| #ifndef JEMALLOC_ENABLE_INLINE |
| double ln_gamma(double x); |
| double i_gamma(double x, double p, double ln_gamma_p); |
| double pt_norm(double p); |
| double pt_chi2(double p, double df, double ln_gamma_df_2); |
| double pt_gamma(double p, double shape, double scale, double ln_gamma_shape); |
| #endif |
| |
| #if (defined(JEMALLOC_ENABLE_INLINE) || defined(MATH_C_)) |
| /* |
| * Compute the natural log of Gamma(x), accurate to 10 decimal places. |
| * |
| * This implementation is based on: |
| * |
| * Pike, M.C., I.D. Hill (1966) Algorithm 291: Logarithm of Gamma function |
| * [S14]. Communications of the ACM 9(9):684. |
| */ |
| JEMALLOC_INLINE double |
| ln_gamma(double x) |
| { |
| double f, z; |
| |
| assert(x > 0.0); |
| |
| if (x < 7.0) { |
| f = 1.0; |
| z = x; |
| while (z < 7.0) { |
| f *= z; |
| z += 1.0; |
| } |
| x = z; |
| f = -log(f); |
| } else |
| f = 0.0; |
| |
| z = 1.0 / (x * x); |
| |
| return (f + (x-0.5) * log(x) - x + 0.918938533204673 + |
| (((-0.000595238095238 * z + 0.000793650793651) * z - |
| 0.002777777777778) * z + 0.083333333333333) / x); |
| } |
| |
| /* |
| * Compute the incomplete Gamma ratio for [0..x], where p is the shape |
| * parameter, and ln_gamma_p is ln_gamma(p). |
| * |
| * This implementation is based on: |
| * |
| * Bhattacharjee, G.P. (1970) Algorithm AS 32: The incomplete Gamma integral. |
| * Applied Statistics 19:285-287. |
| */ |
| JEMALLOC_INLINE double |
| i_gamma(double x, double p, double ln_gamma_p) |
| { |
| double acu, factor, oflo, gin, term, rn, a, b, an, dif; |
| double pn[6]; |
| unsigned i; |
| |
| assert(p > 0.0); |
| assert(x >= 0.0); |
| |
| if (x == 0.0) |
| return (0.0); |
| |
| acu = 1.0e-10; |
| oflo = 1.0e30; |
| gin = 0.0; |
| factor = exp(p * log(x) - x - ln_gamma_p); |
| |
| if (x <= 1.0 || x < p) { |
| /* Calculation by series expansion. */ |
| gin = 1.0; |
| term = 1.0; |
| rn = p; |
| |
| while (true) { |
| rn += 1.0; |
| term *= x / rn; |
| gin += term; |
| if (term <= acu) { |
| gin *= factor / p; |
| return (gin); |
| } |
| } |
| } else { |
| /* Calculation by continued fraction. */ |
| a = 1.0 - p; |
| b = a + x + 1.0; |
| term = 0.0; |
| pn[0] = 1.0; |
| pn[1] = x; |
| pn[2] = x + 1.0; |
| pn[3] = x * b; |
| gin = pn[2] / pn[3]; |
| |
| while (true) { |
| a += 1.0; |
| b += 2.0; |
| term += 1.0; |
| an = a * term; |
| for (i = 0; i < 2; i++) |
| pn[i+4] = b * pn[i+2] - an * pn[i]; |
| if (pn[5] != 0.0) { |
| rn = pn[4] / pn[5]; |
| dif = fabs(gin - rn); |
| if (dif <= acu && dif <= acu * rn) { |
| gin = 1.0 - factor * gin; |
| return (gin); |
| } |
| gin = rn; |
| } |
| for (i = 0; i < 4; i++) |
| pn[i] = pn[i+2]; |
| |
| if (fabs(pn[4]) >= oflo) { |
| for (i = 0; i < 4; i++) |
| pn[i] /= oflo; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Given a value p in [0..1] of the lower tail area of the normal distribution, |
