blob: 13fcc8f661e52a91a01bf2d9ec67de6652c7208e [file] [log] [blame]
/*
* ss.c "sockstat", socket statistics
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <syslog.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <netinet/in.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <dirent.h>
#include <fnmatch.h>
#include <getopt.h>
#include <stdbool.h>
#include "utils.h"
#include "rt_names.h"
#include "ll_map.h"
#include "libnetlink.h"
#include "namespace.h"
#include "SNAPSHOT.h"
#include <linux/tcp.h>
#include <linux/sock_diag.h>
#include <linux/inet_diag.h>
#include <linux/unix_diag.h>
#include <linux/netdevice.h> /* for MAX_ADDR_LEN */
#include <linux/filter.h>
#include <linux/packet_diag.h>
#include <linux/netlink_diag.h>
#define MAGIC_SEQ 123456
#define DIAG_REQUEST(_req, _r) \
struct { \
struct nlmsghdr nlh; \
_r; \
} _req = { \
.nlh = { \
.nlmsg_type = SOCK_DIAG_BY_FAMILY, \
.nlmsg_flags = NLM_F_ROOT|NLM_F_MATCH|NLM_F_REQUEST,\
.nlmsg_seq = MAGIC_SEQ, \
.nlmsg_len = sizeof(_req), \
}, \
}
#if HAVE_SELINUX
#include <selinux/selinux.h>
#else
/* Stubs for SELinux functions */
static int is_selinux_enabled(void)
{
return -1;
}
static int getpidcon(pid_t pid, char **context)
{
*context = NULL;
return -1;
}
static int getfilecon(char *path, char **context)
{
*context = NULL;
return -1;
}
static int security_get_initial_context(char *name, char **context)
{
*context = NULL;
return -1;
}
#endif
int resolve_hosts = 0;
int resolve_services = 1;
int preferred_family = AF_UNSPEC;
int show_options = 0;
int show_details = 0;
int show_users = 0;
int show_mem = 0;
int show_tcpinfo = 0;
int show_bpf = 0;
int show_proc_ctx = 0;
int show_sock_ctx = 0;
/* If show_users & show_proc_ctx only do user_ent_hash_build() once */
int user_ent_hash_build_init = 0;
int follow_events = 0;
int netid_width;
int state_width;
int addrp_width;
int addr_width;
int serv_width;
int screen_width;
static const char *TCP_PROTO = "tcp";
static const char *UDP_PROTO = "udp";
static const char *RAW_PROTO = "raw";
static const char *dg_proto = NULL;
enum
{
TCP_DB,
DCCP_DB,
UDP_DB,
RAW_DB,
UNIX_DG_DB,
UNIX_ST_DB,
UNIX_SQ_DB,
PACKET_DG_DB,
PACKET_R_DB,
NETLINK_DB,
MAX_DB
};
#define PACKET_DBM ((1<<PACKET_DG_DB)|(1<<PACKET_R_DB))
#define UNIX_DBM ((1<<UNIX_DG_DB)|(1<<UNIX_ST_DB)|(1<<UNIX_SQ_DB))
#define ALL_DB ((1<<MAX_DB)-1)
#define INET_DBM ((1<<TCP_DB)|(1<<UDP_DB)|(1<<DCCP_DB)|(1<<RAW_DB))
enum {
SS_UNKNOWN,
SS_ESTABLISHED,
SS_SYN_SENT,
SS_SYN_RECV,
SS_FIN_WAIT1,
SS_FIN_WAIT2,
SS_TIME_WAIT,
SS_CLOSE,
SS_CLOSE_WAIT,
SS_LAST_ACK,
SS_LISTEN,
SS_CLOSING,
SS_MAX
};
#define SS_ALL ((1 << SS_MAX) - 1)
#define SS_CONN (SS_ALL & ~((1<<SS_LISTEN)|(1<<SS_CLOSE)|(1<<SS_TIME_WAIT)|(1<<SS_SYN_RECV)))
#include "ssfilter.h"
struct filter
{
int dbs;
int states;
int families;
struct ssfilter *f;
bool kill;
};
static const struct filter default_dbs[MAX_DB] = {
[TCP_DB] = {
.states = SS_CONN,
.families = (1 << AF_INET) | (1 << AF_INET6),
},
[DCCP_DB] = {
.states = SS_CONN,
.families = (1 << AF_INET) | (1 << AF_INET6),
},
[UDP_DB] = {
.states = (1 << SS_ESTABLISHED),
.families = (1 << AF_INET) | (1 << AF_INET6),
},
[RAW_DB] = {
.states = (1 << SS_ESTABLISHED),
.families = (1 << AF_INET) | (1 << AF_INET6),
},
[UNIX_DG_DB] = {
.states = (1 << SS_CLOSE),
.families = (1 << AF_UNIX),
},
[UNIX_ST_DB] = {
.states = SS_CONN,
.families = (1 << AF_UNIX),
},
[UNIX_SQ_DB] = {
.states = SS_CONN,
.families = (1 << AF_UNIX),
},
[PACKET_DG_DB] = {
.states = (1 << SS_CLOSE),
.families = (1 << AF_PACKET),
},
[PACKET_R_DB] = {
.states = (1 << SS_CLOSE),
.families = (1 << AF_PACKET),
},
[NETLINK_DB] = {
.states = (1 << SS_CLOSE),
.families = (1 << AF_NETLINK),
},
};
static const struct filter default_afs[AF_MAX] = {
[AF_INET] = {
.dbs = INET_DBM,
.states = SS_CONN,
},
[AF_INET6] = {
.dbs = INET_DBM,
.states = SS_CONN,
},
[AF_UNIX] = {
.dbs = UNIX_DBM,
.states = SS_CONN,
},
[AF_PACKET] = {
.dbs = PACKET_DBM,
.states = (1 << SS_CLOSE),
},
[AF_NETLINK] = {
.dbs = (1 << NETLINK_DB),
.states = (1 << SS_CLOSE),
},
};
static int do_default = 1;
static struct filter current_filter;
static void filter_db_set(struct filter *f, int db)
{
f->states |= default_dbs[db].states;
f->dbs |= 1 << db;
do_default = 0;
}
static void filter_af_set(struct filter *f, int af)
{
f->states |= default_afs[af].states;
f->families |= 1 << af;
do_default = 0;
preferred_family = af;
}
static int filter_af_get(struct filter *f, int af)
{
return f->families & (1 << af);
}
static void filter_default_dbs(struct filter *f)
{
filter_db_set(f, UDP_DB);
filter_db_set(f, DCCP_DB);
filter_db_set(f, TCP_DB);
filter_db_set(f, RAW_DB);
filter_db_set(f, UNIX_ST_DB);
filter_db_set(f, UNIX_DG_DB);
filter_db_set(f, UNIX_SQ_DB);
filter_db_set(f, PACKET_R_DB);
filter_db_set(f, PACKET_DG_DB);
filter_db_set(f, NETLINK_DB);
}
static void filter_states_set(struct filter *f, int states)
{
if (states)
f->states = (f->states | states) & states;
}
static void filter_merge_defaults(struct filter *f)
{
int db;
int af;
for (db = 0; db < MAX_DB; db++) {
if (!(f->dbs & (1 << db)))
continue;
if (!(default_dbs[db].families & f->families))
f->families |= default_dbs[db].families;
}
for (af = 0; af < AF_MAX; af++) {
if (!(f->families & (1 << af)))
continue;
if (!(default_afs[af].dbs & f->dbs))
f->dbs |= default_afs[af].dbs;
}
}
static FILE *generic_proc_open(const char *env, const char *name)
{
const char *p = getenv(env);
char store[128];
if (!p) {
p = getenv("PROC_ROOT") ? : "/proc";
snprintf(store, sizeof(store)-1, "%s/%s", p, name);
p = store;
}
return fopen(p, "r");
}
static FILE *net_tcp_open(void)
{
return generic_proc_open("PROC_NET_TCP", "net/tcp");
}
static FILE *net_tcp6_open(void)
{
return generic_proc_open("PROC_NET_TCP6", "net/tcp6");
}
static FILE *net_udp_open(void)
{
return generic_proc_open("PROC_NET_UDP", "net/udp");
}
static FILE *net_udp6_open(void)
{
return generic_proc_open("PROC_NET_UDP6", "net/udp6");
}
static FILE *net_raw_open(void)
{
return generic_proc_open("PROC_NET_RAW", "net/raw");
}
static FILE *net_raw6_open(void)
{
return generic_proc_open("PROC_NET_RAW6", "net/raw6");
}
static FILE *net_unix_open(void)
{
return generic_proc_open("PROC_NET_UNIX", "net/unix");
}
static FILE *net_packet_open(void)
{
return generic_proc_open("PROC_NET_PACKET", "net/packet");
