| /* |
| * This file derives from SFMT 1.3.3 |
| * (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html), which was |
| * released under the terms of the following license: |
| * |
| * Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima |
| * University. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * * Neither the name of the Hiroshima University nor the names of |
| * its contributors may be used to endorse or promote products |
| * derived from this software without specific prior written |
| * permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| /** |
| * @file SFMT.c |
| * @brief SIMD oriented Fast Mersenne Twister(SFMT) |
| * |
| * @author Mutsuo Saito (Hiroshima University) |
| * @author Makoto Matsumoto (Hiroshima University) |
| * |
| * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima |
| * University. All rights reserved. |
| * |
| * The new BSD License is applied to this software, see LICENSE.txt |
| */ |
| #define SFMT_C_ |
| #include "test/jemalloc_test.h" |
| #include "test/SFMT-params.h" |
| |
| #if defined(JEMALLOC_BIG_ENDIAN) && !defined(BIG_ENDIAN64) |
| #define BIG_ENDIAN64 1 |
| #endif |
| #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64) |
| #define BIG_ENDIAN64 1 |
| #endif |
| #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64) |
| #define BIG_ENDIAN64 1 |
| #endif |
| #if defined(ONLY64) && !defined(BIG_ENDIAN64) |
| #if defined(__GNUC__) |
| #error "-DONLY64 must be specified with -DBIG_ENDIAN64" |
| #endif |
| #undef ONLY64 |
| #endif |
| /*------------------------------------------------------ |
| 128-bit SIMD data type for Altivec, SSE2 or standard C |
| ------------------------------------------------------*/ |
| #if defined(HAVE_ALTIVEC) |
| /** 128-bit data structure */ |
| union W128_T { |
| vector unsigned int s; |
| uint32_t u[4]; |
| }; |
| /** 128-bit data type */ |
| typedef union W128_T w128_t; |
| |
| #elif defined(HAVE_SSE2) |
| /** 128-bit data structure */ |
| union W128_T { |
| __m128i si; |
| uint32_t u[4]; |
| }; |
| /** 128-bit data type */ |
| typedef union W128_T w128_t; |
| |
| #else |
| |
| /** 128-bit data structure */ |
| struct W128_T { |
| uint32_t u[4]; |
| }; |
| /** 128-bit data type */ |
| typedef struct W128_T w128_t; |
| |
| #endif |
| |
| struct sfmt_s { |
| /** the 128-bit internal state array */ |
| w128_t sfmt[N]; |
| /** index counter to the 32-bit internal state array */ |
| int idx; |
| /** a flag: it is 0 if and only if the internal state is not yet |
| * initialized. */ |
| int initialized; |
| }; |
| |
| /*-------------------------------------- |
| FILE GLOBAL VARIABLES |
| internal state, index counter and flag |
| --------------------------------------*/ |
| |
| /** a parity check vector which certificate the period of 2^{MEXP} */ |
| static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4}; |
| |
| /*---------------- |
| STATIC FUNCTIONS |
| ----------------*/ |
| JEMALLOC_INLINE_C int idxof(int i); |
| #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) |
| JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift); |
| JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift); |
| #endif |
| JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx); |
| JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size); |
| JEMALLOC_INLINE_C uint32_t func1(uint32_t x); |
| JEMALLOC_INLINE_C uint32_t func2(uint32_t x); |
| static void period_certification(sfmt_t *ctx); |
| #if defined(BIG_ENDIAN64) && !defined(ONLY64) |
| JEMALLOC_INLINE_C void swap(w128_t *array, int size); |
| #endif |
| |
| #if defined(HAVE_ALTIVEC) |
| #include "test/SFMT-alti.h" |
| #elif defined(HAVE_SSE2) |
| #include "test/SFMT-sse2.h" |
| #endif |
| |
| /** |
| * This function simulate a 64-bit index of LITTLE ENDIAN |
| * in BIG ENDIAN machine. |
| */ |
| #ifdef ONLY64 |
| JEMALLOC_INLINE_C int idxof(int i) { |
| return i ^ 1; |
| } |
| #else |
| JEMALLOC_INLINE_C int idxof(int i) { |
| return i; |
| } |
| #endif |
| /** |
| * This function simulates SIMD 128-bit right shift by the standard C. |
| * The 128-bit integer given in in is shifted by (shift * 8) bits. |