| * compute the limit on the definite integral from [-inf..z] that satisfies p, |
| * accurate to 16 decimal places. |
| * |
| * This implementation is based on: |
| * |
| * Wichura, M.J. (1988) Algorithm AS 241: The percentage points of the normal |
| * distribution. Applied Statistics 37(3):477-484. |
| */ |
| JEMALLOC_INLINE double |
| pt_norm(double p) |
| { |
| double q, r, ret; |
| |
| assert(p > 0.0 && p < 1.0); |
| |
| q = p - 0.5; |
| if (fabs(q) <= 0.425) { |
| /* p close to 1/2. */ |
| r = 0.180625 - q * q; |
| return (q * (((((((2.5090809287301226727e3 * r + |
| 3.3430575583588128105e4) * r + 6.7265770927008700853e4) * r |
| + 4.5921953931549871457e4) * r + 1.3731693765509461125e4) * |
| r + 1.9715909503065514427e3) * r + 1.3314166789178437745e2) |
| * r + 3.3871328727963666080e0) / |
| (((((((5.2264952788528545610e3 * r + |
| 2.8729085735721942674e4) * r + 3.9307895800092710610e4) * r |
| + 2.1213794301586595867e4) * r + 5.3941960214247511077e3) * |
| r + 6.8718700749205790830e2) * r + 4.2313330701600911252e1) |
| * r + 1.0)); |
| } else { |
| if (q < 0.0) |
| r = p; |
| else |
| r = 1.0 - p; |
| assert(r > 0.0); |
| |
| r = sqrt(-log(r)); |
| if (r <= 5.0) { |
| /* p neither close to 1/2 nor 0 or 1. */ |
| r -= 1.6; |
| ret = ((((((((7.74545014278341407640e-4 * r + |
| 2.27238449892691845833e-2) * r + |
| 2.41780725177450611770e-1) * r + |
| 1.27045825245236838258e0) * r + |
| 3.64784832476320460504e0) * r + |
| 5.76949722146069140550e0) * r + |
| 4.63033784615654529590e0) * r + |
| 1.42343711074968357734e0) / |
| (((((((1.05075007164441684324e-9 * r + |
| 5.47593808499534494600e-4) * r + |
| 1.51986665636164571966e-2) |
| * r + 1.48103976427480074590e-1) * r + |
| 6.89767334985100004550e-1) * r + |
| 1.67638483018380384940e0) * r + |
| 2.05319162663775882187e0) * r + 1.0)); |
| } else { |
| /* p near 0 or 1. */ |
| r -= 5.0; |
| ret = ((((((((2.01033439929228813265e-7 * r + |
| 2.71155556874348757815e-5) * r + |
| 1.24266094738807843860e-3) * r + |
| 2.65321895265761230930e-2) * r + |
| 2.96560571828504891230e-1) * r + |
| 1.78482653991729133580e0) * r + |
| 5.46378491116411436990e0) * r + |
| 6.65790464350110377720e0) / |
| (((((((2.04426310338993978564e-15 * r + |
| 1.42151175831644588870e-7) * r + |
| 1.84631831751005468180e-5) * r + |
| 7.86869131145613259100e-4) * r + |
| 1.48753612908506148525e-2) * r + |
| 1.36929880922735805310e-1) * r + |
| 5.99832206555887937690e-1) |
| * r + 1.0)); |
| } |
| if (q < 0.0) |
| ret = -ret; |
| return (ret); |
| } |
| } |
| |
| /* |
| * Given a value p in [0..1] of the lower tail area of the Chi^2 distribution |
| * with df degrees of freedom, where ln_gamma_df_2 is ln_gamma(df/2.0), compute |
| * the upper limit on the definite integral from [0..z] that satisfies p, |
| * accurate to 12 decimal places. |
| * |
| * This implementation is based on: |
| * |