}
static FILE *net_netlink_open(void)
{
return generic_proc_open("PROC_NET_NETLINK", "net/netlink");
}
static FILE *slabinfo_open(void)
{
return generic_proc_open("PROC_SLABINFO", "slabinfo");
}
static FILE *net_sockstat_open(void)
{
return generic_proc_open("PROC_NET_SOCKSTAT", "net/sockstat");
}
static FILE *net_sockstat6_open(void)
{
return generic_proc_open("PROC_NET_SOCKSTAT6", "net/sockstat6");
}
static FILE *net_snmp_open(void)
{
return generic_proc_open("PROC_NET_SNMP", "net/snmp");
}
static FILE *ephemeral_ports_open(void)
{
return generic_proc_open("PROC_IP_LOCAL_PORT_RANGE", "sys/net/ipv4/ip_local_port_range");
}
struct user_ent {
struct user_ent *next;
unsigned int ino;
int pid;
int fd;
char *process;
char *process_ctx;
char *socket_ctx;
};
#define USER_ENT_HASH_SIZE 256
struct user_ent *user_ent_hash[USER_ENT_HASH_SIZE];
static int user_ent_hashfn(unsigned int ino)
{
int val = (ino >> 24) ^ (ino >> 16) ^ (ino >> 8) ^ ino;
return val & (USER_ENT_HASH_SIZE - 1);
}
static void user_ent_add(unsigned int ino, char *process,
int pid, int fd,
char *proc_ctx,
char *sock_ctx)
{
struct user_ent *p, **pp;
p = malloc(sizeof(struct user_ent));
if (!p) {
fprintf(stderr, "ss: failed to malloc buffer\n");
abort();
}
p->next = NULL;
p->ino = ino;
p->pid = pid;
p->fd = fd;
p->process = strdup(process);
p->process_ctx = strdup(proc_ctx);
p->socket_ctx = strdup(sock_ctx);
pp = &user_ent_hash[user_ent_hashfn(ino)];
p->next = *pp;
*pp = p;
}
static void user_ent_destroy(void)
{
struct user_ent *p, *p_next;
int cnt = 0;
while (cnt != USER_ENT_HASH_SIZE) {
p = user_ent_hash[cnt];
while (p) {
free(p->process);
free(p->process_ctx);
free(p->socket_ctx);
p_next = p->next;
free(p);
p = p_next;
}
cnt++;
}
}
static void user_ent_hash_build(void)
{
const char *root = getenv("PROC_ROOT") ? : "/proc/";
struct dirent *d;
char name[1024];
int nameoff;
DIR *dir;
char *pid_context;
char *sock_context;
const char *no_ctx = "unavailable";
/* If show_users & show_proc_ctx set only do this once */
if (user_ent_hash_build_init != 0)
return;
user_ent_hash_build_init = 1;
strncpy(name, root, sizeof(name)-1);
name[sizeof(name)-1] = 0;
if (strlen(name) == 0 || name[strlen(name)-1] != '/')
strcat(name, "/");
nameoff = strlen(name);
dir = opendir(name);
if (!dir)
return;
while ((d = readdir(dir)) != NULL) {
struct dirent *d1;
char process[16];
char *p;
int pid, pos;
DIR *dir1;
char crap;
if (sscanf(d->d_name, "%d%c", &pid, &crap) != 1)
continue;
if (getpidcon(pid, &pid_context) != 0)
pid_context = strdup(no_ctx);
snprintf(name + nameoff, sizeof(name) - nameoff, "%d/fd/", pid);
pos = strlen(name);
if ((dir1 = opendir(name)) == NULL) {
free(pid_context);
continue;
}
process[0] = '\0';
p = process;
while ((d1 = readdir(dir1)) != NULL) {
const char *pattern = "socket:[";
unsigned int ino;
char lnk[64];
int fd;
ssize_t link_len;
char tmp[1024];
if (sscanf(d1->d_name, "%d%c", &fd, &crap) != 1)
continue;
snprintf(name+pos, sizeof(name) - pos, "%d", fd);
link_len = readlink(name, lnk, sizeof(lnk)-1);
if (link_len == -1)
continue;
lnk[link_len] = '\0';
if (strncmp(lnk, pattern, strlen(pattern)))
continue;
sscanf(lnk, "socket:[%u]", &ino);
snprintf(tmp, sizeof(tmp), "%s/%d/fd/%s",
root, pid, d1->d_name);
if (getfilecon(tmp, &sock_context) <= 0)
sock_context = strdup(no_ctx);
if (*p == '\0') {
FILE *fp;
snprintf(tmp, sizeof(tmp), "%s/%d/stat",
root, pid);
if ((fp = fopen(tmp, "r")) != NULL) {
if (fscanf(fp, "%*d (%[^)])", p) < 1)
; /* ignore */
fclose(fp);
}
}
user_ent_add(ino, p, pid, fd,
pid_context, sock_context);
free(sock_context);
}
free(pid_context);
closedir(dir1);
}
closedir(dir);
}
enum entry_types {
USERS,
PROC_CTX,
PROC_SOCK_CTX
};
#define ENTRY_BUF_SIZE 512
static int find_entry(unsigned ino, char **buf, int type)
{
struct user_ent *p;
int cnt = 0;
char *ptr;
char *new_buf;
int len, new_buf_len;
int buf_used = 0;
int buf_len = 0;
if (!ino)
return 0;
p = user_ent_hash[user_ent_hashfn(ino)];
ptr = *buf = NULL;
while (p) {
if (p->ino != ino)
goto next;
while (1) {
ptr = *buf + buf_used;
switch (type) {
case USERS:
len = snprintf(ptr, buf_len - buf_used,
"(\"%s\",pid=%d,fd=%d),",
p->process, p->pid, p->fd);
break;
case PROC_CTX:
len = snprintf(ptr, buf_len - buf_used,
"(\"%s\",pid=%d,proc_ctx=%s,fd=%d),",
p->process, p->pid,
p->process_ctx, p->fd);
break;
case PROC_SOCK_CTX:
len = snprintf(ptr, buf_len - buf_used,
"(\"%s\",pid=%d,proc_ctx=%s,fd=%d,sock_ctx=%s),",
p->process, p->pid,
p->process_ctx, p->fd,
p->socket_ctx);
break;
default:
fprintf(stderr, "ss: invalid type: %d\n", type);
abort();
}
if (len < 0 || len >= buf_len - buf_used) {
new_buf_len = buf_len + ENTRY_BUF_SIZE;
new_buf = realloc(*buf, new_buf_len);
if (!new_buf) {
fprintf(stderr, "ss: failed to malloc buffer\n");
abort();
}
*buf = new_buf;
buf_len = new_buf_len;
continue;
} else {
buf_used += len;
break;
}
}
cnt++;
next:
p = p->next;
}
if (buf_used) {
ptr = *buf + buf_used;
ptr[-1] = '\0';
}
return cnt;
}
/* Get stats from slab */
struct slabstat
{
int socks;
int tcp_ports;
int tcp_tws;
int tcp_syns;
int skbs;
};
static struct slabstat slabstat;
static const char *slabstat_ids[] =
{
"sock",
"tcp_bind_bucket",
"tcp_tw_bucket",
"tcp_open_request",
"skbuff_head_cache",
};
static int get_slabstat(struct slabstat *s)
{
char buf[256];
FILE *fp;
int cnt;
static int slabstat_valid;
if (slabstat_valid)
return 0;
memset(s, 0, sizeof(*s));
fp = slabinfo_open();
if (!fp)
return -1;
cnt = sizeof(*s)/sizeof(int);
if (!fgets(buf, sizeof(buf), fp)) {
fclose(fp);
return -1;
}
while(fgets(buf, sizeof(buf), fp) != NULL) {
int i;
for (i=0; i<sizeof(slabstat_ids)/sizeof(slabstat_ids[0]); i++) {
if (memcmp(buf, slabstat_ids[i], strlen(slabstat_ids[i])) == 0) {
sscanf(buf, "%*s%d", ((int *)s) + i);
cnt--;
break;
}
}
if (cnt <= 0)
break;
}
slabstat_valid = 1;
fclose(fp);
return 0;
}
static unsigned long long cookie_sk_get(const uint32_t *cookie)
{
return (((unsigned long long)cookie[1] << 31) << 1) | cookie[0];
}
static const char *sstate_name[] = {
"UNKNOWN",
[SS_ESTABLISHED] = "ESTAB",
[SS_SYN_SENT] = "SYN-SENT",
[SS_SYN_RECV] = "SYN-RECV",
[SS_FIN_WAIT1] = "FIN-WAIT-1",
[SS_FIN_WAIT2] = "FIN-WAIT-2",
[SS_TIME_WAIT] = "TIME-WAIT",
[SS_CLOSE] = "UNCONN",
[SS_CLOSE_WAIT] = "CLOSE-WAIT",
[SS_LAST_ACK] = "LAST-ACK",
[SS_LISTEN] = "LISTEN",