| * This function simulates the LITTLE ENDIAN SIMD. |
| * @param out the output of this function |
| * @param in the 128-bit data to be shifted |
| * @param shift the shift value |
| */ |
| #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) |
| #ifdef ONLY64 |
| JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) { |
| uint64_t th, tl, oh, ol; |
| |
| th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]); |
| tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]); |
| |
| oh = th >> (shift * 8); |
| ol = tl >> (shift * 8); |
| ol |= th << (64 - shift * 8); |
| out->u[0] = (uint32_t)(ol >> 32); |
| out->u[1] = (uint32_t)ol; |
| out->u[2] = (uint32_t)(oh >> 32); |
| out->u[3] = (uint32_t)oh; |
| } |
| #else |
| JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) { |
| uint64_t th, tl, oh, ol; |
| |
| th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]); |
| tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]); |
| |
| oh = th >> (shift * 8); |
| ol = tl >> (shift * 8); |
| ol |= th << (64 - shift * 8); |
| out->u[1] = (uint32_t)(ol >> 32); |
| out->u[0] = (uint32_t)ol; |
| out->u[3] = (uint32_t)(oh >> 32); |
| out->u[2] = (uint32_t)oh; |
| } |
| #endif |
| /** |
| * This function simulates SIMD 128-bit left shift by the standard C. |
| * The 128-bit integer given in in is shifted by (shift * 8) bits. |
| * This function simulates the LITTLE ENDIAN SIMD. |
| * @param out the output of this function |
| * @param in the 128-bit data to be shifted |
| * @param shift the shift value |
| */ |
| #ifdef ONLY64 |
| JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) { |
| uint64_t th, tl, oh, ol; |
| |
| th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]); |
| tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]); |
| |
| oh = th << (shift * 8); |
| ol = tl << (shift * 8); |
| oh |= tl >> (64 - shift * 8); |
| out->u[0] = (uint32_t)(ol >> 32); |
| out->u[1] = (uint32_t)ol; |
| out->u[2] = (uint32_t)(oh >> 32); |
| out->u[3] = (uint32_t)oh; |
| } |
| #else |
| JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) { |
| uint64_t th, tl, oh, ol; |
| |
| th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]); |
| tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]); |
| |
| oh = th << (shift * 8); |
| ol = tl << (shift * 8); |
| oh |= tl >> (64 - shift * 8); |
| out->u[1] = (uint32_t)(ol >> 32); |
| out->u[0] = (uint32_t)ol; |
| out->u[3] = (uint32_t)(oh >> 32); |
| out->u[2] = (uint32_t)oh; |
| } |
| #endif |
| #endif |
| |
| /** |
| * This function represents the recursion formula. |
| * @param r output |
| * @param a a 128-bit part of the internal state array |
| * @param b a 128-bit part of the internal state array |
| * @param c a 128-bit part of the internal state array |
| * @param d a 128-bit part of the internal state array |
| */ |
| #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) |
| #ifdef ONLY64 |
| JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, |
| w128_t *d) { |
| w128_t x; |
| w128_t y; |
| |
| lshift128(&x, a, SL2); |
| rshift128(&y, c, SR2); |
| r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0] |
| ^ (d->u[0] << SL1); |
| r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1] |
| ^ (d->u[1] << SL1); |
| r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2] |
| ^ (d->u[2] << SL1); |
| r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3] |
| ^ (d->u[3] << SL1); |
| } |
| #else |
| JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c, |
| w128_t *d) { |
| w128_t x; |
| w128_t y; |
| |
| lshift128(&x, a, SL2); |
| rshift128(&y, c, SR2); |
| r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0] |
| ^ (d->u[0] << SL1); |
| r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1] |
| ^ (d->u[1] << SL1); |
| r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2] |
| ^ (d->u[2] << SL1); |
| r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3] |
| ^ (d->u[3] << SL1); |
| } |
| #endif |
| #endif |
| |
| #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) |
| /** |
| * This function fills the internal state array with pseudorandom |