| * Best, D.J., D.E. Roberts (1975) Algorithm AS 91: The percentage points of |
| * the Chi^2 distribution. Applied Statistics 24(3):385-388. |
| * |
| * Shea, B.L. (1991) Algorithm AS R85: A remark on AS 91: The percentage |
| * points of the Chi^2 distribution. Applied Statistics 40(1):233-235. |
| */ |
| JEMALLOC_INLINE double |
| pt_chi2(double p, double df, double ln_gamma_df_2) |
| { |
| double e, aa, xx, c, ch, a, q, p1, p2, t, x, b, s1, s2, s3, s4, s5, s6; |
| unsigned i; |
| |
| assert(p >= 0.0 && p < 1.0); |
| assert(df > 0.0); |
| |
| e = 5.0e-7; |
| aa = 0.6931471805; |
| |
| xx = 0.5 * df; |
| c = xx - 1.0; |
| |
| if (df < -1.24 * log(p)) { |
| /* Starting approximation for small Chi^2. */ |
| ch = pow(p * xx * exp(ln_gamma_df_2 + xx * aa), 1.0 / xx); |
| if (ch - e < 0.0) |
| return (ch); |
| } else { |
| if (df > 0.32) { |
| x = pt_norm(p); |
| /* |
| * Starting approximation using Wilson and Hilferty |
| * estimate. |
| */ |
| p1 = 0.222222 / df; |
| ch = df * pow(x * sqrt(p1) + 1.0 - p1, 3.0); |
| /* Starting approximation for p tending to 1. */ |
| if (ch > 2.2 * df + 6.0) { |
| ch = -2.0 * (log(1.0 - p) - c * log(0.5 * ch) + |
| ln_gamma_df_2); |
| } |
| } else { |
| ch = 0.4; |
| a = log(1.0 - p); |
| while (true) { |
| q = ch; |
| p1 = 1.0 + ch * (4.67 + ch); |
| p2 = ch * (6.73 + ch * (6.66 + ch)); |
| t = -0.5 + (4.67 + 2.0 * ch) / p1 - (6.73 + ch |
| * (13.32 + 3.0 * ch)) / p2; |
| ch -= (1.0 - exp(a + ln_gamma_df_2 + 0.5 * ch + |
| c * aa) * p2 / p1) / t; |
| if (fabs(q / ch - 1.0) - 0.01 <= 0.0) |
| break; |
| } |
| } |
| } |
| |
| for (i = 0; i < 20; i++) { |
| /* Calculation of seven-term Taylor series. */ |
| q = ch; |
| p1 = 0.5 * ch; |
| if (p1 < 0.0) |
| return (-1.0); |
| p2 = p - i_gamma(p1, xx, ln_gamma_df_2); |
| t = p2 * exp(xx * aa + ln_gamma_df_2 + p1 - c * log(ch)); |
| b = t / ch; |
| a = 0.5 * t - b * c; |
| s1 = (210.0 + a * (140.0 + a * (105.0 + a * (84.0 + a * (70.0 + |
| 60.0 * a))))) / 420.0; |
| s2 = (420.0 + a * (735.0 + a * (966.0 + a * (1141.0 + 1278.0 * |
| a)))) / 2520.0; |
| s3 = (210.0 + a * (462.0 + a * (707.0 + 932.0 * a))) / 2520.0; |
| s4 = (252.0 + a * (672.0 + 1182.0 * a) + c * (294.0 + a * |
| (889.0 + 1740.0 * a))) / 5040.0; |
| s5 = (84.0 + 264.0 * a + c * (175.0 + 606.0 * a)) / 2520.0; |
| s6 = (120.0 + c * (346.0 + 127.0 * c)) / 5040.0; |
| ch += t * (1.0 + 0.5 * t * s1 - b * c * (s1 - b * (s2 - b * (s3 |
| - b * (s4 - b * (s5 - b * s6)))))); |
| if (fabs(q / ch - 1.0) <= e) |
| break; |
| } |
| |
| return (ch); |
| } |
| |
| /* |
| * Given a value p in [0..1] and Gamma distribution shape and scale parameters, |
| * compute the upper limit on the definite integral from [0..z] that satisfies |
| * p. |
| */ |
| JEMALLOC_INLINE double |
| pt_gamma(double p, double shape, double scale, double ln_gamma_shape) |
| { |
| |
| return (pt_chi2(p, shape * 2.0, ln_gamma_shape) * 0.5 * scale); |
| } |
| #endif |