[SS_CLOSING] = "CLOSING",
};
static const char *sstate_namel[] = {
"UNKNOWN",
[SS_ESTABLISHED] = "established",
[SS_SYN_SENT] = "syn-sent",
[SS_SYN_RECV] = "syn-recv",
[SS_FIN_WAIT1] = "fin-wait-1",
[SS_FIN_WAIT2] = "fin-wait-2",
[SS_TIME_WAIT] = "time-wait",
[SS_CLOSE] = "unconnected",
[SS_CLOSE_WAIT] = "close-wait",
[SS_LAST_ACK] = "last-ack",
[SS_LISTEN] = "listening",
[SS_CLOSING] = "closing",
};
struct sockstat
{
struct sockstat *next;
unsigned int type;
uint16_t prot;
inet_prefix local;
inet_prefix remote;
int lport;
int rport;
int state;
int rq, wq;
unsigned ino;
unsigned uid;
int refcnt;
unsigned int iface;
unsigned long long sk;
char *name;
char *peer_name;
};
struct dctcpstat
{
unsigned int ce_state;
unsigned int alpha;
unsigned int ab_ecn;
unsigned int ab_tot;
bool enabled;
};
struct tcpstat
{
struct sockstat ss;
int timer;
int timeout;
int probes;
char cong_alg[16];
double rto, ato, rtt, rttvar;
int qack, cwnd, ssthresh, backoff;
double send_bps;
int snd_wscale;
int rcv_wscale;
int mss;
unsigned int lastsnd;
unsigned int lastrcv;
unsigned int lastack;
double pacing_rate;
double pacing_rate_max;
unsigned long long bytes_acked;
unsigned long long bytes_received;
unsigned int segs_out;
unsigned int segs_in;
unsigned int unacked;
unsigned int retrans;
unsigned int retrans_total;
unsigned int lost;
unsigned int sacked;
unsigned int fackets;
unsigned int reordering;
double rcv_rtt;
int rcv_space;
bool has_ts_opt;
bool has_sack_opt;
bool has_ecn_opt;
bool has_ecnseen_opt;
bool has_fastopen_opt;
bool has_wscale_opt;
struct dctcpstat *dctcp;
};
static void sock_state_print(struct sockstat *s, const char *sock_name)
{
if (netid_width)
printf("%-*s ", netid_width, sock_name);
if (state_width)
printf("%-*s ", state_width, sstate_name[s->state]);
printf("%-6d %-6d ", s->rq, s->wq);
}
static void sock_details_print(struct sockstat *s)
{
if (s->uid)
printf(" uid:%u", s->uid);
printf(" ino:%u", s->ino);
printf(" sk:%llx", s->sk);
}
static void sock_addr_print_width(int addr_len, const char *addr, char *delim,
int port_len, const char *port, const char *ifname)
{
if (ifname) {
printf("%*s%%%s%s%-*s ", addr_len, addr, ifname, delim,
port_len, port);
}
else {
printf("%*s%s%-*s ", addr_len, addr, delim, port_len, port);
}
}
static void sock_addr_print(const char *addr, char *delim, const char *port,
const char *ifname)
{
sock_addr_print_width(addr_width, addr, delim, serv_width, port, ifname);
}
static const char *tmr_name[] = {
"off",
"on",
"keepalive",
"timewait",
"persist",
"unknown"
};
static const char *print_ms_timer(int timeout)
{
static char buf[64];
int secs, msecs, minutes;
if (timeout < 0)
timeout = 0;
secs = timeout/1000;
minutes = secs/60;
secs = secs%60;
msecs = timeout%1000;
buf[0] = 0;
if (minutes) {
msecs = 0;
snprintf(buf, sizeof(buf)-16, "%dmin", minutes);
if (minutes > 9)
secs = 0;
}
if (secs) {
if (secs > 9)
msecs = 0;
sprintf(buf+strlen(buf), "%d%s", secs, msecs ? "." : "sec");
}
if (msecs)
sprintf(buf+strlen(buf), "%03dms", msecs);
return buf;
}
struct scache {
struct scache *next;
int port;
char *name;
const char *proto;
};
struct scache *rlist;
static void init_service_resolver(void)
{
char buf[128];
FILE *fp = popen("/usr/sbin/rpcinfo -p 2>/dev/null", "r");
if (!fp)
return;
if (!fgets(buf, sizeof(buf), fp)) {
pclose(fp);
return;
}
while (fgets(buf, sizeof(buf), fp) != NULL) {
unsigned int progn, port;
char proto[128], prog[128] = "rpc.";
struct scache *c;
if (sscanf(buf, "%u %*d %s %u %s",
&progn, proto, &port, prog+4) != 4)
continue;
if (!(c = malloc(sizeof(*c))))
continue;
c->port = port;
c->name = strdup(prog);
if (strcmp(proto, TCP_PROTO) == 0)
c->proto = TCP_PROTO;
else if (strcmp(proto, UDP_PROTO) == 0)
c->proto = UDP_PROTO;
else
c->proto = NULL;
c->next = rlist;
rlist = c;
}
pclose(fp);
}
/* Even do not try default linux ephemeral port ranges:
* default /etc/services contains so much of useless crap
* wouldbe "allocated" to this area that resolution
* is really harmful. I shrug each time when seeing
* "socks" or "cfinger" in dumps.
*/
static int is_ephemeral(int port)
{
static int min = 0, max = 0;
if (!min) {
FILE *f = ephemeral_ports_open();
if (!f || fscanf(f, "%d %d", &min, &max) < 2) {
min = 1024;
max = 4999;
}
if (f)
fclose(f);
}
return port >= min && port <= max;
}
static const char *__resolve_service(int port)
{
struct scache *c;
for (c = rlist; c; c = c->next) {
if (c->port == port && c->proto == dg_proto)
return c->name;
}
if (!is_ephemeral(port)) {
static int notfirst;
struct servent *se;
if (!notfirst) {
setservent(1);
notfirst = 1;
}
se = getservbyport(htons(port), dg_proto);
if (se)
return se->s_name;
}
return NULL;
}
#define SCACHE_BUCKETS 1024
static struct scache *cache_htab[SCACHE_BUCKETS];
static const char *resolve_service(int port)
{
static char buf[128];
struct scache *c;
const char *res;
int hash;
if (port == 0) {
buf[0] = '*';
buf[1] = 0;
return buf;
}
if (!resolve_services)
goto do_numeric;
if (dg_proto == RAW_PROTO)
return inet_proto_n2a(port, buf, sizeof(buf));
hash = (port^(((unsigned long)dg_proto)>>2)) % SCACHE_BUCKETS;
for (c = cache_htab[hash]; c; c = c->next) {
if (c->port == port && c->proto == dg_proto)
goto do_cache;
}
c = malloc(sizeof(*c));
if (!c)
goto do_numeric;
res = __resolve_service(port);
c->port = port;
c->name = res ? strdup(res) : NULL;
c->proto = dg_proto;
c->next = cache_htab[hash];
cache_htab[hash] = c;
do_cache:
if (c->name)
return c->name;
do_numeric:
sprintf(buf, "%u", port);
return buf;
}
static void inet_addr_print(const inet_prefix *a, int port, unsigned int ifindex)
{
char buf[1024];
const char *ap = buf;
int est_len = addr_width;
const char *ifname = NULL;
if (a->family == AF_INET) {
if (a->data[0] == 0) {
buf[0] = '*';
buf[1] = 0;
} else {
ap = format_host(AF_INET, 4, a->data, buf, sizeof(buf));
}
} else {
ap = format_host(a->family, 16, a->data, buf, sizeof(buf));
est_len = strlen(ap);
if (est_len <= addr_width)
est_len = addr_width;
else
est_len = addr_width + ((est_len-addr_width+3)/4)*4;
}
if (ifindex) {
ifname = ll_index_to_name(ifindex);
est_len -= strlen(ifname) + 1; /* +1 for percent char */
if (est_len < 0)
est_len = 0;
}
sock_addr_print_width(est_len, ap, ":", serv_width, resolve_service(port),
ifname);
}
struct aafilter
{
inet_prefix addr;
int port;
