blob: 2cfbb08886d35e99f3051e5ab98702312c02bcf3 [file] [log] [blame]
// Copyright (c) 2010, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
// synth_minidump.cc: Implementation of SynthMinidump. See synth_minidump.h
#include "processor/synth_minidump.h"
namespace google_breakpad {
namespace SynthMinidump {
Section::Section(const Dump &dump)
: test_assembler::Section(dump.endianness()) { }
void Section::CiteLocationIn(test_assembler::Section *section) const {
if (this)
(*section).D32(size_).D32(file_offset_);
else
(*section).D32(0).D32(0);
}
void Stream::CiteStreamIn(test_assembler::Section *section) const {
section->D32(type_);
CiteLocationIn(section);
}
SystemInfo::SystemInfo(const Dump &dump,
const MDRawSystemInfo &system_info,
const String &csd_version)
: Stream(dump, MD_SYSTEM_INFO_STREAM) {
D16(system_info.processor_architecture);
D16(system_info.processor_level);
D16(system_info.processor_revision);
D8(system_info.number_of_processors);
D8(system_info.product_type);
D32(system_info.major_version);
D32(system_info.minor_version);
D32(system_info.build_number);
D32(system_info.platform_id);
csd_version.CiteStringIn(this);
D16(system_info.suite_mask);
D16(system_info.reserved2); // Well, why not?
// MDCPUInformation cpu;
if (system_info.processor_architecture == MD_CPU_ARCHITECTURE_X86) {
D32(system_info.cpu.x86_cpu_info.vendor_id[0]);
D32(system_info.cpu.x86_cpu_info.vendor_id[1]);
D32(system_info.cpu.x86_cpu_info.vendor_id[2]);
D32(system_info.cpu.x86_cpu_info.version_information);
D32(system_info.cpu.x86_cpu_info.feature_information);
D32(system_info.cpu.x86_cpu_info.amd_extended_cpu_features);
} else if (system_info.processor_architecture == MD_CPU_ARCHITECTURE_ARM) {
D32(system_info.cpu.arm_cpu_info.cpuid);
D32(system_info.cpu.arm_cpu_info.elf_hwcaps);
} else {
D64(system_info.cpu.other_cpu_info.processor_features[0]);
D64(system_info.cpu.other_cpu_info.processor_features[1]);
}
}
const MDRawSystemInfo SystemInfo::windows_x86 = {
MD_CPU_ARCHITECTURE_X86, // processor_architecture
6, // processor_level
0xd08, // processor_revision
1, // number_of_processors
1, // product_type
5, // major_version
1, // minor_version
2600, // build_number
2, // platform_id
0xdeadbeef, // csd_version_rva
0x100, // suite_mask
0, // reserved2
{ // cpu
{ // x86_cpu_info
{ 0x756e6547, 0x49656e69, 0x6c65746e }, // vendor_id
0x6d8, // version_information
0xafe9fbff, // feature_information
0xffffffff // amd_extended_cpu_features
}
}
};
const string SystemInfo::windows_x86_csd_version = "Service Pack 2";
String::String(const Dump &dump, const string &contents) : Section(dump) {
D32(contents.size() * 2);
for (string::const_iterator i = contents.begin(); i != contents.end(); i++)
D16(*i);
}
void String::CiteStringIn(test_assembler::Section *section) const {
section->D32(file_offset_);
}
void Memory::CiteMemoryIn(test_assembler::Section *section) const {
section->D64(address_);
CiteLocationIn(section);
}
Context::Context(const Dump &dump, const MDRawContextX86 &context)
: Section(dump) {
// The caller should have properly set the CPU type flag.
// The high 24 bits identify the CPU. Note that context records with no CPU
// type information can be valid (e.g. produced by ::RtlCaptureContext).
assert(((context.context_flags & MD_CONTEXT_CPU_MASK) == 0) ||
(context.context_flags & MD_CONTEXT_X86));
// It doesn't make sense to store x86 registers in big-endian form.
assert(dump.endianness() == kLittleEndian);
D32(context.context_flags);
D32(context.dr0);
D32(context.dr1);
D32(context.dr2);
D32(context.dr3);
D32(context.dr6);
D32(context.dr7);
D32(context.float_save.control_word);
D32(context.float_save.status_word);
D32(context.float_save.tag_word);
D32(context.float_save.error_offset);
D32(context.float_save.error_selector);
D32(context.float_save.data_offset);
D32(context.float_save.data_selector);
// context.float_save.register_area[] contains 8-bit quantities and
// does not need to be swapped.