| * integers. |
| */ |
| JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) { |
| int i; |
| w128_t *r1, *r2; |
| |
| r1 = &ctx->sfmt[N - 2]; |
| r2 = &ctx->sfmt[N - 1]; |
| for (i = 0; i < N - POS1; i++) { |
| do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, |
| r2); |
| r1 = r2; |
| r2 = &ctx->sfmt[i]; |
| } |
| for (; i < N; i++) { |
| do_recursion(&ctx->sfmt[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1 - N], r1, |
| r2); |
| r1 = r2; |
| r2 = &ctx->sfmt[i]; |
| } |
| } |
| |
| /** |
| * This function fills the user-specified array with pseudorandom |
| * integers. |
| * |
| * @param array an 128-bit array to be filled by pseudorandom numbers. |
| * @param size number of 128-bit pseudorandom numbers to be generated. |
| */ |
| JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) { |
| int i, j; |
| w128_t *r1, *r2; |
| |
| r1 = &ctx->sfmt[N - 2]; |
| r2 = &ctx->sfmt[N - 1]; |
| for (i = 0; i < N - POS1; i++) { |
| do_recursion(&array[i], &ctx->sfmt[i], &ctx->sfmt[i + POS1], r1, r2); |
| r1 = r2; |
| r2 = &array[i]; |
| } |
| for (; i < N; i++) { |
| do_recursion(&array[i], &ctx->sfmt[i], &array[i + POS1 - N], r1, r2); |
| r1 = r2; |
| r2 = &array[i]; |
| } |
| for (; i < size - N; i++) { |
| do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); |
| r1 = r2; |
| r2 = &array[i]; |
| } |
| for (j = 0; j < 2 * N - size; j++) { |
| ctx->sfmt[j] = array[j + size - N]; |
| } |
| for (; i < size; i++, j++) { |
| do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); |
| r1 = r2; |
| r2 = &array[i]; |
| ctx->sfmt[j] = array[i]; |
| } |
| } |
| #endif |
| |
| #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC) |
| JEMALLOC_INLINE_C void swap(w128_t *array, int size) { |
| int i; |
| uint32_t x, y; |
| |
| for (i = 0; i < size; i++) { |
| x = array[i].u[0]; |
| y = array[i].u[2]; |
| array[i].u[0] = array[i].u[1]; |
| array[i].u[2] = array[i].u[3]; |
| array[i].u[1] = x; |
| array[i].u[3] = y; |
| } |
| } |
| #endif |
| /** |
| * This function represents a function used in the initialization |
| * by init_by_array |
| * @param x 32-bit integer |
| * @return 32-bit integer |
| */ |
| static uint32_t func1(uint32_t x) { |
| return (x ^ (x >> 27)) * (uint32_t)1664525UL; |
| } |
| |
| /** |
| * This function represents a function used in the initialization |
| * by init_by_array |
| * @param x 32-bit integer |
| * @return 32-bit integer |
| */ |
| static uint32_t func2(uint32_t x) { |
| return (x ^ (x >> 27)) * (uint32_t)1566083941UL; |
| } |
| |
| /** |
| * This function certificate the period of 2^{MEXP} |
| */ |
| static void period_certification(sfmt_t *ctx) { |
| int inner = 0; |
| int i, j; |
| uint32_t work; |
| uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; |
| |
| for (i = 0; i < 4; i++) |
| inner ^= psfmt32[idxof(i)] & parity[i]; |
| for (i = 16; i > 0; i >>= 1) |
| inner ^= inner >> i; |
| inner &= 1; |
| /* check OK */ |
| if (inner == 1) { |
| return; |
| } |
| /* check NG, and modification */ |
| for (i = 0; i < 4; i++) { |
| work = 1; |
| for (j = 0; j < 32; j++) { |
| if ((work & parity[i]) != 0) { |
| psfmt32[idxof(i)] ^= work; |
| return; |
| } |
| work = work << 1; |
| } |
| } |
| } |
| |
| /*---------------- |
| PUBLIC FUNCTIONS |
| ----------------*/ |
| /** |
| * This function returns the identification string. |
| * The string shows the word size, the Mersenne exponent, |
| * and all parameters of this generator. |
| */ |
| const char *get_idstring(void) { |
| return IDSTR; |
| } |
| |
| /** |
| * This function returns the minimum size of array used for \b |
| * fill_array32() function. |
| * @return minimum size of array used for fill_array32() function. |
| */ |
| int get_min_array_size32(void) { |
| return N32; |
| } |
| |
| /** |
| * This function returns the minimum size of array used for \b |
| * fill_array64() function. |
| * @return minimum size of array used for fill_array64() function. |
| */ |
| int get_min_array_size64(void) { |
| return N64; |
| } |
| |
| #ifndef ONLY64 |
| /** |
| * This function generates and returns 32-bit pseudorandom number. |