struct aafilter *next;
};
static int inet2_addr_match(const inet_prefix *a, const inet_prefix *p,
int plen)
{
if (!inet_addr_match(a, p, plen))
return 0;
/* Cursed "v4 mapped" addresses: v4 mapped socket matches
* pure IPv4 rule, but v4-mapped rule selects only v4-mapped
* sockets. Fair? */
if (p->family == AF_INET && a->family == AF_INET6) {
if (a->data[0] == 0 && a->data[1] == 0 &&
a->data[2] == htonl(0xffff)) {
inet_prefix tmp = *a;
tmp.data[0] = a->data[3];
return inet_addr_match(&tmp, p, plen);
}
}
return 1;
}
static int unix_match(const inet_prefix *a, const inet_prefix *p)
{
char *addr, *pattern;
memcpy(&addr, a->data, sizeof(addr));
memcpy(&pattern, p->data, sizeof(pattern));
if (pattern == NULL)
return 1;
if (addr == NULL)
addr = "";
return !fnmatch(pattern, addr, 0);
}
static int run_ssfilter(struct ssfilter *f, struct sockstat *s)
{
switch (f->type) {
case SSF_S_AUTO:
{
if (s->local.family == AF_UNIX) {
char *p;
memcpy(&p, s->local.data, sizeof(p));
return p == NULL || (p[0] == '@' && strlen(p) == 6 &&
strspn(p+1, "0123456789abcdef") == 5);
}
if (s->local.family == AF_PACKET)
return s->lport == 0 && s->local.data[0] == 0;
if (s->local.family == AF_NETLINK)
return s->lport < 0;
return is_ephemeral(s->lport);
}
case SSF_DCOND:
{
struct aafilter *a = (void*)f->pred;
if (a->addr.family == AF_UNIX)
return unix_match(&s->remote, &a->addr);
if (a->port != -1 && a->port != s->rport)
return 0;
if (a->addr.bitlen) {
do {
if (!inet2_addr_match(&s->remote, &a->addr, a->addr.bitlen))
return 1;
} while ((a = a->next) != NULL);
return 0;
}
return 1;
}
case SSF_SCOND:
{
struct aafilter *a = (void*)f->pred;
if (a->addr.family == AF_UNIX)
return unix_match(&s->local, &a->addr);
if (a->port != -1 && a->port != s->lport)
return 0;
if (a->addr.bitlen) {
do {
if (!inet2_addr_match(&s->local, &a->addr, a->addr.bitlen))
return 1;
} while ((a = a->next) != NULL);
return 0;
}
return 1;
}
case SSF_D_GE:
{
struct aafilter *a = (void*)f->pred;
return s->rport >= a->port;
}
case SSF_D_LE:
{
struct aafilter *a = (void*)f->pred;
return s->rport <= a->port;
}
case SSF_S_GE:
{
struct aafilter *a = (void*)f->pred;
return s->lport >= a->port;
}
case SSF_S_LE:
{
struct aafilter *a = (void*)f->pred;
return s->lport <= a->port;
}
/* Yup. It is recursion. Sorry. */
case SSF_AND:
return run_ssfilter(f->pred, s) && run_ssfilter(f->post, s);
case SSF_OR:
return run_ssfilter(f->pred, s) || run_ssfilter(f->post, s);
case SSF_NOT:
return !run_ssfilter(f->pred, s);
default:
abort();
}
}
/* Relocate external jumps by reloc. */
static void ssfilter_patch(char *a, int len, int reloc)
{
while (len > 0) {
struct inet_diag_bc_op *op = (struct inet_diag_bc_op*)a;
if (op->no == len+4)
op->no += reloc;
len -= op->yes;
a += op->yes;
}
if (len < 0)
abort();
}
static int ssfilter_bytecompile(struct ssfilter *f, char **bytecode)
{
switch (f->type) {
case SSF_S_AUTO:
{
if (!(*bytecode=malloc(4))) abort();
((struct inet_diag_bc_op*)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_AUTO, 4, 8 };
return 4;
}
case SSF_DCOND:
case SSF_SCOND:
{
struct aafilter *a = (void*)f->pred;
struct aafilter *b;
char *ptr;
int code = (f->type == SSF_DCOND ? INET_DIAG_BC_D_COND : INET_DIAG_BC_S_COND);
int len = 0;
for (b=a; b; b=b->next) {
len += 4 + sizeof(struct inet_diag_hostcond);
if (a->addr.family == AF_INET6)
len += 16;
else
len += 4;
if (b->next)
len += 4;
}
if (!(ptr = malloc(len))) abort();
*bytecode = ptr;
for (b=a; b; b=b->next) {
struct inet_diag_bc_op *op = (struct inet_diag_bc_op *)ptr;
int alen = (a->addr.family == AF_INET6 ? 16 : 4);
int oplen = alen + 4 + sizeof(struct inet_diag_hostcond);
struct inet_diag_hostcond *cond = (struct inet_diag_hostcond*)(ptr+4);
*op = (struct inet_diag_bc_op){ code, oplen, oplen+4 };
cond->family = a->addr.family;
cond->port = a->port;
cond->prefix_len = a->addr.bitlen;
memcpy(cond->addr, a->addr.data, alen);
ptr += oplen;
if (b->next) {
op = (struct inet_diag_bc_op *)ptr;
*op = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, len - (ptr-*bytecode)};
ptr += 4;
}
}
return ptr - *bytecode;
}
case SSF_D_GE:
{
struct aafilter *x = (void*)f->pred;
if (!(*bytecode=malloc(8))) abort();
((struct inet_diag_bc_op*)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_GE, 8, 12 };
((struct inet_diag_bc_op*)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port };
return 8;
}
case SSF_D_LE:
{
struct aafilter *x = (void*)f->pred;
if (!(*bytecode=malloc(8))) abort();
((struct inet_diag_bc_op*)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_D_LE, 8, 12 };
((struct inet_diag_bc_op*)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port };
return 8;
}
case SSF_S_GE:
{
struct aafilter *x = (void*)f->pred;
if (!(*bytecode=malloc(8))) abort();
((struct inet_diag_bc_op*)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_GE, 8, 12 };
((struct inet_diag_bc_op*)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port };
return 8;
}
case SSF_S_LE:
{
struct aafilter *x = (void*)f->pred;
if (!(*bytecode=malloc(8))) abort();
((struct inet_diag_bc_op*)*bytecode)[0] = (struct inet_diag_bc_op){ INET_DIAG_BC_S_LE, 8, 12 };
((struct inet_diag_bc_op*)*bytecode)[1] = (struct inet_diag_bc_op){ 0, 0, x->port };
return 8;
}
case SSF_AND:
{
char *a1, *a2, *a;
int l1, l2;
l1 = ssfilter_bytecompile(f->pred, &a1);
l2 = ssfilter_bytecompile(f->post, &a2);
if (!(a = malloc(l1+l2))) abort();
memcpy(a, a1, l1);
memcpy(a+l1, a2, l2);
free(a1); free(a2);
ssfilter_patch(a, l1, l2);
*bytecode = a;
return l1+l2;
}
case SSF_OR:
{
char *a1, *a2, *a;
int l1, l2;
l1 = ssfilter_bytecompile(f->pred, &a1);
l2 = ssfilter_bytecompile(f->post, &a2);
if (!(a = malloc(l1+l2+4))) abort();
memcpy(a, a1, l1);
memcpy(a+l1+4, a2, l2);
free(a1); free(a2);
*(struct inet_diag_bc_op*)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, l2+4 };
*bytecode = a;
return l1+l2+4;
}
case SSF_NOT:
{
char *a1, *a;
int l1;
l1 = ssfilter_bytecompile(f->pred, &a1);
if (!(a = malloc(l1+4))) abort();
memcpy(a, a1, l1);
free(a1);
*(struct inet_diag_bc_op*)(a+l1) = (struct inet_diag_bc_op){ INET_DIAG_BC_JMP, 4, 8 };
*bytecode = a;
return l1+4;
}
default:
abort();
}
}
static int remember_he(struct aafilter *a, struct hostent *he)
{
char **ptr = he->h_addr_list;
int cnt = 0;
int len;
if (he->h_addrtype == AF_INET)
len = 4;