Append(context.float_save.register_area,
sizeof(context.float_save.register_area));
D32(context.float_save.cr0_npx_state);
D32(context.gs);
D32(context.fs);
D32(context.es);
D32(context.ds);
D32(context.edi);
D32(context.esi);
D32(context.ebx);
D32(context.edx);
D32(context.ecx);
D32(context.eax);
D32(context.ebp);
D32(context.eip);
D32(context.cs);
D32(context.eflags);
D32(context.esp);
D32(context.ss);
// context.extended_registers[] contains 8-bit quantities and does
// not need to be swapped.
Append(context.extended_registers, sizeof(context.extended_registers));
assert(Size() == sizeof(MDRawContextX86));
}
Context::Context(const Dump &dump, const MDRawContextARM &context)
: Section(dump) {
// The caller should have properly set the CPU type flag.
assert((context.context_flags & MD_CONTEXT_ARM) ||
(context.context_flags & MD_CONTEXT_ARM_OLD));
// It doesn't make sense to store ARM registers in big-endian form.
assert(dump.endianness() == kLittleEndian);
D32(context.context_flags);
for (int i = 0; i < MD_CONTEXT_ARM_GPR_COUNT; ++i)
D32(context.iregs[i]);
D32(context.cpsr);
D64(context.float_save.fpscr);
for (int i = 0; i < MD_FLOATINGSAVEAREA_ARM_FPR_COUNT; ++i)
D64(context.float_save.regs[i]);
for (int i = 0; i < MD_FLOATINGSAVEAREA_ARM_FPEXTRA_COUNT; ++i)
D32(context.float_save.extra[i]);
assert(Size() == sizeof(MDRawContextARM));
}
Context::Context(const Dump &dump, const MDRawContextMIPS &context)
: Section(dump) {
// The caller should have properly set the CPU type flag.
assert(context.context_flags & MD_CONTEXT_MIPS);
D32(context.context_flags);
D32(context._pad0);
for (int i = 0; i < MD_CONTEXT_MIPS_GPR_COUNT; ++i)
D64(context.iregs[i]);
D64(context.mdhi);
D64(context.mdlo);
for (int i = 0; i < MD_CONTEXT_MIPS_DSP_COUNT; ++i)
D32(context.hi[i]);
for (int i = 0; i < MD_CONTEXT_MIPS_DSP_COUNT; ++i)
D32(context.lo[i]);
D32(context.dsp_control);
D32(context._pad1);
D64(context.epc);
D64(context.badvaddr);
D32(context.status);
D32(context.cause);
for (int i = 0; i < MD_FLOATINGSAVEAREA_MIPS_FPR_COUNT; ++i)
D64(context.float_save.regs[i]);
D32(context.float_save.fpcsr);
D32(context.float_save.fir);
assert(Size() == sizeof(MDRawContextMIPS));
}
Thread::Thread(const Dump &dump,
uint32_t thread_id, const Memory &stack, const Context &context,
uint32_t suspend_count, uint32_t priority_class,
uint32_t priority, uint64_t teb) : Section(dump) {
D32(thread_id);
D32(suspend_count);
D32(priority_class);
D32(priority);
D64(teb);
stack.CiteMemoryIn(this);
context.CiteLocationIn(this);
assert(Size() == sizeof(MDRawThread));
}
Module::Module(const Dump &dump,
uint64_t base_of_image,
uint32_t size_of_image,
const String &name,
uint32_t time_date_stamp,
uint32_t checksum,
const MDVSFixedFileInfo &version_info,
const Section *cv_record,
const Section *misc_record) : Section(dump) {
D64(base_of_image);
D32(size_of_image);
D32(checksum);
D32(time_date_stamp);
name.CiteStringIn(this);
D32(version_info.signature);
D32(version_info.struct_version);
D32(version_info.file_version_hi);
D32(version_info.file_version_lo);
D32(version_info.product_version_hi);
D32(version_info.product_version_lo);
D32(version_info.file_flags_mask);
D32(version_info.file_flags);
D32(version_info.file_os);
D32(version_info.file_type);
