true }, // > 8-bit
{ 0x10001, 0x10001, 35, true }, // > 16-bit
{ 27, -1, 36, false } // tests high < base
};
// Attempt to fill the entire space. The entire space must be filled with
// three stores because AddressType is signed for these tests, so RangeMap
// treats the size as signed and rejects sizes that appear to be negative.
// Even if these tests were run as unsigned, two stores would be needed
// to fill the space because the entire size of the space could only be
// described by using one more bit than would be present in AddressType.
const RangeTest range_tests_1[] = {
{ INT_MIN, INT_MAX, 50, true }, // From INT_MIN to -2, inclusive
{ -1, 2, 51, true }, // From -1 to 0, inclusive
{ 1, INT_MAX, 52, true }, // From 1 to INT_MAX, inclusive
{ INT_MIN, INT_MAX, 53, false }, // Can't fill the space twice
{ -1, 2, 54, false },
{ 1, INT_MAX, 55, false },
{ -3, 6, 56, false }, // -3 to 2, inclusive - spans 3 ranges
};
// A light round of testing to verify that RetrieveRange does the right
// the right thing at the extremities of the range when nothing is stored
// there. Checks are forced without storing anything at the extremities
// by setting size = 0.
const RangeTest range_tests_2[] = {
{ INT_MIN, 0, 100, false }, // makes RetrieveRange check low end
{ -1, 3, 101, true },
{ INT_MAX, 0, 102, false }, // makes RetrieveRange check high end
};
// Similar to the previous test set, but with a couple of ranges closer
// to the extremities.
const RangeTest range_tests_3[] = {
{ INT_MIN + 1, 1, 110, true },
{ INT_MAX - 1, 1, 111, true },
{ INT_MIN, 0, 112, false }, // makes RetrieveRange check low end
{ INT_MAX, 0, 113, false } // makes RetrieveRange check high end
};
// The range map is cleared between sets of tests listed here.
const RangeTestSet range_test_sets[] = {
{ range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) },
{ range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) },
{ range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) },
{ range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) },
{ range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) } // Run again
};
// Maintain the range map in a pointer so that deletion can be meaningfully
// tested.
scoped_ptr<TestMap> range_map(new TestMap());
// Run all of the test sets in sequence.
unsigned int range_test_set_count = sizeof(range_test_sets) /
sizeof(RangeTestSet);
for (unsigned int range_test_set_index = 0;
range_test_set_index < range_test_set_count;
++range_test_set_index) {
const RangeTest *range_tests =
range_test_sets[range_test_set_index].range_tests;
unsigned int range_test_count =
range_test_sets[range_test_set_index].range_test_count;
// Run the StoreRange test, which validates StoreRange and initializes
// the RangeMap with data for the RetrieveRange test.
int stored_count = 0; // The number of ranges successfully stored
for (unsigned int range_test_index = 0;
range_test_index < range_test_count;
++range_test_index) {
const RangeTest *range_test = &range_tests[range_test_index];
if (!StoreTest(range_map.get(), range_test))
return false;
if (range_test->expect_storable)
++stored_count;
}
// There should be exactly one CountedObject for everything successfully
// stored in the RangeMap.
if (CountedObject::count() != stored_count) {
fprintf(stderr, "FAILED: "
"stored object counts don't match, expected %d, observed %d\n",
stored_count,
CountedObject::count());
return false;
}
// The RangeMap's own count of objects should also match.
if (range_map->GetCount() != stored_count) {
fprintf(stderr, "FAILED: stored object count doesn't match GetCount, "
"expected %d, observed %d\n",
stored_count, range_map->GetCount());
return false;
}
// Run the RetrieveRange test
for (unsigned int range_test_index = 0;
range_test_index < range_test_count;
++range_test_index) {
const RangeTest *range_test = &range_tests[range_test_index];
if (!RetrieveTest(range_map.get(), range_test))
return false;
}
if (!RetrieveIndexTest(range_map.get(), range_test_set_index))
return false;
// Clear the map between test sets. If this is the final test set,
// delete the map instead to test destruction.
if (range_test_set_index < range_test_set_count - 1)
range_map->Clear();
else
range_map.reset();
// Test that all stored objects are freed when the RangeMap is cleared
// or deleted.
if (CountedObject::count() != 0) {
fprintf(stderr, "FAILED: "
"did not free all objects after %s, %d still allocated\n",
range_test_set_index < range_test_set_count - 1 ? "clear"
: "delete",
CountedObject::count());
return false;
}
}
if (!RetriveAtIndexTest2()) {
fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n");
return false;
}
return true;
}
} // namespace
int main(int argc, char **argv) {
BPLOG_INIT(&argc, &argv);
return RunTests() ? 0 : 1;
}