else if (he->h_addrtype == AF_INET6)
len = 16;
else
return 0;
while (*ptr) {
struct aafilter *b = a;
if (a->addr.bitlen) {
if ((b = malloc(sizeof(*b))) == NULL)
return cnt;
*b = *a;
b->next = a->next;
a->next = b;
}
memcpy(b->addr.data, *ptr, len);
b->addr.bytelen = len;
b->addr.bitlen = len*8;
b->addr.family = he->h_addrtype;
ptr++;
cnt++;
}
return cnt;
}
static int get_dns_host(struct aafilter *a, const char *addr, int fam)
{
static int notfirst;
int cnt = 0;
struct hostent *he;
a->addr.bitlen = 0;
if (!notfirst) {
sethostent(1);
notfirst = 1;
}
he = gethostbyname2(addr, fam == AF_UNSPEC ? AF_INET : fam);
if (he)
cnt = remember_he(a, he);
if (fam == AF_UNSPEC) {
he = gethostbyname2(addr, AF_INET6);
if (he)
cnt += remember_he(a, he);
}
return !cnt;
}
static int xll_initted = 0;
static void xll_init(void)
{
struct rtnl_handle rth;
if (rtnl_open(&rth, 0) < 0)
exit(1);
ll_init_map(&rth);
rtnl_close(&rth);
xll_initted = 1;
}
static const char *xll_index_to_name(int index)
{
if (!xll_initted)
xll_init();
return ll_index_to_name(index);
}
static int xll_name_to_index(const char *dev)
{
if (!xll_initted)
xll_init();
return ll_name_to_index(dev);
}
void *parse_hostcond(char *addr, bool is_port)
{
char *port = NULL;
struct aafilter a = { .port = -1 };
struct aafilter *res;
int fam = preferred_family;
struct filter *f = &current_filter;
if (fam == AF_UNIX || strncmp(addr, "unix:", 5) == 0) {
char *p;
a.addr.family = AF_UNIX;
if (strncmp(addr, "unix:", 5) == 0)
addr+=5;
p = strdup(addr);
a.addr.bitlen = 8*strlen(p);
memcpy(a.addr.data, &p, sizeof(p));
fam = AF_UNIX;
goto out;
}
if (fam == AF_PACKET || strncmp(addr, "link:", 5) == 0) {
a.addr.family = AF_PACKET;
a.addr.bitlen = 0;
if (strncmp(addr, "link:", 5) == 0)
addr+=5;
port = strchr(addr, ':');
if (port) {
*port = 0;
if (port[1] && strcmp(port+1, "*")) {
if (get_integer(&a.port, port+1, 0)) {
if ((a.port = xll_name_to_index(port+1)) <= 0)
return NULL;
}
}
}
if (addr[0] && strcmp(addr, "*")) {
unsigned short tmp;
a.addr.bitlen = 32;
if (ll_proto_a2n(&tmp, addr))
return NULL;
a.addr.data[0] = ntohs(tmp);
}
fam = AF_PACKET;
goto out;
}
if (fam == AF_NETLINK || strncmp(addr, "netlink:", 8) == 0) {
a.addr.family = AF_NETLINK;
a.addr.bitlen = 0;
if (strncmp(addr, "netlink:", 8) == 0)
addr+=8;
port = strchr(addr, ':');
if (port) {
*port = 0;
if (port[1] && strcmp(port+1, "*")) {
if (get_integer(&a.port, port+1, 0)) {
if (strcmp(port+1, "kernel") == 0)
a.port = 0;
else
return NULL;
}
}
}
if (addr[0] && strcmp(addr, "*")) {
a.addr.bitlen = 32;
if (nl_proto_a2n(&a.addr.data[0], addr) == -1)
return NULL;
}
fam = AF_NETLINK;
goto out;
}
if (fam == AF_INET || !strncmp(addr, "inet:", 5)) {
fam = AF_INET;
if (!strncmp(addr, "inet:", 5))
addr += 5;
} else if (fam == AF_INET6 || !strncmp(addr, "inet6:", 6)) {
fam = AF_INET6;
if (!strncmp(addr, "inet6:", 6))
addr += 6;
}
/* URL-like literal [] */
if (addr[0] == '[') {
addr++;
if ((port = strchr(addr, ']')) == NULL)
return NULL;
*port++ = 0;
} else if (addr[0] == '*') {
port = addr+1;
} else {
port = strrchr(strchr(addr, '/') ? : addr, ':');
}
if (is_port)
port = addr;
if (port && *port) {
if (*port == ':')
*port++ = 0;
if (*port && *port != '*') {
if (get_integer(&a.port, port, 0)) {
struct servent *se1 = NULL;
struct servent *se2 = NULL;
if (current_filter.dbs&(1<<UDP_DB))
se1 = getservbyname(port, UDP_PROTO);
if (current_filter.dbs&(1<<TCP_DB))
se2 = getservbyname(port, TCP_PROTO);
if (se1 && se2 && se1->s_port != se2->s_port) {
fprintf(stderr, "Error: ambiguous port \"%s\".\n", port);
return NULL;
}
if (!se1)
se1 = se2;
if (se1) {
a.port = ntohs(se1->s_port);
} else {
struct scache *s;
for (s = rlist; s; s = s->next) {
if ((s->proto == UDP_PROTO &&
(current_filter.dbs&(1<<UDP_DB))) ||
(s->proto == TCP_PROTO &&
(current_filter.dbs&(1<<TCP_DB)))) {
if (s->name && strcmp(s->name, port) == 0) {
if (a.port > 0 && a.port != s->port) {
fprintf(stderr, "Error: ambiguous port \"%s\".\n", port);
return NULL;
}
a.port = s->port;
}
}
}
if (a.port <= 0) {
fprintf(stderr, "Error: \"%s\" does not look like a port.\n", port);
return NULL;
}
}
}
}
}
if (!is_port && addr && *addr && *addr != '*') {
if (get_prefix_1(&a.addr, addr, fam)) {
if (get_dns_host(&a, addr, fam)) {
fprintf(stderr, "Error: an inet prefix is expected rather than \"%s\".\n", addr);
return NULL;
}
}
}
out:
if (fam != AF_UNSPEC) {
f->families = 0;
filter_af_set(f, fam);
filter_states_set(f, 0);
}
res = malloc(sizeof(*res));
if (res)
memcpy(res, &a, sizeof(a));
return res;
}
static char *proto_name(int protocol)
{
switch (protocol) {
case 0:
return "raw";
case IPPROTO_UDP:
return "udp";
case IPPROTO_TCP:
return "tcp";
case IPPROTO_DCCP:
return "dccp";
}
return "???";
}
static void inet_stats_print(struct sockstat *s, int protocol)
{
char *buf = NULL;
sock_state_print(s, proto_name(protocol));
inet_addr_print(&s->local, s->lport, s->iface);
inet_addr_print(&s->remote, s->rport, 0);
if (show_proc_ctx || show_sock_ctx) {
if (find_entry(s->ino, &buf,
(show_proc_ctx & show_sock_ctx) ?
PROC_SOCK_CTX : PROC_CTX) > 0) {
printf(" users:(%s)", buf);
free(buf);
}
} else if (show_users) {
if (find_entry(s->ino, &buf, USERS) > 0) {
printf(" users:(%s)", buf);
free(buf);
}
}
}
static int proc_parse_inet_addr(char *loc, char *rem, int family, struct
sockstat *s)
{
s->local.family = s->remote.family = family;
if (family == AF_INET) {
sscanf(loc, "%x:%x", s->local.data, (unsigned*)&s->lport);
sscanf(rem, "%x:%x", s->remote.data, (unsigned*)&s->rport);
s->local.bytelen = s->remote.bytelen = 4;
return 0;
} else {
sscanf(loc, "%08x%08x%08x%08x:%x",
s->local.data,
s->local.data + 1,
s->local.data + 2,
s->local.data + 3,
&s->lport);
sscanf(rem, "%08x%08x%08x%08x:%x",
s->remote.data,
s->remote.data + 1,
s->remote.data + 2,
s->remote.data + 3,
&s->rport);
s->local.bytelen = s->remote.bytelen = 16;
return 0;
}
return -1;
}
static int proc_inet_split_line(char *line, char **loc, char **rem, char **data)
{
char *p;
if ((p = strchr(line, ':')) == NULL)
return -1;
*loc = p+2;
if ((p = strchr(*loc, ':')) == NULL)
return -1;
p[5] = 0;
*rem = p+6;
if ((p = strchr(*rem, ':')) == NULL)
return -1;
p[5] = 0;
*data = p+6;
return 0;
}
static char *sprint_bw(char *buf, double bw)
{
if (bw > 1000000.)
sprintf(buf,"%.1fM", bw / 1000000.);
else if (bw > 1000.)