D32(version_info.file_subtype);
D32(version_info.file_date_hi);
D32(version_info.file_date_lo);
cv_record->CiteLocationIn(this);
misc_record->CiteLocationIn(this);
D64(0).D64(0);
}
const MDVSFixedFileInfo Module::stock_version_info = {
MD_VSFIXEDFILEINFO_SIGNATURE, // signature
MD_VSFIXEDFILEINFO_VERSION, // struct_version
0x11111111, // file_version_hi
0x22222222, // file_version_lo
0x33333333, // product_version_hi
0x44444444, // product_version_lo
MD_VSFIXEDFILEINFO_FILE_FLAGS_DEBUG, // file_flags_mask
MD_VSFIXEDFILEINFO_FILE_FLAGS_DEBUG, // file_flags
MD_VSFIXEDFILEINFO_FILE_OS_NT | MD_VSFIXEDFILEINFO_FILE_OS__WINDOWS32,
// file_os
MD_VSFIXEDFILEINFO_FILE_TYPE_APP, // file_type
MD_VSFIXEDFILEINFO_FILE_SUBTYPE_UNKNOWN, // file_subtype
0, // file_date_hi
0 // file_date_lo
};
Exception::Exception(const Dump &dump,
const Context &context,
uint32_t thread_id,
uint32_t exception_code,
uint32_t exception_flags,
uint64_t exception_address)
: Stream(dump, MD_EXCEPTION_STREAM) {
D32(thread_id);
D32(0); // __align
D32(exception_code);
D32(exception_flags);
D64(0); // exception_record
D64(exception_address);
D32(0); // number_parameters
D32(0); // __align
for (int i = 0; i < MD_EXCEPTION_MAXIMUM_PARAMETERS; ++i)
D64(0); // exception_information
context.CiteLocationIn(this);
assert(Size() == sizeof(MDRawExceptionStream));
}
Dump::Dump(uint64_t flags,
Endianness endianness,
uint32_t version,
uint32_t date_time_stamp)
: test_assembler::Section(endianness),
file_start_(0),
stream_directory_(*this),
stream_count_(0),
thread_list_(*this, MD_THREAD_LIST_STREAM),
module_list_(*this, MD_MODULE_LIST_STREAM),
memory_list_(*this, MD_MEMORY_LIST_STREAM)
{
D32(MD_HEADER_SIGNATURE);
D32(version);
D32(stream_count_label_);
D32(stream_directory_rva_);
D32(0);
D32(date_time_stamp);
D64(flags);
assert(Size() == sizeof(MDRawHeader));
}
Dump &Dump::Add(SynthMinidump::Section *section) {
section->Finish(file_start_ + Size());
Append(*section);
return *this;
}
Dump &Dump::Add(Stream *stream) {
Add(static_cast<SynthMinidump::Section *>(stream));
stream->CiteStreamIn(&stream_directory_);
stream_count_++;
return *this;
}
Dump &Dump::Add(Memory *memory) {
// Add the memory contents themselves to the file.
Add(static_cast<SynthMinidump::Section *>(memory));
// The memory list is a list of MDMemoryDescriptors, not of actual
// memory elements. Produce a descriptor, and add that to the list.
SynthMinidump::Section descriptor(*this);
memory->CiteMemoryIn(&descriptor);
memory_list_.Add(&descriptor);
return *this;
}
Dump &Dump::Add(Thread *thread) {
thread_list_.Add(thread);
return *this;
}
Dump &Dump::Add(Module *module) {
module_list_.Add(module);
return *this;
}
void Dump::Finish() {
if (!thread_list_.Empty()) Add(&thread_list_);
if (!module_list_.Empty()) Add(&module_list_);
if (!memory_list_.Empty()) Add(&memory_list_);
// Create the stream directory. We don't use
// stream_directory_.Finish here, because the stream directory isn't
// cited using a location descriptor; rather, the Minidump header
// has the stream count and MDRVA.
stream_count_label_ = stream_count_;
stream_directory_rva_ = file_start_ + Size();
Append(static_cast<test_assembler::Section &>(stream_directory_));
}
} // namespace SynthMinidump
} // namespace google_breakpad