| * init_gen_rand or init_by_array must be called before this function. |
| * @return 32-bit pseudorandom number |
| */ |
| uint32_t gen_rand32(sfmt_t *ctx) { |
| uint32_t r; |
| uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; |
| |
| assert(ctx->initialized); |
| if (ctx->idx >= N32) { |
| gen_rand_all(ctx); |
| ctx->idx = 0; |
| } |
| r = psfmt32[ctx->idx++]; |
| return r; |
| } |
| |
| /* Generate a random integer in [0..limit). */ |
| uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) { |
| uint32_t ret, above; |
| |
| above = 0xffffffffU - (0xffffffffU % limit); |
| while (1) { |
| ret = gen_rand32(ctx); |
| if (ret < above) { |
| ret %= limit; |
| break; |
| } |
| } |
| return ret; |
| } |
| #endif |
| /** |
| * This function generates and returns 64-bit pseudorandom number. |
| * init_gen_rand or init_by_array must be called before this function. |
| * The function gen_rand64 should not be called after gen_rand32, |
| * unless an initialization is again executed. |
| * @return 64-bit pseudorandom number |
| */ |
| uint64_t gen_rand64(sfmt_t *ctx) { |
| #if defined(BIG_ENDIAN64) && !defined(ONLY64) |
| uint32_t r1, r2; |
| uint32_t *psfmt32 = &ctx->sfmt[0].u[0]; |
| #else |
| uint64_t r; |
| uint64_t *psfmt64 = (uint64_t *)&ctx->sfmt[0].u[0]; |
| #endif |
| |
| assert(ctx->initialized); |
| assert(ctx->idx % 2 == 0); |
| |
| if (ctx->idx >= N32) { |
| gen_rand_all(ctx); |
| ctx->idx = 0; |
| } |
| #if defined(BIG_ENDIAN64) && !defined(ONLY64) |
| r1 = psfmt32[ctx->idx]; |
| r2 = psfmt32[ctx->idx + 1]; |
| ctx->idx += 2; |
| return ((uint64_t)r2 << 32) | r1; |
| #else |
| r = psfmt64[ctx->idx / 2]; |
| ctx->idx += 2; |
| return r; |
| #endif |
| } |
| |
| /* Generate a random integer in [0..limit). */ |
| uint64_t gen_rand64_range(sfmt_t *ctx, uint64_t limit) { |
| uint64_t ret, above; |
| |
| above = KQU(0xffffffffffffffff) - (KQU(0xffffffffffffffff) % limit); |
| while (1) { |
| ret = gen_rand64(ctx); |
| if (ret < above) { |
| ret %= limit; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| #ifndef ONLY64 |
| /** |
| * This function generates pseudorandom 32-bit integers in the |
| * specified array[] by one call. The number of pseudorandom integers |
| * is specified by the argument size, which must be at least 624 and a |
| * multiple of four. The generation by this function is much faster |
| * than the following gen_rand function. |
| * |
| * For initialization, init_gen_rand or init_by_array must be called |
| * before the first call of this function. This function can not be |
| * used after calling gen_rand function, without initialization. |
| * |
| * @param array an array where pseudorandom 32-bit integers are filled |
| * by this function. The pointer to the array must be \b "aligned" |
| * (namely, must be a multiple of 16) in the SIMD version, since it |
| * refers to the address of a 128-bit integer. In the standard C |
| * version, the pointer is arbitrary. |
| * |
| * @param size the number of 32-bit pseudorandom integers to be |
| * generated. size must be a multiple of 4, and greater than or equal |
| * to (MEXP / 128 + 1) * 4. |
| * |
| * @note \b memalign or \b posix_memalign is available to get aligned |
| * memory. Mac OSX doesn't have these functions, but \b malloc of OSX |
| * returns the pointer to the aligned memory block. |
| */ |
| void fill_array32(sfmt_t *ctx, uint32_t *array, int size) { |
| assert(ctx->initialized); |
| assert(ctx->idx == N32); |
| assert(size % 4 == 0); |
| assert(size >= N32); |
| |
| gen_rand_array(ctx, (w128_t *)array, size / 4); |
| ctx->idx = N32; |
| } |
| #endif |
| |
| /** |
| * This function generates pseudorandom 64-bit integers in the |
| * specified array[] by one call. The number of pseudorandom integers |
| * is specified by the argument size, which must be at least 312 and a |
| * multiple of two. The generation by this function is much faster |
| * than the following gen_rand function. |
| * |
| * For initialization, init_gen_rand or init_by_array must be called |
| * before the first call of this function. This function can not be |
| * used after calling gen_rand function, without initialization. |