sprintf(buf,"%.1fK", bw / 1000.);
else
sprintf(buf, "%g", bw);
return buf;
}
static void tcp_stats_print(struct tcpstat *s)
{
char b1[64];
if (s->has_ts_opt)
printf(" ts");
if (s->has_sack_opt)
printf(" sack");
if (s->has_ecn_opt)
printf(" ecn");
if (s->has_ecnseen_opt)
printf(" ecnseen");
if (s->has_fastopen_opt)
printf(" fastopen");
if (s->cong_alg[0])
printf(" %s", s->cong_alg);
if (s->has_wscale_opt)
printf(" wscale:%d,%d", s->snd_wscale, s->rcv_wscale);
if (s->rto)
printf(" rto:%g", s->rto);
if (s->backoff)
printf(" backoff:%u", s->backoff);
if (s->rtt)
printf(" rtt:%g/%g", s->rtt, s->rttvar);
if (s->ato)
printf(" ato:%g", s->ato);
if (s->qack)
printf(" qack:%d", s->qack);
if (s->qack & 1)
printf(" bidir");
if (s->mss)
printf(" mss:%d", s->mss);
if (s->cwnd)
printf(" cwnd:%d", s->cwnd);
if (s->ssthresh)
printf(" ssthresh:%d", s->ssthresh);
if (s->bytes_acked)
printf(" bytes_acked:%llu", s->bytes_acked);
if (s->bytes_received)
printf(" bytes_received:%llu", s->bytes_received);
if (s->segs_out)
printf(" segs_out:%u", s->segs_out);
if (s->segs_in)
printf(" segs_in:%u", s->segs_in);
if (s->dctcp && s->dctcp->enabled) {
struct dctcpstat *dctcp = s->dctcp;
printf(" dctcp:(ce_state:%u,alpha:%u,ab_ecn:%u,ab_tot:%u)",
dctcp->ce_state, dctcp->alpha, dctcp->ab_ecn,
dctcp->ab_tot);
} else if (s->dctcp) {
printf(" dctcp:fallback_mode");
}
if (s->send_bps)
printf(" send %sbps", sprint_bw(b1, s->send_bps));
if (s->lastsnd)
printf(" lastsnd:%u", s->lastsnd);
if (s->lastrcv)
printf(" lastrcv:%u", s->lastrcv);
if (s->lastack)
printf(" lastack:%u", s->lastack);
if (s->pacing_rate) {
printf(" pacing_rate %sbps", sprint_bw(b1, s->pacing_rate));
if (s->pacing_rate_max)
printf("/%sbps", sprint_bw(b1,
s->pacing_rate_max));
}
if (s->unacked)
printf(" unacked:%u", s->unacked);
if (s->retrans || s->retrans_total)
printf(" retrans:%u/%u", s->retrans, s->retrans_total);
if (s->lost)
printf(" lost:%u", s->lost);
if (s->sacked && s->ss.state != SS_LISTEN)
printf(" sacked:%u", s->sacked);
if (s->fackets)
printf(" fackets:%u", s->fackets);
if (s->reordering != 3)
printf(" reordering:%d", s->reordering);
if (s->rcv_rtt)
printf(" rcv_rtt:%g", s->rcv_rtt);
if (s->rcv_space)
printf(" rcv_space:%d", s->rcv_space);
}
static void tcp_timer_print(struct tcpstat *s)
{
if (s->timer) {
if (s->timer > 4)
s->timer = 5;
printf(" timer:(%s,%s,%d)",
tmr_name[s->timer],
print_ms_timer(s->timeout),
s->retrans);
}
}
static int tcp_show_line(char *line, const struct filter *f, int family)
{
int rto = 0, ato = 0;
struct tcpstat s = {};
char *loc, *rem, *data;
char opt[256];
int n;
int hz = get_user_hz();
if (proc_inet_split_line(line, &loc, &rem, &data))
return -1;
int state = (data[1] >= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0');
if (!(f->states & (1 << state)))
return 0;
proc_parse_inet_addr(loc, rem, family, &s.ss);
if (f->f && run_ssfilter(f->f, &s.ss) == 0)
return 0;
opt[0] = 0;
n = sscanf(data, "%x %x:%x %x:%x %x %d %d %u %d %llx %d %d %d %d %d %[^\n]\n",
&s.ss.state, &s.ss.wq, &s.ss.rq,
&s.timer, &s.timeout, &s.retrans, &s.ss.uid, &s.probes,
&s.ss.ino, &s.ss.refcnt, &s.ss.sk, &rto, &ato, &s.qack, &s.cwnd,
&s.ssthresh, opt);
if (n < 17)
opt[0] = 0;
if (n < 12) {
rto = 0;
s.cwnd = 2;
s.ssthresh = -1;
ato = s.qack = 0;
}
s.retrans = s.timer != 1 ? s.probes : s.retrans;
s.timeout = (s.timeout * 1000 + hz - 1) / hz;
s.ato = (double)ato / hz;
s.qack /= 2;
s.rto = (double)rto;
s.ssthresh = s.ssthresh == -1 ? 0 : s.ssthresh;
s.rto = s.rto != 3 * hz ? s.rto / hz : 0;
inet_stats_print(&s.ss, IPPROTO_TCP);
if (show_options)
tcp_timer_print(&s);
if (show_details) {
sock_details_print(&s.ss);
if (opt[0])
printf(" opt:\"%s\"", opt);
}
if (show_tcpinfo)
tcp_stats_print(&s);
printf("\n");
return 0;
}
static int generic_record_read(FILE *fp,
int (*worker)(char*, const struct filter *, int),
const struct filter *f, int fam)
{
char line[256];
/* skip header */
if (fgets(line, sizeof(line), fp) == NULL)
goto outerr;
while (fgets(line, sizeof(line), fp) != NULL) {
int n = strlen(line);
if (n == 0 || line[n-1] != '\n') {
errno = -EINVAL;
return -1;
}
line[n-1] = 0;
if (worker(line, f, fam) < 0)
return 0;
}
outerr:
return ferror(fp) ? -1 : 0;
}
static void print_skmeminfo(struct rtattr *tb[], int attrtype)
{
const __u32 *skmeminfo;
if (!tb[attrtype]) {
if (attrtype == INET_DIAG_SKMEMINFO) {
if (!tb[INET_DIAG_MEMINFO])
return;
const struct inet_diag_meminfo *minfo =
RTA_DATA(tb[INET_DIAG_MEMINFO]);
printf(" mem:(r%u,w%u,f%u,t%u)",
minfo->idiag_rmem,
minfo->idiag_wmem,
minfo->idiag_fmem,
minfo->idiag_tmem);
}
return;
}
skmeminfo = RTA_DATA(tb[attrtype]);
printf(" skmem:(r%u,rb%u,t%u,tb%u,f%u,w%u,o%u",
skmeminfo[SK_MEMINFO_RMEM_ALLOC],
skmeminfo[SK_MEMINFO_RCVBUF],
skmeminfo[SK_MEMINFO_WMEM_ALLOC],
skmeminfo[SK_MEMINFO_SNDBUF],
skmeminfo[SK_MEMINFO_FWD_ALLOC],
skmeminfo[SK_MEMINFO_WMEM_QUEUED],
skmeminfo[SK_MEMINFO_OPTMEM]);
if (RTA_PAYLOAD(tb[attrtype]) >=
(SK_MEMINFO_BACKLOG + 1) * sizeof(__u32))
printf(",bl%u", skmeminfo[SK_MEMINFO_BACKLOG]);
printf(")");
}
#define TCPI_HAS_OPT(info, opt) !!(info->tcpi_options & (opt))
static void tcp_show_info(const struct nlmsghdr *nlh, struct inet_diag_msg *r,
struct rtattr *tb[])
{
double rtt = 0;
struct tcpstat s = {};
s.ss.state = r->idiag_state;
print_skmeminfo(tb, INET_DIAG_SKMEMINFO);
if (tb[INET_DIAG_INFO]) {
struct tcp_info *info;
int len = RTA_PAYLOAD(tb[INET_DIAG_INFO]);
/* workaround for older kernels with less fields */
if (len < sizeof(*info)) {
info = alloca(sizeof(*info));
memcpy(info, RTA_DATA(tb[INET_DIAG_INFO]), len);
memset((char *)info + len, 0, sizeof(*info) - len);
} else
info = RTA_DATA(tb[INET_DIAG_INFO]);
if (show_options) {
s.has_ts_opt = TCPI_HAS_OPT(info, TCPI_OPT_TIMESTAMPS);
s.has_sack_opt = TCPI_HAS_OPT(info, TCPI_OPT_SACK);
s.has_ecn_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN);
s.has_ecnseen_opt = TCPI_HAS_OPT(info, TCPI_OPT_ECN_SEEN);
s.has_fastopen_opt = TCPI_HAS_OPT(info, TCPI_OPT_SYN_DATA);
}
if (tb[INET_DIAG_CONG])
strncpy(s.cong_alg,
rta_getattr_str(tb[INET_DIAG_CONG]),
sizeof(s.cong_alg) - 1);
if (TCPI_HAS_OPT(info, TCPI_OPT_WSCALE)) {
s.has_wscale_opt = true;
s.snd_wscale = info->tcpi_snd_wscale;
s.rcv_wscale = info->tcpi_rcv_wscale;
}
if (info->tcpi_rto && info->tcpi_rto != 3000000)
s.rto = (double)info->tcpi_rto / 1000;
s.backoff = info->tcpi_backoff;
s.rtt = (double)info->tcpi_rtt / 1000;
s.rttvar = (double)info->tcpi_rttvar / 1000;
s.ato = (double)info->tcpi_ato / 1000;
s.mss = info->tcpi_snd_mss;
s.rcv_space = info->tcpi_rcv_space;
s.rcv_rtt = (double)info->tcpi_rcv_rtt / 1000;
s.lastsnd = info->tcpi_last_data_sent;
s.lastrcv = info->tcpi_last_data_recv;
s.lastack = info->tcpi_last_ack_recv;
s.unacked = info->tcpi_unacked;
s.retrans = info->tcpi_retrans;
s.retrans_total = info->tcpi_total_retrans;
s.lost = info->tcpi_lost;
s.sacked = info->tcpi_sacked;
s.reordering = info->tcpi_reordering;
s.rcv_space = info->tcpi_rcv_space;
s.cwnd = info->tcpi_snd_cwnd;
if (info->tcpi_snd_ssthresh < 0xFFFF)
s.ssthresh = info->tcpi_snd_ssthresh;
rtt = (double) info->tcpi_rtt;
if (tb[INET_DIAG_VEGASINFO]) {
const struct tcpvegas_info *vinfo
= RTA_DATA(tb[INET_DIAG_VEGASINFO]);
if (vinfo->tcpv_enabled &&
vinfo->tcpv_rtt && vinfo->tcpv_rtt != 0x7fffffff)
rtt = vinfo->tcpv_rtt;
}
if (tb[INET_DIAG_DCTCPINFO]) {
struct dctcpstat *dctcp = malloc(sizeof(struct
dctcpstat));
const struct tcp_dctcp_info *dinfo
= RTA_DATA(tb[INET_DIAG_DCTCPINFO]);
dctcp->enabled = !!dinfo->dctcp_enabled;
dctcp->ce_state = dinfo->dctcp_ce_state;
dctcp->alpha = dinfo->dctcp_alpha;
dctcp->ab_ecn = dinfo->dctcp_ab_ecn;
dctcp->ab_tot = dinfo->dctcp_ab_tot;
s.dctcp = dctcp;
}
if (rtt > 0 && info->tcpi_snd_mss && info->tcpi_snd_cwnd) {
s.send_bps = (double) info->tcpi_snd_cwnd *
(double)info->tcpi_snd_mss * 8000000. / rtt;
}
if (info->tcpi_pacing_rate &&
info->tcpi_pacing_rate != ~0ULL) {
s.pacing_rate = info->tcpi_pacing_rate * 8.;
if (info->tcpi_max_pacing_rate &&
info->tcpi_max_pacing_rate != ~0ULL)
s.pacing_rate_max = info->tcpi_max_pacing_rate * 8.;
}
s.bytes_acked = info->tcpi_bytes_acked;
s.bytes_received = info->tcpi_bytes_received;
s.segs_out = info->tcpi_segs_out;
s.segs_in = info->tcpi_segs_in;
tcp_stats_print(&s);
free(s.dctcp);
}
}
static int inet_show_sock(struct nlmsghdr *nlh, struct filter *f, int protocol)
{
struct rtattr * tb[INET_DIAG_MAX+1];
struct inet_diag_msg *r = NLMSG_DATA(nlh);
struct sockstat s = {};
parse_rtattr(tb, INET_DIAG_MAX, (struct rtattr*)(r+1),
nlh->nlmsg_len - NLMSG_LENGTH(sizeof(*r)));
s.state = r->idiag_state;
s.local.family = s.remote.family = r->idiag_family;
s.lport = ntohs(r->id.idiag_sport);
s.rport = ntohs(r->id.idiag_dport);
s.wq = r->idiag_wqueue;
s.rq = r->idiag_rqueue;
s.ino = r->idiag_inode;
s.uid = r->idiag_uid;
s.iface = r->id.idiag_if;
s.sk = cookie_sk_get(&r->id.idiag_cookie[0]);
if (s.local.family == AF_INET) {
s.local.bytelen = s.remote.bytelen = 4;
} else {
s.local.bytelen = s.remote.bytelen = 16;
}
memcpy(s.local.data, r->id.idiag_src, s.local.bytelen);
memcpy(s.remote.data, r->id.idiag_dst, s.local.bytelen);
if (f && f->f && run_ssfilter(f->f, &s) == 0)
return 0;
if (tb[INET_DIAG_PROTOCOL])
protocol = *(__u8 *)RTA_DATA(tb[INET_DIAG_PROTOCOL]);
inet_stats_print(&s, protocol);
if (show_options) {
struct tcpstat t = {};
t.timer = r->idiag_timer;
t.timeout = r->idiag_expires;
t.retrans = r->idiag_retrans;
tcp_timer_print(&t);
}
if (show_details) {
sock_details_print(&s);
if (s.local.family == AF_INET6 && tb[INET_DIAG_SKV6ONLY]) {
unsigned char v6only;
v6only = *(__u8 *)RTA_DATA(tb[INET_DIAG_SKV6ONLY]);
printf(" v6only:%u", v6only);
}
if (tb[INET_DIAG_SHUTDOWN]) {
unsigned char mask;
mask = *(__u8 *)RTA_DATA(tb[INET_DIAG_SHUTDOWN]);
printf(" %c-%c", mask & 1 ? '-' : '<', mask & 2 ? '-' : '>');
}
}
if (show_mem || show_tcpinfo) {
printf("\n\t");
tcp_show_info(nlh, r, tb);
}
printf("\n");
return 0;
}
static int tcpdiag_send(int fd, int protocol, struct filter *f)
{
struct sockaddr_nl nladdr;
struct {
struct nlmsghdr nlh;
struct inet_diag_req r;
} req;
char *bc = NULL;
int bclen;
struct msghdr msg;
struct rtattr rta;
struct iovec iov[3];
if (protocol == IPPROTO_UDP)
return -1;
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
req.nlh.nlmsg_len = sizeof(req);
if (protocol == IPPROTO_TCP)
req.nlh.nlmsg_type = TCPDIAG_GETSOCK;
else
req.nlh.nlmsg_type = DCCPDIAG_GETSOCK;
req.nlh.nlmsg_flags = NLM_F_ROOT|NLM_F_MATCH|NLM_F_REQUEST;
req.nlh.nlmsg_pid = 0;
req.nlh.nlmsg_seq = MAGIC_SEQ;
memset(&req.r, 0, sizeof(req.r));
req.r.idiag_family = AF_INET;
req.r.idiag_states = f->states;
if (show_mem) {
req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1));
}
if (show_tcpinfo) {
req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1));
}
iov[0] = (struct iovec){
.iov_base = &req,
.iov_len = sizeof(req)
};
if (f->f) {
bclen = ssfilter_bytecompile(f->f, &bc);
rta.rta_type = INET_DIAG_REQ_BYTECODE;
rta.rta_len = RTA_LENGTH(bclen);
iov[1] = (struct iovec){ &rta, sizeof(rta) };
iov[2] = (struct iovec){ bc, bclen };
req.nlh.nlmsg_len += RTA_LENGTH(bclen);
}
msg = (struct msghdr) {
.msg_name = (void*)&nladdr,
.msg_namelen = sizeof(nladdr),
.msg_iov = iov,
.msg_iovlen = f->f ? 3 : 1,
};
if (sendmsg(fd, &msg, 0) < 0) {
close(fd);
return -1;
}
return 0;
}
static int sockdiag_send(int family, int fd, int protocol, struct filter *f)
{
struct sockaddr_nl nladdr;
DIAG_REQUEST(req, struct inet_diag_req_v2 r);
char *bc = NULL;
int bclen;
struct msghdr msg;
struct rtattr rta;
struct iovec iov[3];
if (family == PF_UNSPEC)
return tcpdiag_send(fd, protocol, f);
memset(&nladdr, 0, sizeof(nladdr));
nladdr.nl_family = AF_NETLINK;
memset(&req.r, 0, sizeof(req.r));
req.r.sdiag_family = family;
req.r.sdiag_protocol = protocol;
req.r.idiag_states = f->states;
if (show_mem) {
req.r.idiag_ext |= (1<<(INET_DIAG_MEMINFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_SKMEMINFO-1));
}
if (show_tcpinfo) {
req.r.idiag_ext |= (1<<(INET_DIAG_INFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_VEGASINFO-1));
req.r.idiag_ext |= (1<<(INET_DIAG_CONG-1));
}
iov[0] = (struct iovec){
.iov_base = &req,
.iov_len = sizeof(req)
};
if (f->f) {
bclen = ssfilter_bytecompile(f->f, &bc);
rta.rta_type = INET_DIAG_REQ_BYTECODE;
rta.rta_len = RTA_LENGTH(bclen);
iov[1] = (struct iovec){ &rta, sizeof(rta) };
iov[2] = (struct iovec){ bc, bclen };
req.nlh.nlmsg_len += RTA_LENGTH(bclen);
}
msg = (struct msghdr) {
.msg_name = (void*)&nladdr,
.msg_namelen = sizeof(nladdr),
.msg_iov = iov,
.msg_iovlen = f->f ? 3 : 1,
};
if (sendmsg(fd, &msg, 0) < 0) {
close(fd);
return -1;
}
return 0;
}
struct inet_diag_arg {
struct filter *f;
int protocol;
struct rtnl_handle *rth;
};
static int kill_inet_sock(const struct sockaddr_nl *addr,
struct nlmsghdr *h, void *arg)
{
struct inet_diag_msg *d = NLMSG_DATA(h);
struct inet_diag_arg *diag_arg = arg;
struct rtnl_handle *rth = diag_arg->rth;
DIAG_REQUEST(req, struct inet_diag_req_v2 r);
req.nlh.nlmsg_type = SOCK_DESTROY;
req.nlh.nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
req.nlh.nlmsg_seq = ++rth->seq;