| * |
| * @param array an array where pseudorandom 64-bit integers are filled |
| * by this function. The pointer to the array must be "aligned" |
| * (namely, must be a multiple of 16) in the SIMD version, since it |
| * refers to the address of a 128-bit integer. In the standard C |
| * version, the pointer is arbitrary. |
| * |
| * @param size the number of 64-bit pseudorandom integers to be |
| * generated. size must be a multiple of 2, and greater than or equal |
| * to (MEXP / 128 + 1) * 2 |
| * |
| * @note \b memalign or \b posix_memalign is available to get aligned |
| * memory. Mac OSX doesn't have these functions, but \b malloc of OSX |
| * returns the pointer to the aligned memory block. |
| */ |
| void fill_array64(sfmt_t *ctx, uint64_t *array, int size) { |
| assert(ctx->initialized); |
| assert(ctx->idx == N32); |
| assert(size % 2 == 0); |
| assert(size >= N64); |
| |
| gen_rand_array(ctx, (w128_t *)array, size / 2); |
| ctx->idx = N32; |
| |
| #if defined(BIG_ENDIAN64) && !defined(ONLY64) |
| swap((w128_t *)array, size /2); |
| #endif |
| } |
| |
| /** |
| * This function initializes the internal state array with a 32-bit |
| * integer seed. |
| * |
| * @param seed a 32-bit integer used as the seed. |
| */ |
| sfmt_t *init_gen_rand(uint32_t seed) { |
| void *p; |
| sfmt_t *ctx; |
| int i; |
| uint32_t *psfmt32; |
| |
| if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) { |
| return NULL; |
| } |
| ctx = (sfmt_t *)p; |
| psfmt32 = &ctx->sfmt[0].u[0]; |
| |
| psfmt32[idxof(0)] = seed; |
| for (i = 1; i < N32; i++) { |
| psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)] |
| ^ (psfmt32[idxof(i - 1)] >> 30)) |
| + i; |
| } |
| ctx->idx = N32; |
| period_certification(ctx); |
| ctx->initialized = 1; |
| |
| return ctx; |
| } |
| |
| /** |
| * This function initializes the internal state array, |
| * with an array of 32-bit integers used as the seeds |
| * @param init_key the array of 32-bit integers, used as a seed. |
| * @param key_length the length of init_key. |
| */ |
| sfmt_t *init_by_array(uint32_t *init_key, int key_length) { |
| void *p; |
| sfmt_t *ctx; |
| int i, j, count; |
| uint32_t r; |
| int lag; |
| int mid; |
| int size = N * 4; |
| uint32_t *psfmt32; |
| |
| if (posix_memalign(&p, sizeof(w128_t), sizeof(sfmt_t)) != 0) { |
| return NULL; |
| } |
| ctx = (sfmt_t *)p; |
| psfmt32 = &ctx->sfmt[0].u[0]; |
| |
| if (size >= 623) { |
| lag = 11; |
| } else if (size >= 68) { |
| lag = 7; |
| } else if (size >= 39) { |
| lag = 5; |
| } else { |
| lag = 3; |
| } |
| mid = (size - lag) / 2; |
| |
| memset(ctx->sfmt, 0x8b, sizeof(ctx->sfmt)); |
| if (key_length + 1 > N32) { |
| count = key_length + 1; |
| } else { |
| count = N32; |
| } |
| r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)] |
| ^ psfmt32[idxof(N32 - 1)]); |
| psfmt32[idxof(mid)] += r; |
| r += key_length; |
| psfmt32[idxof(mid + lag)] += r; |
| psfmt32[idxof(0)] = r; |
| |
| count--; |
| for (i = 1, j = 0; (j < count) && (j < key_length); j++) { |
| r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] |
| ^ psfmt32[idxof((i + N32 - 1) % N32)]); |
| psfmt32[idxof((i + mid) % N32)] += r; |
| r += init_key[j] + i; |
| psfmt32[idxof((i + mid + lag) % N32)] += r; |
| psfmt32[idxof(i)] = r; |
| i = (i + 1) % N32; |
| } |
| for (; j < count; j++) { |
| r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)] |
| ^ psfmt32[idxof((i + N32 - 1) % N32)]); |
| psfmt32[idxof((i + mid) % N32)] += r; |
| r += i; |
| psfmt32[idxof((i + mid + lag) % N32)] += r; |
| psfmt32[idxof(i)] = r; |
| i = (i + 1) % N32; |
| } |
| for (j = 0; j < N32; j++) { |
| r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)] |
| + psfmt32[idxof((i + N32 - 1) % N32)]); |
| psfmt32[idxof((i + mid) % N32)] ^= r; |
| r -= i; |
| psfmt32[idxof((i + mid + lag) % N32)] ^= r; |
| psfmt32[idxof(i)] = r; |
| i = (i + 1) % N32; |
| } |
| |
| ctx->idx = N32; |
| period_certification(ctx); |
| ctx->initialized = 1; |
| |
| return ctx; |
| } |
| |
| void fini_gen_rand(sfmt_t *ctx) { |
| assert(ctx != NULL); |
| |
| ctx->initialized = 0; |
| free(ctx); |
| } |