req.r.sdiag_family = d->idiag_family;
req.r.sdiag_protocol = diag_arg->protocol;
req.r.id = d->id;
return rtnl_talk(rth, &req.nlh, NULL, 0);
}
static int show_one_inet_sock(const struct sockaddr_nl *addr,
struct nlmsghdr *h, void *arg)
{
int err;
struct inet_diag_arg *diag_arg = arg;
struct inet_diag_msg *r = NLMSG_DATA(h);
if (!(diag_arg->f->families & (1 << r->idiag_family)))
return 0;
if (diag_arg->f->kill && kill_inet_sock(addr, h, arg) != 0) {
if (errno == EOPNOTSUPP || errno == ENOENT) {
/* Socket can't be closed, or is already closed. */
return 0;
} else {
perror("SOCK_DESTROY answers");
return -1;
}
}
if ((err = inet_show_sock(h, diag_arg->f, diag_arg->protocol)) < 0)
return err;
return 0;
}
static int inet_show_netlink(struct filter *f, FILE *dump_fp, int protocol)
{
int err = 0;
struct rtnl_handle rth, rth2;
int family = PF_INET;
struct inet_diag_arg arg = { .f = f, .protocol = protocol };
if (rtnl_open_byproto(&rth, 0, NETLINK_SOCK_DIAG))
return -1;
if (f->kill) {
if (rtnl_open_byproto(&rth2, 0, NETLINK_SOCK_DIAG)) {
rtnl_close(&rth);
return -1;
}
arg.rth = &rth2;
}
rth.dump = MAGIC_SEQ;
rth.dump_fp = dump_fp;
if (preferred_family == PF_INET6)
family = PF_INET6;
again:
if ((err = sockdiag_send(family, rth.fd, protocol, f)))
goto Exit;
if ((err = rtnl_dump_filter(&rth, show_one_inet_sock, &arg))) {
if (family != PF_UNSPEC) {
family = PF_UNSPEC;
goto again;
}
goto Exit;
}
if (family == PF_INET && preferred_family != PF_INET) {
family = PF_INET6;
goto again;
}
Exit:
rtnl_close(&rth);
if (arg.rth)
rtnl_close(arg.rth);
return err;
}
static int tcp_show_netlink_file(struct filter *f)
{
FILE *fp;
char buf[16384];
if ((fp = fopen(getenv("TCPDIAG_FILE"), "r")) == NULL) {
perror("fopen($TCPDIAG_FILE)");
return -1;
}
while (1) {
int status, err;
struct nlmsghdr *h = (struct nlmsghdr*)buf;
status = fread(buf, 1, sizeof(*h), fp);
if (status < 0) {
perror("Reading header from $TCPDIAG_FILE");
return -1;
}
if (status != sizeof(*h)) {
perror("Unexpected EOF reading $TCPDIAG_FILE");
return -1;
}
status = fread(h+1, 1, NLMSG_ALIGN(h->nlmsg_len-sizeof(*h)), fp);
if (status < 0) {
perror("Reading $TCPDIAG_FILE");
return -1;
}
if (status + sizeof(*h) < h->nlmsg_len) {
perror("Unexpected EOF reading $TCPDIAG_FILE");
return -1;
}
/* The only legal exit point */
if (h->nlmsg_type == NLMSG_DONE)
return 0;
if (h->nlmsg_type == NLMSG_ERROR) {
struct nlmsgerr *err = (struct nlmsgerr*)NLMSG_DATA(h);
if (h->nlmsg_len < NLMSG_LENGTH(sizeof(struct nlmsgerr))) {
fprintf(stderr, "ERROR truncated\n");
} else {
errno = -err->error;
perror("TCPDIAG answered");
}
return -1;
}
err = inet_show_sock(h, f, IPPROTO_TCP);
if (err < 0)
return err;
}
}
static int tcp_show(struct filter *f, int socktype)
{
FILE *fp = NULL;
char *buf = NULL;
int bufsize = 64*1024;
if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6))
return 0;
dg_proto = TCP_PROTO;
if (getenv("TCPDIAG_FILE"))
return tcp_show_netlink_file(f);
if (!getenv("PROC_NET_TCP") && !getenv("PROC_ROOT")
&& inet_show_netlink(f, NULL, socktype) == 0)
return 0;
/* Sigh... We have to parse /proc/net/tcp... */
/* Estimate amount of sockets and try to allocate
* huge buffer to read all the table at one read.
* Limit it by 16MB though. The assumption is: as soon as
* kernel was able to hold information about N connections,
* it is able to give us some memory for snapshot.
*/
if (1) {
get_slabstat(&slabstat);
int guess = slabstat.socks+slabstat.tcp_syns;
if (f->states&(1<<SS_TIME_WAIT))
guess += slabstat.tcp_tws;
if (guess > (16*1024*1024)/128)
guess = (16*1024*1024)/128;
guess *= 128;
if (guess > bufsize)
bufsize = guess;
}
while (bufsize >= 64*1024) {
if ((buf = malloc(bufsize)) != NULL)
break;
bufsize /= 2;
}
if (buf == NULL) {
errno = ENOMEM;
return -1;
}
if (f->families & (1<<AF_INET)) {
if ((fp = net_tcp_open()) == NULL)
goto outerr;
setbuffer(fp, buf, bufsize);
if (generic_record_read(fp, tcp_show_line, f, AF_INET))
goto outerr;
fclose(fp);
}
if ((f->families & (1<<AF_INET6)) &&
(fp = net_tcp6_open()) != NULL) {
setbuffer(fp, buf, bufsize);
if (generic_record_read(fp, tcp_show_line, f, AF_INET6))
goto outerr;
fclose(fp);
}
free(buf);
return 0;
outerr:
do {
int saved_errno = errno;
free(buf);
if (fp)
fclose(fp);
errno = saved_errno;
return -1;
} while (0);
}
static int dgram_show_line(char *line, const struct filter *f, int family)
{
struct sockstat s = {};
char *loc, *rem, *data;
char opt[256];
int n;
if (proc_inet_split_line(line, &loc, &rem, &data))
return -1;
int state = (data[1] >= 'A') ? (data[1] - 'A' + 10) : (data[1] - '0');
if (!(f->states & (1 << state)))
return 0;
proc_parse_inet_addr(loc, rem, family, &s);
if (f->f && run_ssfilter(f->f, &s) == 0)
return 0;
opt[0] = 0;
n = sscanf(data, "%x %x:%x %*x:%*x %*x %d %*d %u %d %llx %[^\n]\n",
&s.state, &s.wq, &s.rq,
&s.uid, &s.ino,
&s.refcnt, &s.sk, opt);
if (n < 9)
opt[0] = 0;
inet_stats_print(&s, dg_proto == UDP_PROTO ? IPPROTO_UDP : 0);
if (show_details && opt[0])
printf(" opt:\"%s\"", opt);
printf("\n");
return 0;
}
static int udp_show(struct filter *f)
{
FILE *fp = NULL;
if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6))
return 0;
dg_proto = UDP_PROTO;
if (!getenv("PROC_NET_UDP") && !getenv("PROC_ROOT")
&& inet_show_netlink(f, NULL, IPPROTO_UDP) == 0)
return 0;
if (f->families&(1<<AF_INET)) {
if ((fp = net_udp_open()) == NULL)
goto outerr;
if (generic_record_read(fp, dgram_show_line, f, AF_INET))
goto outerr;
fclose(fp);
}
if ((f->families&(1<<AF_INET6)) &&
(fp = net_udp6_open()) != NULL) {
if (generic_record_read(fp, dgram_show_line, f, AF_INET6))
goto outerr;
fclose(fp);
}
return 0;
outerr:
do {
int saved_errno = errno;
if (fp)
fclose(fp);
errno = saved_errno;
return -1;
} while (0);
}
static int raw_show(struct filter *f)
{
FILE *fp = NULL;
if (!filter_af_get(f, AF_INET) && !filter_af_get(f, AF_INET6))
return 0;
dg_proto = RAW_PROTO;
if (f->families&(1<<AF_INET)) {
if ((fp = net_raw_open()) == NULL)
goto outerr;
if (generic_record_read(fp, dgram_show_line, f, AF_INET))
goto outerr;
fclose(fp);
}
if ((f->families&(1<<AF_INET6)) &&
(fp = net_raw6_open()) != NULL) {
if (generic_record_read(fp, dgram_show_line, f, AF_INET6))
goto outerr;
fclose(fp);
}
return 0;
outerr:
do {
int saved_errno = errno;
if (fp)
fclose(fp);
errno = saved_errno;
return -1;
} while (0);
}
int unix_state_map[] = { SS_CLOSE, SS_SYN_SENT,
SS_ESTABLISHED, SS_CLOSING };
#define MAX_UNIX_REMEMBER (1024*1024/sizeof(struct sockstat))
static void unix_list_free(struct sockstat *list)
{
while (list) {
struct sockstat *s = list;